Carbonic Anhydrase Carrying Electrospun Nanofibers for Biocatalysis Applications

Author(s): Özlem Biçen Ünlüer, Kardelen Ecevit, Sibel Emir Diltemiz*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 5 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Enzymes are efficient biocatalysis that catalysis a large number of reactions due to their chemical, regional, or stereo specifities and selectivity. Their usage in bioreactor or biosensor systems has great importance. Carbonic anhydrase enzyme catalyzes the interconversion between carbon dioxide and water and the dissociated ions of carbonic acid. In organisms, the carbonic anhydrase enzyme has crucial roles connected with pH and CO2 homeostasis, respiration, and transport of CO2/bicarbonate, etc. So, immobilization of the enzyme is important in stabilizing the catalyst against thermal and chemical denaturation in bioreactor systems when compared to the free enzyme that is unstable at high temperatures and extreme pH values, as well as in the presence of organic solvents or toxic reagents. Nano-scale composite materials have attracted considerable attention in recent years, and electrospinning based all-nanocomposite materials have a wide range of applications. In this study, electrospun nanofibers were fabricated and used for the supporting media for carbonic anhydrase enzyme immobilization to enhance the enzyme storage and usage facilities.

Objective: In this article, our motivation is to obtain attractive electrospun support for carbonic anhydrase enzyme immobilization to enhance the enzyme reusability and storage ability in biocatalysis applications.

Methods: In this article, we propose electrospun nanofibers for carbonic anhydrase carrying support for achieving our aforementioned object. In the first part of the study, agar with polyacrylonitrile (PAN) nanofibers was directly fabricated from an agar-PAN mixture solution using the electrospinning method, and fabricated nanofibers were cross-linked via glutaraldehyde (GA). The morphology, chemical structure, and stability of the electrospun nanofibers were characterized. In the second part of the study, the carbonic anhydrase enzyme was immobilized onto fabricated electrospun nanofibers. Then, enzyme activity, the parameters that affect enzyme immobilization such as pH, enzyme amount, immobilization time, etc. and reusability were investigated.

Results: When the scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis results are combined in the characterization process of the synthesized electrospun nanofibers, the optimum cross-linking time is found to be 8 hours using 5% glutaraldehyde cross-linking agent. Then, thermal stability measurements showed that the thermal stability of electrospun nanofibers has an excellent characteristic for biomedical applications. The optimum temperature value was found 37°C, pH 8 was determined as an optimum pH, and 100 ppm carbonic anhydrase enzyme concentration was found to be optimum enzyme concentration for the carbonic anhydrase enzyme immobilization. According to the kinetic data, carbonic anhydrase immobilized electrospun nanofibers acted as a biocatalyst in the conversion of the substrate to the product in 83.98%, and immobilized carbonic anhydrase enzyme is reusable up to 9 cycles in biocatalysis applications.

Conclusion: After applying the framework, we get a new biocatalysis application platform for carbonic anhydrase enzyme. Electrospun nanofibers were chosen as the support material for enzyme immobilization. By using this approach, the carbonic anhydrase enzyme could easily be used in the industrial area by cost-effective advantageous aspects.

Keywords: Enzyme immobilization, electrospinning, carbonic anhydrase, nanofibers, biocatalysis, polyacrylonitrile.

[1]
Bilal, M.; Zhao, Y.; Rasheed, T.; Iqbal, H.M.N. Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int. J. Biol. Macromol., 2018, 120(Pt B), 2530-2544.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.025] [PMID: 30201561]
[2]
Cox, R.J. Introduction to enzyme and coenzyme chemistry. Nat. Prod. Rep., 2005, 22, 127.
[3]
Nguyen, H.; Kim, M. An overview of techniques in enzyme immobilization. Appl. Sci. Converg. Technol., 2017, 26(6), 157-163.
[http://dx.doi.org/10.5757/ASCT.2017.26.6.157]
[4]
Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip., 2015, 29(2), 205-220.
[http://dx.doi.org/10.1080/13102818.2015.1008192] [PMID: 26019635]
[5]
Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J. Strategies for stabilization of enzymes in organic solvents. ACS Catal., 2013, 3(12), 2823-2836.
[http://dx.doi.org/10.1021/cs400684x]
[6]
Doğaç, Y.I.; Teke, M. Immobilization of bovine catalase onto magnetic nanoparticles. Prep. Biochem. Biotechnol., 2013, 43(8), 750-765.
[http://dx.doi.org/10.1080/10826068.2013.773340] [PMID: 23876136]
[7]
Mazlan, S.Z.; Hanifah, S.A. Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int. J. Polym. Sci., 2017, 2017, 5657271.
[http://dx.doi.org/10.1155/2017/5657271]
[8]
Daniel, R.M.; Dines, M.; Petach, H.H. The denaturation and degradation of stable enzymes at high temperatures. Biochem. J., 1996, 317(Pt 1), 1-11.
[http://dx.doi.org/10.1042/bj3170001] [PMID: 8694749]
[9]
Ricardi, N.C.; de Menezes, E.W.; Valmir Benvenutti, E.; da Natividade Schöffer, J.; Hackenhaar, C.R.; Hertz, P.F.; Costa, T.M.H. Highly stable novel silica/chitosan support for β-galactosidase immobilization for application in dairy technology. Food Chem., 2018, 246, 343-350.
[http://dx.doi.org/10.1016/j.foodchem.2017.11.026] [PMID: 29291859]
[10]
Blandino, A.; Macías, M.; Cantero, D. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem., 2001, 36(7), 601-606.
[http://dx.doi.org/10.1016/S0032-9592(00)00240-5]
[11]
D’Urso, E.M.; Jean-François, J.; Doillon, C.J.; Fortier, G. Poly(ethylene glycol)-serum albumin hydrogel as matrix for enzyme immobilization: biomedical applications. Artif. Cells Blood Substit. Immobil. Biotechnol., 1995, 23(5), 587-595.
[http://dx.doi.org/10.3109/10731199509117973] [PMID: 8528452]
[12]
Voběrková, S.; Solčány, V.; Vršanská, M.; Adam, V. Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. Chemosphere, 2018, 202, 694-707.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.088] [PMID: 29602102]
[13]
Andreescu, S.; Njagi, J.; Ispas, C. Nanostructured materials for enzyme immobilization and biosensors. J. Mater. Chem. B Mater. Biol. Med., 2016, 4, 71-78.
[14]
Zhao, R.; Lu, X.; Wang, C. Electrospinning based all-nano composite materials_ recent achievements and perspectives. Composites Communications, 2018, 10(6), 140-150.
[15]
Bogue, R. Nanocomposites: a review of technology and applications. Assem. Autom., 2011, 31(2), 106-112.
[http://dx.doi.org/10.1108/01445151111117683]
[16]
Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[17]
Yuan, Y.; Yin, W.; Yang, M.; Xu, F.; Zhao, X.; Li, J. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon, 2018, 130, 59-68.
[http://dx.doi.org/10.1016/j.carbon.2017.12.122]
[18]
Cheng, Y.; Wang, C.; Zhong, J.; Lin, S.; Xiao, Y.; Zhong, Q. Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569.
[http://dx.doi.org/10.1016/j.nanoen.2017.03.011]
[19]
Yang, G.; Li, X.; He, Y.; Ma, J.; Ni, G.; Zhou, S. From nano to micro to macro: electrospun hierarchically structured polymeric fibers for biomedical applications. Prog. Polym. Sci., 2018, 81, 80-113.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.12.003]
[20]
Habiba, U.; Siddique, T.A.; Li Lee, J.J.; Joo, T.C.; Ang, B.C.; Afifi, A.M. Adsorption study of methyl orange by chitosan/polyvinyl alcohol/zeolite electrospun composite nanofibrous membrane. Carbohydr. Polym., 2018, 191, 79-85.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.081] [PMID: 29661324]
[21]
Seo, J.; Seo, J.H. Fabrication of an anti-biofouling plasma-filtration membrane by an electrospinning process using photo-cross-linkable zwitterionic phospholipid polymers. ACS Appl. Mater. Interfaces, 2017, 9(23), 19591-19600.
[http://dx.doi.org/10.1021/acsami.7b03308] [PMID: 28535035]
[22]
Sun, Z.; Li, M.; Jin, Z.; Gong, Y.; An, Q.; Tuo, X.; Guo, J. Starch-graft-polyacrylonitrile nanofibers by electrospinning. Int. J. Biol. Macromol., 2018, 120(Pt B), 2552-2559.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.031] [PMID: 30195609]
[23]
Zhang, C.; Feng, F.; Zhang, H. Emulsion electrospinning: fundamentals, food applications and prospects. Trends Food Sci. Technol., 2018, 80(8), 175-186.
[http://dx.doi.org/10.1016/j.tifs.2018.08.005]
[24]
Moreno-Cortez, I.E.; Romero-García, J.; González-González, V.; García-Gutierrez, D.I.; Garza-Navarro, M.A.; Cruz-Silva, R. Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Mater. Sci. Eng. C, 2015, 52, 306-314.
[http://dx.doi.org/10.1016/j.msec.2015.03.049] [PMID: 25953572]
[25]
Xu, R.; Cui, J.; Tang, R.; Li, F.; Zhang, B. Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability. Chem. Eng. J., 2017, 326, 647-655.
[http://dx.doi.org/10.1016/j.cej.2017.05.083]
[26]
Liu, X.; Fang, Y.; Yang, X.; Li, Y.; Wang, C. Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase. Colloids Surf. B Biointerfaces, 2018, 166, 277-285.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.037] [PMID: 29604570]
[27]
Qasim, S.B.; Zafar, M.S.; Najeeb, S.; Khurshid, Z.; Shah, A.H.; Husain, S.; Rehman, I.U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int. J. Mol. Sci., 2018, 19(2), E407.
[http://dx.doi.org/10.3390/ijms19020407] [PMID: 29385727]
[28]
Mele, E. Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(28), 4801-4812.
[http://dx.doi.org/10.1039/C6TB00804F] [PMID: 32263137]
[29]
Huang, Z-M.; Zhang, Y-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[30]
Sousa, A.M.M.; Souza, H.K.S.; Uknalis, J.; Liu, S.C.; Gonçalves, M.P.; Liu, L. Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydr. Polym., 2015, 115, 348-355.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.074] [PMID: 25439904]
[31]
Sousa, A.M.M.; Souza, H.K.S.; Uknalis, J.; Liu, S.C.; Gonçalves, M.P.; Liu, L. Improving agar electrospinnability with choline-based deep eutectic solvents. Int. J. Biol. Macromol., 2015, 80, 139-148.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.034] [PMID: 26116384]
[32]
Sousa, A.M.M.; Borges, J.; Silva, F.; Ramos, A.M.; Cabrita, E.J.; Gonçalves, M.P. Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Soft Matter, 2013, 9(11), 3131-3139.
[http://dx.doi.org/10.1039/c3sm27131e]
[33]
Yang, T.; Yang, H.; Zhen, S.J.; Huang, C.Z. Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl. Mater. Interfaces, 2015, 7(3), 1586-1594.
[http://dx.doi.org/10.1021/am507010q] [PMID: 25546719]
[34]
Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials. Progress in Polymer Science (Oxford), 2011, 36(9), 1254-1276.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003]
[35]
Sinha, S.; Dhakate, S.R.; Kumar, P.; Mathur, R.B.; Tripathi, P.; Chand, S. Electrospun polyacrylonitrile nanofibrous membranes for chitosanase immobilization and its application in selective production of chitooligosaccharides. Bioresour. Technol., 2012, 115, 152-157.
[http://dx.doi.org/10.1016/j.biortech.2011.11.101] [PMID: 22189076]
[36]
Wu, Q.Y.; Chen, X.N.; Wan, L.S.; Xu, Z.K. Interactions between polyacrylonitrile and solvents: density functional theory study and two-dimensional infrared correlation analysis. J. Phys. Chem. B, 2012, 116(28), 8321-8330.
[http://dx.doi.org/10.1021/jp304167f] [PMID: 22702536]
[37]
Zhang, S.; Lu, Y.; Ye, X. Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution. Int. J. Greenh. Gas Control, 2013, 13, 17-25.
[http://dx.doi.org/10.1016/j.ijggc.2012.12.010]
[38]
Vardanyan, R.S.; Hruby, V.J. 21 - Diuretics. In: Synthesis of Essential Drugs; Vardanyan, R.S.; Hruby, V.J., Eds.; Elsevier, 2006; pp. 277-293.
[http://dx.doi.org/10.1016/B978-044452166-8/50021-2]
[39]
Wheeler, R. Annual Reports in Computational Chemistry. Elsevier, 2011, Vol. 7.
[40]
Supuran, C.T. Carbonic anhydrases-an overview. Curr. Pharm. Des., 2008, 14(7), 603-614.
[http://dx.doi.org/10.2174/138161208783877884] [PMID: 18336305]
[41]
Zhang, Y.T.; Zhi, T.T.; Zhang, L.; Huang, H.; Chen, H.L. Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer (Guildf.), 2009, 50(24), 5693-5700.
[http://dx.doi.org/10.1016/j.polymer.2009.09.067]
[42]
Uda, N.R.; Seibert, V.; Stenner-Liewen, F.; Müller, P.; Herzig, P.; Gondi, G.; Zeidler, R.; van Dijk, M.; Zippelius, A.; Renner, C. Esterase activity of carbonic anhydrases serves as surrogate for selecting antibodies blocking hydratase activity. J. Enzyme Inhib. Med. Chem., 2015, 30(6), 955-960.
[http://dx.doi.org/10.3109/14756366.2014.1001754] [PMID: 25775095]
[43]
Verpoorte, J.A.; Mehta, S.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol.Chem., 1967, 242(18), 4221-4229.
[44]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[45]
Zhen, H.; Wang, T.; Jia, R.; Su, B.; Gao, C. Preparation and performance of antibacterial layer-by-layer polyelectrolyte nanofiltration membranes based on metal-ligand coordination interactions. RSC Advances, 2015, 5, 86784-86794.
[http://dx.doi.org/10.1039/C5RA15427H]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 5
Year: 2021
Published on: 09 June, 2021
Page: [520 - 532]
Pages: 13
DOI: 10.2174/0929866527666201103150222
Price: $65

Article Metrics

PDF: 31
HTML: 3