Nanomaterials for Deep Tumor Treatment

Author(s): Daria Yu. Kirsanova*, Zaira M. Gadzhimagomedova, Aleksey Yu. Maksimov, Alexander V. Soldatov

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 21 , Issue 6 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.

Keywords: X-ray photodynamic therapy, photodynamic therapy, cancer treatment, photosensitizer, nanoparticle, scintillator, nanomaterials, reactive oxygen species.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 11 November, 2020
Page: [677 - 688]
Pages: 12
DOI: 10.2174/1389557520666201111161705
Price: $65

Article Metrics

PDF: 20