N-Terminally Added Tag Selectively Enhances Heterologous Expression of VacA Cytotoxin Variants from Helicobacter pylori

Author(s): Aung Khine Linn, Nitchakan Samainukul, Somsri Sakdee, Chonthicha Butnampetch, Hui-Chun Li, Chanan Angsuthanasombat*, Gerd Katzenmeier

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 6 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Gastric pathogen Helicobacter pylori secretes VacA cytotoxin displaying a high degree of polymorphic variations of which the highest VacA pathogenicity correlates with m1-type variant followed by VacA-m2.

Objective: To comparatively evaluate expression in Escherichia coli of the mature VacA variants (m1- and m2-types) and their 33- and 55/59-kDa domains fused with His(6) tag at N- or C-terminus.

Methods: All VacA clones expressed in E. coli TOP10™ were analyzed by SDS-PAGE and Western blotting. VacA inclusions were solubilized under native conditions (~150-rpm shaking at 37°C for 2 h in 20 mM HEPES (pH7.4) and 150 mM NaCl). Membrane-perturbing and cytotoxic activities of solubilized VacA proteins were assessed via liposome-entrapped dye leakage and resazurin- based cell viability assays, respectively. VacA binding to human gastric adenocarcinoma cells was assessed by immunofluorescence microscopy. Side-chain hydrophobicity of VacA was analyzed through modeled structures constructed by homology- and ab initio-based modeling.

Results: Both full-length VacA-m1 and 33-kDa domain were efficiently expressed only in the presence of N-terminal extension while its 55-kDa domain was capably expressed with either N- or Cterminal extension. Selectively enhanced expression was also observed for VacA-m2. Protein expression profiles revealed a critical period in IPTG-induced production of the 55-kDa domain with N-terminal extension unlike its C-terminal extension showing relatively stable expression. Both VacA- m1 isolated domains were able to independently bind to cultured gastric cells similar to the full- length toxin, albeit the 33-kDa domain exhibited significantly higher activity of membrane perturbation than others. Membrane-perturbing and cytotoxic activities observed for VacA-m1 appeared to be higher than those of VacA-m2. Homology-based modeling and sequence analysis suggested a potential structural impact of non-polar residues located at the N-terminus of the mature VacA toxin and its 33-kDa domain.

Conclusion: Our data provide molecular insights into selective influence of the N-terminally added tag on efficient expression of recombinant VacA variants, signifying biochemical and biological implications of the hydrophobic stretch within the N-terminal domain.

Keywords: Cell viability assay, His(6) tag, human gastric cell, hydrophobic stretch, inclusion solubilization, membrane perturbation.

Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; Chan, F.K.L.; Sung, J.J.Y.; Kaplan, G.G.; Ng, S.C. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology, 2017, 153(2), 420-429.
[http://dx.doi.org/10.1053/j.gastro.2017.04.022] [PMID: 28456631]
Dixon, M.F. Pathology of Gastritis and Peptic Ulceration. In: Helicobacter pylori: Physiology and Genetics; Mobley, H.L.T.; Mendz, G.L.; Hazell, S.L., Eds.; ASM Press: Washington, DC, 2001; pp. 459-469.
Junaid, M.; Linn, A.K.; Javadi, M.B.; Al-Gubare, S.; Ali, N.; Katzenmeier, G. Vacuolating cytotoxin A (VacA) - A multi-talented pore-forming toxin from Helicobacter pylori. Toxicon, 2016, 118, 27-35.
[http://dx.doi.org/10.1016/j.toxicon.2016.04.037] [PMID: 27105670]
Foegeding, N.J.; Caston, R.R.; McClain, M.S.; Ohi, M.D.; Cover, T.L. An overview of Helicobacter pylori VacA toxin biology. Toxins (Basel), 2016, 8(6), 8.
[http://dx.doi.org/10.3390/toxins8060173] [PMID: 27271669]
Atherton, J.C.; Peek, R.M., Jr; Tham, K.T.; Cover, T.L.; Blaser, M.J. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology, 1997, 112(1), 92-99.
[http://dx.doi.org/10.1016/S0016-5085(97)70223-3] [PMID: 8978347]
Basso, D.; Zambon, C.F.; Letley, D.P.; Stranges, A.; Marchet, A.; Rhead, J.L.; Schiavon, S.; Guariso, G.; Ceroti, M.; Nitti, D.; Rugge, M.; Plebani, M.; Atherton, J.C. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology, 2008, 135(1), 91-99.
[http://dx.doi.org/10.1053/j.gastro.2008.03.041] [PMID: 18474244]
Zhou, W.; Yamazaki, S.; Yamakawa, A.; Ohtani, M.; Ito, Y.; Keida, Y.; Higashi, H.; Hatakeyama, M.; Si, J.; Azuma, T. The diversity of vacA and cagA genes of Helicobacter pylori in East Asia. FEMS Immunol. Med. Microbiol., 2004, 40(1), 81-87.
[http://dx.doi.org/10.1016/S0928-8244(03)00299-2] [PMID: 14734191]
Junaid, M.; Al-Gubare, S.; Yousef, M.; Ubol, M.N.; Leetachewa, S.; Muanprasat, C.; Angsuthanasombat, C.; Chaicumpa, W.; Ali, N.; Katzenmeier, G. Sequence and apoptotic activity of VacA cytotoxin cloned from a Helicobacter pylori Thai clinical isolate. BioMed Res. Int., 2014, 2014, 398350.
[http://dx.doi.org/10.1155/2014/398350] [PMID: 24963483]
Strobel, S.; Bereswill, S.; Balig, P.; Allgaier, P.; Sonntag, H.G.; Kist, M. Identification and analysis of a new vacA genotype variant of Helicobacter pylori in different patient groups in Germany. J. Clin. Microbiol., 1998, 36(5), 1285-1289.
[http://dx.doi.org/10.1128/JCM.36.5.1285-1289.1998] [PMID: 9574692]
Karlsson, A.; Ryberg, A.; Dehnoei, M.N.; Borch, K.; Monstein, H.J. Association between cagA and vacA genotypes and pathogenesis in a Helicobacter pylori infected population from South-eastern Sweden. BMC Microbiol., 2012, 12, 129.
[http://dx.doi.org/10.1186/1471-2180-12-129] [PMID: 22747681]
Sugimoto, M.; Yamaoka, Y. The association of vacA genotype and Helicobacter pylori-related disease in Latin American and African populations. Clin. Microbiol. Infect., 2009, 15(9), 835-842.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02769.x] [PMID: 19392900]
Linn, A.K.; Samainukul, N.; Sakdee, S.; Angsuthanasombat, C.; Katzenmeier, G. A Helicobacter pylori vacuolating cytotoxin A: mouse DHFR fusion protein triggers dye release from liposomes. Curr. Microbiol., 2018, 75(2), 223-230.
[http://dx.doi.org/10.1007/s00284-017-1369-9] [PMID: 29032467]
Leetachewa, S.; Katzenmeier, G.; Angsuthanasombat, C. Novel preparation and characterization of the alpha4-loop-alpha5 membrane-perturbing peptide from the Bacillus thuringiensis Cry4Ba delta-endotoxin. J. Biochem. Mol. Biol., 2006, 39(3), 270-277.
[PMID: 16756755]
Xu, M.; McCanna, D.J.; Sivak, J.G. Use of the viability reagent PrestoBlue in comparison with alamarBlue and MTT to assess the viability of human corneal epithelial cells. J. Pharmacol. Toxicol. Methods, 2015, 71, 1-7.
[http://dx.doi.org/10.1016/j.vascn.2014.11.003] [PMID: 25464019]
Raman, S.; Vernon, R.; Thompson, J.; Tyka, M.; Sadreyev, R.; Pei, J.; Kim, D.; Kellogg, E.; DiMaio, F.; Lange, O.; Kinch, L.; Sheffler, W.; Kim, B.H.; Das, R.; Grishin, N.V.; Baker, D. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 2009, 77(Suppl. 9), 89-99.
[http://dx.doi.org/10.1002/prot.22540] [PMID: 19701941]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics, 2016, 47(1), 5.6.1-5.6.32.
Gangwer, K.A.; Mushrush, D.J.; Stauff, D.L.; Spiller, B.; McClain, M.S.; Cover, T.L.; Lacy, D.B. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl. Acad. Sci. USA, 2007, 104(41), 16293-16298.
[http://dx.doi.org/10.1073/pnas.0707447104] [PMID: 17911250]
Su, M.; Erwin, A.L.; Campbell, A.M.; Pyburn, T.M.; Salay, L.E.; Hanks, J.L.; Lacy, D.B.; Akey, D.L.; Cover, T.L.; Ohi, M.D. Cryo-EM analysis reveals structural basis of Helicobacter pylori VacA toxin oligomerization. J. Mol. Biol., 2019, 431(10), 1956-1965.
[http://dx.doi.org/10.1016/j.jmb.2019.03.029] [PMID: 30954575]
Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 1), 12-21.
[http://dx.doi.org/10.1107/S0907444909042073] [PMID: 20057044]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
Schrodinger, L.L.C. The PyMOL molecular graphics system, version 2015. Available from: https://sourceforge.net/projects/pymol/ files/pymol/1.7/
Monera, O.D.; Sereda, T.J.; Zhou, N.E.; Kay, C.M.; Hodges, R.S. Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic alpha-helix. J. Pept. Sci., 1995, 1(5), 319-329.
[http://dx.doi.org/10.1002/psc.310010507] [PMID: 9223011]
Noirclerc-Savoye, M.; Flayhan, A.; Pereira, C.; Gallet, B.; Gans, P.; Ebel, C.; Breyton, C. Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation. Protein Expr. Purif., 2015, 109, 70-78.
[http://dx.doi.org/10.1016/j.pep.2015.02.003] [PMID: 25676818]
Ledent, P.; Duez, C.; Vanhove, M.; Lejeune, A.; Fonzé, E.; Charlier, P.; Rhazi-Filali, F.; Thamm, I.; Guillaume, G.; Samyn, B.; Devreese, B.; Van Beeumen, J.; Lamotte-Brasseur, J.; Frère, J.M. Unexpected influence of a C-terminal-fused His-tag on the processing of an enzyme and on the kinetic and folding parameters. FEBS Lett., 1997, 413(2), 194-196.
[http://dx.doi.org/10.1016/S0014-5793(97)00908-3] [PMID: 9280280]
Dong, H.; Nilsson, L.; Kurland, C.G. Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J. Bacteriol., 1995, 177(6), 1497-1504.
[http://dx.doi.org/10.1128/JB.177.6.1497-1504.1995] [PMID: 7883706]
McClain, M.S.; Iwamoto, H.; Cao, P.; Vinion-Dubiel, A.D.; Li, Y.; Szabo, G.; Shao, Z.; Cover, T.L. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J. Biol. Chem., 2003, 278(14), 12101-12108.
[http://dx.doi.org/10.1074/jbc.M212595200] [PMID: 12562777]
Vinion-Dubiel, A.D.; McClain, M.S.; Czajkowsky, D.M.; Iwamoto, H.; Ye, D.; Cao, P.; Schraw, W.; Szabo, G.; Blanke, S.R.; Shao, Z.; Cover, T.L. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J. Biol. Chem., 1999, 274(53), 37736-37742.
[http://dx.doi.org/10.1074/jbc.274.53.37736] [PMID: 10608833]
Letley, D.P.; Rhead, J.L.; Twells, R.J.; Dove, B.; Atherton, J.C. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J. Biol. Chem., 2003, 278(29), 26734-26741.
[http://dx.doi.org/10.1074/jbc.M304071200] [PMID: 12738773]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 12 November, 2020
Page: [643 - 650]
Pages: 8
DOI: 10.2174/0929866527666201112122831
Price: $65

Article Metrics

PDF: 36