Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Preparation and Applications of Guar Gum Composites in Biomedical, Pharmaceutical, Food, and Cosmetics Industries

Author(s): Ahmed Madni, Ayesha Khalid, Fazli Wahid, Humaira Ayub, Romana Khan and Rozina Kousar*

Volume 17, Issue 3, 2021

Published on: 10 November, 2020

Page: [365 - 379] Pages: 15

DOI: 10.2174/1573413716999201110142551

Price: $65

Abstract

Background: Guar gum is a water-soluble polysaccharide called galactomannan, obtained from the endosperm of Cyamopsis tetragonolobus, a plant belonging to the Leguminosae family. Galactomannan is a biopolymer rich in functional groups, particularly hydroxyl groups, which expands the possibilities of its chemical modification and, therefore, biological applications.

Objective: This review aims to present and discuss various methods used in the preparation of guar gum composites and their applications in the biomedical, pharmaceutical, food, and cosmetic industries.

Methods: The published data about the extraction procedure of guar gum and its various physicochemical properties have been collected and analyzed. Further, the published information about various methods used for the preparation of guar gum composite systems, including film, hydrogel, and beads, have been gathered and comprehensively discussed in this review. The applications of guar gum based composites in the field of biomedical, pharmaceutical, food, and cosmetics have also been reviewed in detail.

Results: Different guar gum composite systems have shown multifunctional properties, including gelling and emulsifying ability, thickening and binding property, quick solubility in water, good biocompatibility, and biodegradability in the domain of biomedical, pharmaceutical, food, and cosmetic industries.

Conclusion: Recent advancements in the preparation and applications of guar gum composites summarized in this review will enhance the practical applications of this polymer in various industries.

Keywords: Applications of guar gum, biomedical, cosmetic, extraction procedure of guar gum, food, guar gum composites, pharmaceutical.

Graphical Abstract
[1]
Goswami, S.; Naik, S. Natural gums and its pharmaceutical application. J. Sci. Innov. Res., 2014, 3, 112-121.
[2]
Kulkarni, G.T.; Gowthamarajan, K.; Satish Kumar, M.N.; Suresh, B. Gums and mucilages: therapeutic and pharmaceutical applications. Nat. Prod. Rad., 2002, 1, 10-17.
[3]
Deshmukh, A.S.; Aminabhavi, T.M. Pharmaceutical applications of various natural gums. Polysaccharides: Bioactivity and Biotechnology; Ramawat, K.; Mérillon, J.M., Eds; Polysaccharides, Springer Cham. , 2015, pp. 1933-1967.
[http://dx.doi.org/10.1007/978-3-319-16298-0_4]
[4]
Kaith, B.S.; Shanker, U.; Gupta, B.; Bhatia, J.K. RSM-CCD optimized in-air synthesis of photocatalytic nanocomposite: application in removal-degradation of toxic brilliant blue. React. Funct. Polym., 2018, 131, 107-122.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.07.016]
[5]
Sharma, A.K.; Kaith, B.S.; Gupta, B.; Shanker, U.; Lochab, S.P. A facile strategy to synthesize a novel and green nanocomposite based on gum Salai guggal-investigation of antimicrobial activity. Mater. Chem. Phys., 2018, 219, 129-141.
[http://dx.doi.org/10.1016/j.matchemphys.2018.08.024]
[6]
Sharma, A.K.; Kaith, B.S.; Singh, A.; Chandel, K. Enzymatic construction of quinine derivative of dextrin/PVA based hybrid gel film for the simultaneous detection and removal of copper and lead ions in real water samples. Chem. Eng. J., 2019, 122891, 1-42.
[7]
Sharma, A.K.; Kaith, B.S.; Tanwar, V.; Bhatia, J.K.; Sharma, N.; Bajaj, S.; Panchal, S. RSM-CCD optimized sodium alginate/gelatin based ZnS-nanocomposite hydrogel for the effective removal of biebrich scarlet and crystal violet dyes. Int. J. Biol. Macromol., 2019, 129, 214-226.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.034] [PMID: 30738167]
[8]
Priya; Kaith, B.S.; Shanker, U.; Gupta, B. One-pot green synthesis of polymeric nanocomposite: Biodegradation studies and application in sorption-degradation of organic pollutants. J. Environ. Manage., 2019, 234, 345-356.
[http://dx.doi.org/10.1016/j.jenvman.2018.12.117] [PMID: 30639858]
[9]
Sharma, A.K. Priya; Kaith, B.S.; Isha; Singh, A.; Chandel, K.; Vipula. Riboflavin functionalized dextrin-sodium alginate based fluorescent sensor: detoxification of Cu2+ and Ni2+ Ions. ACS Appl. Polym. Mater., 2019, 1, 3084-3094.
[http://dx.doi.org/10.1021/acsapm.9b00724]
[10]
Kumar Sharma, A. Priya; Singh Kaith, B.; Bajaj, S.; Bhatia, J.K.; Panchal, S.; Sharma, N.; Tanwar, V. Efficient capture of eosin yellow and crystal violet with high performance xanthan-acacia hybrid super-adsorbent optimized using response surface methodology. Colloids Surf. B Biointerfaces, 2019, 175, 314-323.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.017] [PMID: 30554009]
[11]
Sharma, A.K. Priya; Kaith, B.S.; Sharma, N.; Bhatia, J.K.; Tanwar, V.; Panchal, S.; Bajaj, S. Selective removal of cationic dyes using response surface methodology optimized gum acacia-sodium alginate blended superadsorbent. Int. J. Biol. Macromol., 2019, 124, 331-345.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.213] [PMID: 30481534]
[12]
Sharma, A.K.; Kaith, B.S.; Gupta, B.; Shanker, U.; Lochab, S.P. Microwave assisted in situ synthesis of gum Salai guggal based silver nanocomposites-investigation of anti-bacterial properties. Cellulose, 2019, 26, 991-1011.
[http://dx.doi.org/10.1007/s10570-018-2140-5]
[13]
Kulkarni, V.S.; Butte, K.D.; Rathod, S.S. Natural polymers-a comprehensive review. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 1597-1613.
[14]
Mathur, N.K. Industrial Galactomannan Polysaccharides; Taylor & Francis Group; CRC Press, 2016.
[http://dx.doi.org/10.1201/b11107]
[15]
Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M.Z. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol., 2016, 88, 361-372.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.001] [PMID: 27044346]
[16]
Hasan, A.M.; Abdel-Raouf, M.E. Applications of guar gum and its derivatives in petroleum industry: a review. Egypt. J. Pet., 2018, 27, 1043-1050.
[http://dx.doi.org/10.1016/j.ejpe.2018.03.005]
[17]
Sharma, G.; Sharma, S.; Kumar, A.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Mola, G.T.; Stadler, F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym., 2018, 199, 534-545.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.053] [PMID: 30143160]
[18]
Singla, S.; Grover, K.; Angadi, S.V.; Begna, S.H.; Schutte, B.; Van Leeuwen, D. Growth and yield of guar (Cyamopsis tetragonoloba L.) genotypes under different planting dates in the semi-arid southern high plains. Am. J. Plant Sci., 2016, 7, 1246-1258.
[http://dx.doi.org/10.4236/ajps.2016.78120]
[19]
Mudgil, D.; Barak, S.; Khatkar, B.S. Guar gum: processing, properties and food applications-A Review. J. Food Sci. Technol., 2014, 51(3), 409-418.
[http://dx.doi.org/10.1007/s13197-011-0522-x] [PMID: 24587515]
[20]
] United Nations Comtrade Database. Department of Economic and Social Affairs: Trade Statistics, . https://comtrade.un.org/data
[21]
Tripathy, S.; Das, M.K. Guar gum: present status and applications. J. Pharm. Sci. Innov., 2013, 2, 24-28.
[http://dx.doi.org/10.7897/2277-4572.02447]
[22]
Sabahelkheir Murwan, K.; Abdalla Abdelwahab, H.; Nouri Sulafa, H. Quality assessment of guar gum (endosperm) of guar (Cyamopsis tetragonoloba). Int. Res. J. Biol. Sci., 2012, 1, 67-70.
[23]
Liyanage, S.; Abidi, N.; Auld, D.; Moussa, H. Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.). Ind. Crops Prod., 2015, 74, 388-396.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.013]
[24]
Chudzikowski, R.J. Guar gum and its applications. J. Soc. Cosmet. Chem., 1971, 22, 43.
[25]
Manjanna, K.M. Natural polysaccharide hydrogels as novel excipients for modified drug delivery systems: a review. Int. J. Chemtech Res., 2010, 2, 509-525.
[26]
Tripathy, J.; Mishra, D.K.; Srivastava, A.; Mishra, M.M.; Behari, K. Synthesis of partially carboxymethylated guar gum-g-4-vinyl pyridine and study of its water swelling, metal ion sorption and flocculation behaviour. Carbohydr. Polym., 2008, 72, 462-472.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.014]
[27]
Noble, O.; Perez, D.; Rochas, C.; Travel, F. Optical rotation of branched polysaccharides. Polym. Bull., 1989, 16, 175-180.
[http://dx.doi.org/10.1007/BF00955488]
[28]
Brassesco, M.E.; Woitovich Valetti, N.; Picó, G. Molecular mechanism of lysozyme adsorption onto chemically modified alginate guar gum matrix. Int. J. Biol. Macromol., 2017, 96, 111-117.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.029] [PMID: 27986630]
[29]
Wu, M. Shear-thinning and viscosity synergism in mixed solution of guar gum and its etherified derivatives. Polym. Bull., 2009, 63, 853.
[http://dx.doi.org/10.1007/s00289-009-0127-y]
[30]
Zhang, F.; Shen, Y.; Ren, T.; Wang, L.; Su, Y. Synthesis of 2-alkenyl-3-butoxypropyl guar gum with enhanced rheological properties. Int. J. Biol. Macromol., 2017, 97, 317-322.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.062] [PMID: 28093331]
[31]
Venugopal, K.N.; Abhilash, M. Study of hydration kinetics and rheological behaviour of guar gum. Int. J. Pharm. Sci. Res., 2010, 1, 28-39.
[32]
Kamal, T.; Ul-Islam, M.; Khan, S.B.; Asiri, A.M. Adsorption and photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. Int. J. Biol. Macromol., 2015, 81, 584-590.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.060] [PMID: 26321421]
[33]
Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Asiri, A.M.; Sobahi, T.R.A. Chitosan coated cotton cloth supported zero-valent nanoparticles: Simple but economically viable, efficient and easily retrievable catalysts. Sci. Rep., 2017, 7(1), 16957.
[http://dx.doi.org/10.1038/s41598-017-16815-2] [PMID: 29209040]
[34]
Madni, A.; Khan, R.; Ikram, M.; Naz, S.S.; Khan, T.; Wahid, F. Fabrication and characterization of chitosan–vitamin C–lactic acid composite membrane for potential skin tissue engineering. Int. J. Polym. Sci., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/4362395]
[35]
Kamal, T.; Ahmad, I.; Khan, S.B.; Asiri, A.M. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr. Polym., 2017, 157, 294-302.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.078] [PMID: 27987930]
[36]
Sui, C.; Zhang, W.; Ye, F.; Liu, X.; Yu, G. Preparation, physical, and mechanical properties of soy protein isolate/guar gum composite films prepared by solution casting. J. Appl. Polym. Sci., 2016, 133, 1-9.
[37]
Rao, M.S.; Kanatt, S.R.; Chawla, S.P.; Sharma, A. Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr. Polym., 2010, 82, 1243-1247.
[http://dx.doi.org/10.1016/j.carbpol.2010.06.058]
[38]
Tang, Y.; Zhang, X.; Zhao, R.; Guo, D.; Zhang, J. Preparation and properties of chitosan/guar gum/nanocrystalline cellulose nanocomposite films. Carbohydr. Polym., 2018, 197, 128-136.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.073] [PMID: 30007597]
[39]
Vaghela, C.; Kulkarni, M.; Karve, M.; Aiyer, R.; Haram, S. Agarose-guar gum assisted synthesis of processable polyaniline composite: morphology and electro-responsive characteristics. RSC Advances, 2014, 4, 59716-5972.
[http://dx.doi.org/10.1039/C4RA08688K]
[40]
Pramanik, N.; Mitra, T.; Khamrai, M.; Bhattacharyya, A.; Mukhopadhyay, P.; Gnanamani, A.; Basu, R.K.; Kundu, P.P. Characterization and evaluation of curcumin loaded guar gum/polyhydroxyalkanoates blend films for wound healing applications. RSC Advances, 2015, 5, 63489-63501.
[http://dx.doi.org/10.1039/C5RA10114J]
[41]
Kamal, T. Aminophenols formation from nitrophenols using agar biopolymer hydrogel supported CuO nanoparticles catalyst. Polym. Test., 2019, 77, 1-8.
[http://dx.doi.org/10.1016/j.polymertesting.2019.105896]
[42]
Wahid, F.; Khan, T.; Hussain, Z.; Ullah, H. Nanocomposite Scaffolds for Tissue Engineering; Properties, Preparation and Applications.Applications of Nanocomposite Materials in Drug Delivery; Inamuddin, Abdullah M. Asiri, Ali Mohammad. Woodhead Publishing Series in Biomaterials, 2018. pp. 701-735.
[43]
Al-Mubaddel, F.S.; Haider, S.; Aijaz, M.O.; Haider, A.; Kamal, T.; Almasry, W.A.; Javid, M.; Khan, S.U-D. Preparation of the chitosan/polyacrylonitrile semi-IPN hydrogel via glutaraldehyde vapors for the removal of rhodamine B dye. Polym. Bull., 2017, 74, 1535-1551.
[http://dx.doi.org/10.1007/s00289-016-1788-y]
[44]
Ahmed, M.S.; Kamal, T.; Khan, S.A.; Anwar, Y.; Saeed, M.T.; Asiri, A.M.; Khan, S.B. Assessment of anti-bacterial Ni-Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr. Nanosci., 2016, 12, 569-575.
[http://dx.doi.org/10.2174/1573413712666160204000517]
[45]
Li, X.; Wu, W.; Liu, W. Synthesis and properties of thermo-responsive guar gum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carbohydr. Polym., 2008, 71, 394-402.
[http://dx.doi.org/10.1016/j.carbpol.2007.06.005]
[46]
Fujioka, R.; Tanaka, Y.; Yoshimura, T. Synthesis and properties of superabsorbent hydrogels based on guar gum and succinic anhydride. J. Appl. Polym. Sci., 2009, 114, 612-616.
[http://dx.doi.org/10.1002/app.30600]
[47]
Maity, J.; Ray, S.K. Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Int. J. Biol. Macromol., 2016, 89, 246-255.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.036] [PMID: 27086296]
[48]
Dai, L.; Wang, B.; An, X.; Zhang, L.; Khan, A.; Ni, Y. Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydr. Polym., 2017, 169, 9-15.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.096] [PMID: 28504182]
[49]
Chandrika, K.P.; Singh, A.; Rathore, A.; Kumar, A. Novel cross linked guar gum-g-poly(acrylate) porous superabsorbent hydrogels: Characterization and swelling behaviour in different environments. Carbohydr. Polym., 2016, 149, 175-185.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.077] [PMID: 27261742]
[50]
Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci., 2010, 5(2), 65-77.
[PMID: 21589795]
[51]
Chang, T.M. Semipermeable microcapsules. Science, 1964, 146(3643), 524-525.
[http://dx.doi.org/10.1126/science.146.3643.524] [PMID: 14190240]
[52]
Thimma, R.T.; Tammishetti, S. Barium chloride crosslinked carboxymethyl guar gum beads for gastrointestinal drug delivery. J. Appl. Polym. Sci., 2001, 82, 3084-3090.
[http://dx.doi.org/10.1002/app.2164]
[53]
Bajpai, S.K.; Saxena, S.K.; Sharma, S. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate–carboxymethyl guar gum blend beads. React. Funct. Polym., 2006, 66, 659-666.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2005.10.019]
[54]
Zhang, J.; Wang, W.; Wang, Y.; Zeng, J.; Zhang, S.; Lei, Z.; Zhao, X. Preparation and characterization of montmorillonnite/carrageen-/guar gum gel spherical beads. Polym. Polymer Compos., 2007, 15, 131-136.
[http://dx.doi.org/10.1177/096739110701500206]
[55]
Kamal, T.; Ahmad, I.; Khan, S.B.; Ul-Islam, M.; Asiri, A.M. Microwave assisted synthesis and carboxymethyl cellulose stabilized copper nanoparticles on bacterial cellulose nanofibers support for pollutants degradation. J. Polym. Environ., 2019, 27, 2867-2877.
[http://dx.doi.org/10.1007/s10924-019-01565-1]
[56]
Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym., 2017, 164, 214-221.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.061] [PMID: 28325319]
[57]
Khan, S.B.; Khan, S.A.; Marwani, H.M.; Bakhsh, E.M.; Anwar, Y.; Kamal, T.; Asiri, A.M.; Akhtar, K. Anti-bacterial PES-cellulose composite spheres: dual character toward extraction and catalytic reduction of nitrophenol. RSC Advances, 2016, 6, 110077-110090.
[http://dx.doi.org/10.1039/C6RA21626A]
[58]
Haider, A.; Haider, S.; Kang, I-K.; Kumar, A.; Kummara, M.R.; Kamal, T.; Han, S.S. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int. J. Biol. Macromol., 2018, 108, 455-461.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.022] [PMID: 29222019]
[59]
Dodi, G.; Hritcu, D.; Popa, M.I. Carboxymethylation of guar gum: synthesis and characterization. Cellul. Chem. Technol., 2011, 45, 171-176.
[60]
Mudgil, D.; Barak, S.; Khatkar, B.S. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum. Carbohydr. Polym., 2012, 90(1), 224-228.
[http://dx.doi.org/10.1016/j.carbpol.2012.04.070] [PMID: 24751034]
[61]
Nawab, A.; Alam, F.; Haq, M.A.; Hasnain, A. Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch. Int. J. Biol. Macromol., 2016, 93(Pt A), 630-635.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.011] [PMID: 27608547]
[62]
Soumya, R.S.; Ghosh, S.; Abraham, E.T. Preparation and characterization of guar gum nanoparticles. Int. J. Biol. Macromol., 2010, 46(2), 267-269.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.11.003] [PMID: 19941891]
[63]
Thakur, S.; Chauhan, G.S.; Ahn, J-H. Synthesis of acryloyl guar gum and its hydrogel materials for use in the slow release of l-DOPA and l-tyrosine. Carbohydr. Polym., 2009, 76, 513-520.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.012]
[64]
Ghosh Auddy, R.; Abdullah, M.F.; Das, S.; Roy, P.; Datta, S.; Mukherjee, A. New guar biopolymer silver nanocomposites for wound healing applications. BioMed Res. Int., 2013, 2013, 912458.
[http://dx.doi.org/10.1155/2013/912458] [PMID: 24175306]
[65]
Manna, P.J.; Mitra, T.; Pramanik, N.; Kavitha, V.; Gnanamani, A.; Kundu, P.P. Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications. Int. J. Biol. Macromol., 2015, 75, 437-446.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.047] [PMID: 25661877]
[66]
Ragothaman, M.; Palanisamy, T.; Kalirajan, C. Collagen-poly(dialdehyde) guar gum based porous 3D scaffolds immobilized with growth factor for tissue engineering applications. Carbohydr. Polym., 2014, 114, 399-406.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.045] [PMID: 25263907]
[67]
Lubambo, A.F.; Ono, L.; Drago, V.; Mattoso, N.; Varalda, J.; Sierakowski, M.R.; Sakakibara, C.N.; Freitas, R.A.; Saul, C.K. Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes. Carbohydr. Polym., 2015, 134, 775-783.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.013] [PMID: 26428185]
[68]
Pan, X.; Wang, Q.; Ning, D.; Dai, L.; Liu, K.; Ni, Y.; Chen, L.; Huang, L. Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater. Sci. Eng., 2018, 4, 3397-3404.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00657]
[69]
Zhu, J.; Guo, P.; Chen, D.; Xu, K.; Wang, P.; Guan, S. Fast and excellent healing of hydroxypropyl guar gum/poly (N, N-dimethyl acrylamide) hydrogels. J. Polym. Sci., B, Polym. Phys., 2018, 56, 239-247.
[http://dx.doi.org/10.1002/polb.24514]
[70]
Takahashi, T.; Yokawa, T.; Ishihara, N.; Okubo, T.; Chu, D.C.; Nishigaki, E.; Kawada, Y.; Kato, M.; Raj Juneja, L. Hydrolyzed guar gum decreases postprandial blood glucose and glucose absorption in the rat small intestine. Nutr. Res., 2009, 29(6), 419-425.
[http://dx.doi.org/10.1016/j.nutres.2009.05.013] [PMID: 19628109]
[71]
Gamal-Eldeen, A.M.; Amer, H.; Helmy, W.A. Cancer chemopreventive and anti-inflammatory activities of chemically modified guar gum. Chem. Biol. Interact., 2006, 161(3), 229-240.
[http://dx.doi.org/10.1016/j.cbi.2006.03.010] [PMID: 16756967]
[72]
Rideout, T.C.; Harding, S.V.; Jones, P.J.; Fan, M.Z. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc. Health Risk Manag., 2008, 4(5), 1023-1033.
[http://dx.doi.org/10.2147/VHRM.S3512] [PMID: 19183750]
[73]
Butt, M.S.; Shahzadi, N.; Sharif, M.K.; Nasir, M. Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit. Rev. Food Sci. Nutr., 2007, 47(4), 389-396.
[http://dx.doi.org/10.1080/10408390600846267] [PMID: 17457723]
[74]
Kovacs, E.M.R.; Westerterp-Plantenga, M.S.; Saris, W.H.M.; Goossens, I.; Geurten, P.; Brouns, F. The effect of addition of modified guar gum to a low-energy semisolid meal on appetite and body weight loss. Int. J. Obes. Relat. Metab. Disord., 2001, 25(3), 307-315.
[http://dx.doi.org/10.1038/sj.ijo.0801546] [PMID: 11319626]
[75]
Shukla, R.K.; Tiwari, A. Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr. Polym., 2012, 88, 399-416.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.021]
[76]
Manjunath, M.; Gowda, D.V.; Kumar, P.; Srivastava, A.; Osmani, R.A.; Shinde, C.G. Guar gum and its pharmaceutical and biomedical applications. Adv. Sci. Eng. Med., 2016, 8, 589-602.
[http://dx.doi.org/10.1166/asem.2016.1874]
[77]
Amidon, S.; Brown, J.E.; Dave, V.S. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech, 2015, 16(4), 731-741.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[78]
Mughal, M.A.; Iqbal, Z.; Neau, S.H. Guar gum, xanthan gum, and HPMC can define release mechanisms and sustain release of propranolol hydrochloride. AAPS PharmSciTech, 2011, 12(1), 77-87.
[http://dx.doi.org/10.1208/s12249-010-9570-1] [PMID: 21174179]
[79]
Castro, P.M.; Baptista, P.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm., 2018, 547(1-2), 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[80]
Caddeo, C.; Nácher, A.; Díez-Sales, O.; Merino-Sanjuán, M.; Fadda, A.M.; Manconi, M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J. Microencapsul., 2014, 31(7), 694-699.
[http://dx.doi.org/10.3109/02652048.2014.913726] [PMID: 24903450]
[81]
Phadke, K.V.; Manjeshwar, L.S.; Aminabhavi, T.M. Biodegradable polymeric microspheres of gelatin and carboxymethyl guar gum for controlled release of theophylline. Polym. Bull. (Berl), 2014, 71, 1625-1643.
[http://dx.doi.org/10.1007/s00289-014-1145-y]
[82]
Goyal, A.K.; Garg, T.; Rath, G.; Gupta, U.D.; Gupta, P. Chemotherapeutic evaluation of guar gum coated chitosan nanoparticle against experimental tuberculosis. J. Biomed. Nanotechnol., 2016, 12(3), 450-463.
[http://dx.doi.org/10.1166/jbn.2016.2180] [PMID: 27280243]
[83]
Giri, A.; Bhowmick, M.; Pal, S.; Bandyopadhyay, A. Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium. Int. J. Biol. Macromol., 2011, 49(5), 885-893.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.08.003] [PMID: 21903130]
[84]
Sen, G.; Mishra, S.; Jha, U.; Pal, S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-Characterizations and application as matrix for controlled release of 5-amino salicylic acid. Int. J. Biol. Macromol., 2010, 47(2), 164-170.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.004] [PMID: 20471416]
[85]
Tiwari, A.; Prabaharan, M. An amphiphilic nanocarrier based on guar gum-graft-poly(ε-caprolactone) for potential drug-delivery applications. J. Biomater. Sci. Polym. Ed., 2010, 21(6-7), 937-949.
[http://dx.doi.org/10.1163/156856209X452278] [PMID: 20482994]
[86]
Yang, H.; Wang, W.; Zhang, J.; Wang, A. Preparation, characterization, and drug-release behaviors of a pH-sensitive composite hydrogel bead based on guar gum, attapulgite, and sodium alginate. Int. J. Polym. Mater., 2013, 62, 369-376.
[http://dx.doi.org/10.1080/00914037.2012.706839]
[87]
Seeli, D.S.; Dhivya, S.; Selvamurugan, N.; Prabaharan, M. Guar gum succinate-sodium alginate beads as a pH-sensitive carrier for colon-specific drug delivery. Int. J. Biol. Macromol., 2016, 91, 45-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.057] [PMID: 27212216]
[88]
Murali, R.; Vidhya, P.; Thanikaivelan, P. Thermoresponsive magnetic nanoparticle-aminated guar gum hydrogel system for sustained release of doxorubicin hydrochloride. Carbohydr. Polym., 2014, 110, 440-445.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.076] [PMID: 24906777]
[89]
Saha, A.; Tyagi, S.; Gupta, R.K.; Tyagi, Y.K. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol., 2017, 37(8), 959-973.
[http://dx.doi.org/10.1080/07388551.2017.1286449] [PMID: 28423942]
[90]
Ayaz, A.M.; Ali, S.M. An overview on applications of guar gum in food systems to modify structural properties. Saudi J. Med. Pharm. Sci., 2017, 3, 373-376.
[91]
Pegg, A.M. The application of natural hydrocolloids to foods and beverages. Natural Food Additives, Ingredients and Flavourings; Woodhead Publishing, 2012, pp. 175-196.
[http://dx.doi.org/10.1533/9780857095725.1.175]
[92]
Hussain, M.; Bakalis, S.; Gouseti, O.; Akhtar, S.; Hameed, A.; Ismail, A. Microstructural and dynamic oscillatory aspects of yogurt as influenced by hydrolysed guar gum. Int. J. Food Sci. Technol., 2017, 52, 2210-2216.
[http://dx.doi.org/10.1111/ijfs.13500]
[93]
Kundu, S.; Das, A.; Basu, A.; Abdullah, M.F.; Mukherjee, A. Guar gum benzoate nanoparticle reinforced gelatin films for enhanced thermal insulation, mechanical and antimicrobial properties. Carbohydr. Polym., 2017, 170, 89-98.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.056] [PMID: 28522007]
[94]
Dai, L.; Long, Z.; Chen, J.; An, X.; Cheng, D.; Khan, A.; Ni, Y. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl. Mater. Interfaces, 2017, 9(6), 5477-5485.
[http://dx.doi.org/10.1021/acsami.6b14471] [PMID: 28102068]
[95]
Arfat, Y.A.; Ejaz, M.; Jacob, H.; Ahmed, J. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydr. Polym., 2017, 157, 65-71.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.069] [PMID: 27987974]
[96]
Funami, T.; Kataoka, Y.; Omoto, T.; Goto, Y.; Asai, I.; Nishinari, K. Food hydrocolloids control the gelatinization and retrogradation behavior of starch. 2a. functions of guar gums with different molecular weights on the gelatinization behavior of corn starch. Food Hydrocoll., 2005, 19, 15-24.
[http://dx.doi.org/10.1016/j.foodhyd.2004.04.008]
[97]
Katzbauer, B. Properties and applications of xanthan gum. Polym. Degrad. Stabil., 1998, 59, 81-84.
[http://dx.doi.org/10.1016/S0141-3910(97)00180-8]
[98]
Dhumal, C.V.; Pal, K.; Sarkar, P. Characterization of tri-phasic edible films from chitosan, guar gum, and whey protein isolate loaded with plant-based antimicrobial compounds. Polym. Plast. Technol. Mater., 2019, 58, 255-269.
[http://dx.doi.org/10.1080/03602559.2018.1466179]
[99]
Mudgil, D.; Barak, S.; Khatkar, B.S. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough., Int. J. Biol. Macromol., 2016, 93(Pt A), 131-135.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.064] [PMID: 27565295]
[100]
Mudgil, D.; Barak, S.; Patel, A.; Shah, N. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol., 2018, 112, 207-210.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.164] [PMID: 29414731]
[101]
Tuohy, K.M.; Kolida, S.; Lustenberger, A.M.; Gibson, G.R. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides-a human volunteer study. Br. J. Nutr., 2001, 86(3), 341-348.
[http://dx.doi.org/10.1079/BJN2001394] [PMID: 11570986]
[102]
Williams, P.; Hickey, M.; Mitchell, D. Polysaccharide based gel. US Patent 7208480,. 2007.
[103]
Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P. Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr. Polym., 2013, 92(2), 1685-1699.
[http://dx.doi.org/10.1016/j.carbpol.2012.11.021] [PMID: 23399207]
[104]
Semenzato, A.; Costantini, A.; Baratto, G. Green polymers in personal care products: rheological properties of tamarind seed polysaccharide. Cosmet., 2015, 2, 1-10.
[http://dx.doi.org/10.3390/cosmetics2010001]
[105]
Kim, J.H.; Min, H.J.; Park, K.; Kim, J. Preparation and evaluation of a cosmetic adhesive containing guar gum. Korean J. Chem. Eng., 2017, 34, 2236-2240.
[http://dx.doi.org/10.1007/s11814-017-0133-y]
[106]
Parente, M.E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci., 2015, 37(5), 511-518.
[http://dx.doi.org/10.1111/ics.12227] [PMID: 25854849]
[107]
Barbucci, R. Polysaccharides cross-linked by ether bonds, their preparation and biomedical applications., European Patent 1994946A1. 2008.
[108]
Barbucci, R. Carboxylated polysaccharides phosphated or bisphosphonated derivatives, optionally cross-linked, and their preparation and biomedical uses., European Patent 1992364A1. 2008.
[109]
Martelli, L.; Martelli, M.; Acri, M.; Ferrachiatti, P. Product comprising glucomannan and chitosan for the treatment gastroesophageal reflux disease., World Intellectual Property Organization 2013121452A1. 2013.
[110]
Yong, Q.; Jianqing, X.; Li, X.; Anjie, D.; Liandong, D.; Jinfeng, X. Polyethyleneimine grafted guar gum cationic polymer and preparation method and application thereof., China Patent 102030908A,. 2011.
[111]
Ranganathan, N.; Dickstein, J.; Mehta, R. Prebiotic and probiotic compositions and methods for their use in gut-based therapies. US Patent 6706287B2,. 2004.
[112]
Peilong, G.; Wei, T.; Liping, H. Antiallergic gel nose-protecting medical supply and making method thereof., China Patent 102119879A. 2011.
[113]
Carim, H.M. Cohesive nonsticky electrically conductive gel composition., European Patent 0035518B1. 1986.
[114]
Karandikar, B.M.; Lam, S.T. Biosorbable wound treatment device, process for making, and method of using the same. US Patent 9381269B2,. 2016.
[115]
Grimberg, G.S. Pharmaceutical composition based on guar gum and other antacids for protection of the oesogastroduodenal mucous membrane., Canada Patent 1254138A. 1989.
[116]
Skinner, G.W. Sustained release polymer blend for pharmaceutical applications. US Patent 6210710B1,. 2001.
[117]
Ratnaraj, S.; Reilly, W.J., Jr . Chewable pharmaceutical tablets. US Patent 5686107A,. 1997.
[118]
Gayst, S.; Maguire, M. Pharmaceutical formulation of guar gum., South Africa Patent 7903769B. 1981.
[119]
Christenson, G.L.; Huber, H.E. Long-lasting troche containing guar gum. US Patent 3590117A,. 1971.
[120]
Gebert, M.S.; Friend, D.R.; Wong, D.; Parasrampuria, J. Purified galactomannan as an improved pharmaceutical excipient., World Intellectual Property Organization 1996040163A1. 1996.
[121]
Kuhrts, E.H. Cholesterol-lowering combination compositions of guar gum and niacin., Canada Patent 1333997C. 1995.
[122]
Gueret, J.H. Cosmetic, pharmaceutical, or dermatological patch. US Patent 20010007671A1,. 2001.
[123]
Swartz, W.E.; Hoppe, C.A.; Elfstrum, J.T. Reduced viscosity, low ash modified guar and process for producing same. US Patent 6048563A,. 2000.
[124]
Nieto, M.B. Non-grassy, non-beany, low pigment and low micro guar gum and process for making the same., World Intellectual Property Organization 2008119061A1. 2008.
[125]
Mutilangi, W.; Pereyra, R. Stabilizer system for food and beverage products., Canada Patent 2685007C. 2013.
[126]
Richey, L.C.; Hook, J.S.; Reed, M.A.; Yatka, R.J. Natural carbohydrate gum hydrolyzate coated chewing gum., Canada Patent 2152367C. 1999.
[127]
Xiaqing, D. Method for preparing low-molecular-weight guar gum., China Patent 101544704A. 2009.
[128]
Aymard, P.; Simonnot, C.; Fuzellier, G.; Arlotti, A. Biscuit comprising guar gum., European Patent 2348885B1. 2015.
[129]
Karagianni, K.; Monin, V.; Sassi, J. Substituted guar protein extracts and production/applications thereof. US Patent 9119849B2,. 2015.
[130]
Mcginley, E.J.; Tuason, D.C., Jr Fat-like bulking agent for aqueous foods comprising microcrystalline cellulose and a galactomannan gum., World Intellectual Property Organization 1990014017A. 1990.
[131]
Wang, L.; John, P. Compositions of dietary fiber rich and low viscosity beverages. US Patent 6004610A,. 1999.
[132]
Hines, G.D. Extensively depolymerised guar as a bulking agent for foods., European Patent 0449594B1. 1995.
[133]
Langella, V.; Riccaboni, M.; Biasotti, B.; Fumagalli, C.; Floridi, G.; Bassi, G.L. Cosmetic and household care compositions., World Intellectual Property Organization 2014027120A2. 2014.
[134]
Dupuis, C. Thickening combination based on guar gum or on nonionic cellulose gum and on a crosslinked polymer and cosmetic or dermatological hair or skin treatment composition containing such a combination. US Patent 5679328A,. 1997.
[135]
Cretois, I.; Samain, H. Cosmetic composition based on guar gum and silicones. US Patent 6060044A,. 2000.
[136]
Cottrell, I.W.; Martino, G.T.; Fewkes, K.A. Keratin treating cosmetic compositions containing high ds cationic guar gum derivatives., World Intellectual Property Organization 2001097761A1. 2001.
[137]
Mettrie, O. Washing and conditioning compositions based on silicon and hydrophobic guar gum. US Patent 6387855B1,. 2002.
[138]
Charrier, D.; Fack, G. Dye composition comprising nonionic guar gum or a nonionic derivative thereof, process and device for the same., World Intellectual Property Organization 2014020148A1,. 2014.
[139]
Samain, H.; Cretois, I. Cosmetic composition containing non-ionic guar gum and a non-cross linked anionic polymer., Canada Patent 2185044C,. 2002.
[140]
Xia, G. Skin-whitening cosmetic containing juicy peach powder, chamomile extract and licorice extract., China Patent 105411912A,. 2016.
[141]
Hardy, E.; Psihoules, A. Transparent conditioning shampoo. US Patent 6743760B1,. 2004.
[142]
Samain, H.; Cretois, I. Use of a guar gum in a process for the temporary shaping of keratin fibres. . US Patent 6217853B1,. 2001.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy