Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Role of microRNAs in the Development of Type 2 Diabetes Complications

Author(s): Stavroula A. Paschou*, Gerasimos Siasos, Niki Katsiki, Nikolaos Tentolouris and Dimitrios Tousoulis

Volume 26, Issue 46, 2020

Page: [5969 - 5979] Pages: 11

DOI: 10.2174/1381612826666201102102233

Price: $65

Abstract

MicroRNAs represent a class of small (19-25 nucleotides) single-strand pieces of RNA that are noncoding ones. They are synthesized by RNA polymerase II from transcripts that fold back on themselves. They mostly act as gene regulatory agents that pair with complementary sequences on mRNA and produce silencing complexes, which, in turn, suppress coding genes at a post-transcriptional level. There is now evidence that microRNAs may affect insulin secretion or insulin action, as they can alter pancreatic beta cells development, insulin production, as well as insulin signaling. Any molecular disorder that affects these pathways can deteriorate insulin resistance and lead to type 2 diabetes mellitus (T2DM) onset. Furthermore, the expression of several microRNAs is up- or down-regulated in the presence of diabetic microvascular complications (i.e., peripheral neuropathy, nephropathy, retinopathy, foot ulcers), as well as in patients with coronary heart disease, stroke, and peripheral artery disease. However, more evidence is needed, specifically regarding T2DM patients, to establish the use of such microRNAs as diagnostical biomarkers or therapeutic targets in daily practice.

Keywords: Diabetes, type 2, microRNAs, insulin, RNA, complications.

[1]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[2]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[3]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136(2): 215-33.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[4]
Lam JK, Chow MY, Zhang Y, Leung SW. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 2015; 4: e252.
[http://dx.doi.org/10.1038/mtna.2015.23] [PMID: 26372022]
[5]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281-97.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[6]
Valinezhad Orang AA-O, Safaralizadeh RA-O, Kazemzadeh-Bavili M. Mechanisms of miRNAMediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014; 2014: 970607.
[7]
Yaribeygi H, Katsiki N, Behnam B, Iranpanah H, Sahebkar A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism 2018; 87: 48-55.
[http://dx.doi.org/10.1016/j.metabol.2018.07.001] [PMID: 30253864]
[8]
Hall E, Volkov P, Dayeh T, et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol 2014; 15(12): 522.
[http://dx.doi.org/10.1186/s13059-014-0522-z] [PMID: 25517766]
[9]
Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3-14.
[http://dx.doi.org/10.1016/j.addr.2015.05.001] [PMID: 25979468]
[10]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669-701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[11]
American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2019; 41(1)
[12]
Paschou SA, Anagnostis P, Goulis DG. Weight loss for the prevention and treatment of type 2 diabetes. Maturitas 2018; 108: A1-2.
[http://dx.doi.org/10.1016/j.maturitas.2017.09.010] [PMID: 28985976]
[13]
World Health Organization. Diabetes. Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes
[14]
World Health Organization. Cardiovascular Disease. Available at: https://www.who.int/health-topics/cardiovascular-diseases
[15]
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54.
[http://dx.doi.org/10.1111/jdi.12833] [PMID: 29533535]
[16]
Guo G, Liu Y, Ren S, et al. Comprehensive analysis of differentially expressed microRNAs and mRNAs in dorsal root ganglia from streptozotocin-induced diabetic rats. PLoS One 2018; 13(8): e0202696.
[http://dx.doi.org/10.1371/journal.pone.0202696] [PMID: 30118515]
[17]
Yang D, Yang Q, Wei X, et al. The role of miR-190a-5p contributes to diabetic neuropathic pain via targeting SLC17A6. J Pain Res 2017; 10: 2395-403.
[http://dx.doi.org/10.2147/JPR.S133755] [PMID: 29042815]
[18]
Cheng C, Kobayashi M, Martinez JA, et al. Evidence for Epigenetic Regulation of Gene Expression and Function in Chronic Experimental Diabetic Neuropathy. J Neuropathol Exp Neurol 2015; 74(8): 804-17.
[http://dx.doi.org/10.1097/NEN.0000000000000219] [PMID: 26172287]
[19]
Feng Y, Chen L, Luo Q, Wu M, Chen Y, Shi X. Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Des Devel Ther 2018; 12: 171-7.
[http://dx.doi.org/10.2147/DDDT.S157109] [PMID: 29398906]
[20]
Liu XS, Fan B, Szalad A, et al. MicroRNA-146a Mimics Reduce the Peripheral Neuropathy in Type 2 Diabetic Mice. Diabetes 2017; 66(12): 3111-21.
[http://dx.doi.org/10.2337/db16-1182] [PMID: 28899883]
[21]
Chen J, Li C, Liu W, Yan B, Hu X, Yang F. microRNA-155 silencing reduces sciatic nerve injury in diabetic peripheral neuropathy. J Mol Endocrinol 2019; 63(3): 227-38.
[http://dx.doi.org/10.1530/JME-19-0067]
[22]
Chen J, Liu W, Yi H, Hu X, Peng L, Yang F. MicroRNA-155 mimics ameliorates nerve conduction velocities and suppresses hyperglycemia-induced pro-inflammatory genes in diabetic peripheral neuropathic mice. Am J Transl Res 2019; 11(6): 3905-18.
[PMID: 31312398]
[23]
Zhang Y, Song C, Liu J, Bi Y, Li H. Inhibition of miR-25 aggravates diabetic peripheral neuropathy. Neuroreport 2018; 29(11): 945-53.
[http://dx.doi.org/10.1097/WNR.0000000000001058] [PMID: 29877948]
[24]
Wu B, Guo Y, Chen Q, Xiong Q, Min S. MicroRNA-193a Downregulates HMGB1 to Alleviate Diabetic Neuropathic Pain in a Mouse Model. Neuroimmunomodulation 2019; 26(5): 250-7.
[http://dx.doi.org/10.1159/000503325] [PMID: 31665716]
[25]
Gong Q, Lu Z, Huang Q, et al. Altered microRNAs expression profiling in mice with diabetic neuropathic pain. Biochem Biophys Res Commun 2015; 456(2): 615-20.
[http://dx.doi.org/10.1016/j.bbrc.2014.12.004] [PMID: 25498543]
[26]
Simeoli R, Fierabracci A. Insights into the Role of MicroRNAs in the Onset and Development of Diabetic Neuropathy. Int J Mol Sci 2019; 20(18): E4627.
[http://dx.doi.org/10.3390/ijms20184627] [PMID: 31540445]
[27]
Goodarzi G, Maniati M, Qujeq D. The role of microRNAs in the healing of diabetic ulcers. Int Wound J 2019; 16(3): 621-33.
[http://dx.doi.org/10.1111/iwj.13070] [PMID: 30821119]
[28]
Dalgaard LT, Carvalho E. Editorial commentary: Wanted: MicroRNAs to the aid of the diabetic foot. Trends Cardiovasc Med 2019; 29(3): 138-40.
[http://dx.doi.org/10.1016/j.tcm.2018.09.002] [PMID: 30292469]
[29]
Gallant-Behm CL, Piper J, Dickinson BA, Dalby CM, Pestano LA, Jackson AL. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen 2018; 26(4): 311-23.
[http://dx.doi.org/10.1111/wrr.12660] [PMID: 30118158]
[30]
Wang W, Yang C, Wang XY, et al. MicroRNA-129 and -335 Promote Diabetic Wound Healing by Inhibiting Sp1-Mediated MMP-9 Expression. Diabetes 2018; 67(8): 1627-38.
[http://dx.doi.org/10.2337/db17-1238] [PMID: 29748291]
[31]
Liang L, Stone RC, Stojadinovic O, et al. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen 2016; 24(6): 943-53.
[http://dx.doi.org/10.1111/wrr.12470] [PMID: 27607190]
[32]
Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 2012; 9(4): 355-61.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00890.x] [PMID: 22067035]
[33]
Zhang J, Sun XJ, Chen J, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. J Diabetes Complications 2017; 31(1): 241-4.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.026] [PMID: 27623390]
[34]
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15(2): 261-71.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002] [PMID: 18694565]
[35]
Liu J, Xu Y, Shu B, et al. Quantification of the differential expression levels of microRNA-203 in different degrees of diabetic foot. Int J Clin Exp Pathol 2015; 8(10): 13416-20.
[PMID: 26722550]
[36]
Moura J, Børsheim E, Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes (Basel) 2014; 5(4): 926-56.
[http://dx.doi.org/10.3390/genes5040926] [PMID: 25268390]
[37]
Pasquier J, Ramachandran V, Abu-Qaoud MR, et al. Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot. Epigenomics 2018; 10(10): 1267-78.
[http://dx.doi.org/10.2217/epi-2018-0052] [PMID: 29869523]
[38]
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234(1): 42-50.
[http://dx.doi.org/10.1002/jcp.26895] [PMID: 30078212]
[39]
Dewanjee S, Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 2018; 155: 32-47.
[http://dx.doi.org/10.1016/j.bcp.2018.06.017] [PMID: 29940170]
[40]
Yu FN, Hu ML, Wang XF, et al. Effects of microRNA-370 on mesangial cell proliferation and extracellular matrix accumulation by binding to canopy 1 in a rat model of diabetic nephropathy. J Cell Physiol 2019; 234(5): 6898-907.
[http://dx.doi.org/10.1002/jcp.27448] [PMID: 30317577]
[41]
Wang T, Zhu H, Yang S, Fei X. Let‑7a‑5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 2019; 19(5): 4229-37.
[http://dx.doi.org/10.3892/mmr.2019.10057] [PMID: 30896854]
[42]
Zhang SZ, Qiu XJ, Dong SS, et al. MicroRNA-770-5p is involved in the development of diabetic nephropathy through regulating podocyte apoptosis by targeting TP53 regulated inhibitor of apoptosis 1. Eur Rev Med Pharmacol Sci 2019; 23(3): 1248-56.
[PMID: 30779094]
[43]
Xue M, Li Y, Hu F, et al. High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells. Biochem Biophys Res Commun 2018; 498(1): 38-44.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.048] [PMID: 29371016]
[44]
Liu L, Wang Y, Yan R, et al. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Life Sci 2019; 238116957
[http://dx.doi.org/10.1016/j.lfs.2019.116957] [PMID: 31655195]
[45]
Chen X, Zhao L, Xing Y, Lin B. Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother 2018; 108: 7-14.
[http://dx.doi.org/10.1016/j.biopha.2018.09.007] [PMID: 30212710]
[46]
Cao DW, Jiang CM, Wan C, et al. Upregulation of MiR-126 Delays the Senescence of Human Glomerular Mesangial Cells Induced by High Glucose via Telomere-p53-p21-Rb Signaling Pathway. Curr Med Sci 2018; 38(5): 758-64.
[http://dx.doi.org/10.1007/s11596-018-1942-x] [PMID: 30341510]
[47]
Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy. Eur J Pharmacol 2018; 837: 96-104.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.022] [PMID: 30125566]
[48]
Wu J, Liu J, Ding Y, et al. MiR-455-3p suppresses renal fibrosis through repression of ROCK2 expression in diabetic nephropathy. Biochem Biophys Res Commun 2018; 503(2): 977-83.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.105] [PMID: 29932921]
[49]
Duan YR, Chen BP, Chen F, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte. J Cell Mol Med 2019. Epub ahead of print
[http://dx.doi.org/10.1111/jcmm.14558] [PMID: 31568645]
[50]
Xu Y, Zhang J, Fan L, He X. miR-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem Biophys Res Commun 2018; 505(2): 339-45.
[PMID: 30245133]
[51]
Fu Y, Wang C, Zhang D, Chu X, Zhang Y, Li J. miR-15b-5p ameliorated high glucose-induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A. J Cell Physiol 2019; 234(11): 20869-78.
[PMID: 31025335]
[52]
Shen H, Fang K, Guo H, Wang G. High Glucose-Induced Apoptosis in Human Kidney Cells Was Alleviated by miR-15b-5p Mimics. Biol Pharm Bull 2019; 42(5): 758-63.
[http://dx.doi.org/10.1248/bpb.b18-00951] [PMID: 30842352]
[53]
Yang S, Fei X, Lu Y, Xu B, Ma Y, Wan H. miRNA-214 suppresses oxidative stress in diabetic nephropathy via the ROS/Akt/mTOR signaling pathway and uncoupling protein 2. Exp Ther Med 2019; 17(5): 3530-8.
[http://dx.doi.org/10.3892/etm.2019.7359] [PMID: 30988734]
[54]
Yang Z, Guo Z, Dong J, et al. miR-374a Regulates Inflammatory Response in Diabetic Nephropathy by Targeting MCP-1 Expression. Front Pharmacol 2018; 9: 900.
[http://dx.doi.org/10.3389/fphar.2018.00900] [PMID: 30147653]
[55]
Wu L, Wang Q, Guo F, et al. MicroRNA-27a Induces Mesangial Cell Injury by Targeting of PPARγ, and its In Vivo Knockdown Prevents Progression of Diabetic Nephropathy. Sci Rep 2016; 6: 26072.
[http://dx.doi.org/10.1038/srep26072] [PMID: 27184517]
[56]
Huang YF, Zhang Y, Liu CX, Huang J, Ding GH. microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2. Eur Rev Med Pharmacol Sci 2016; 20(19): 4055-62.
[PMID: 27775793]
[57]
Shao Y, Lv C, Wu C, Zhou Y, Wang Q. Mir-217 promotes inflammation and fibrosis in high glucose cultured rat glomerular mesangial cells via Sirt1/HIF-1α signaling pathway. Diabetes Metab Res Rev 2016; 32(6): 534-43.
[PMID: 26891083]
[58]
Bai X, Geng J, Zhou Z, Tian J, Li X. MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy. Sci Rep 2016; 6: 20475.
[PMID: 26837280]
[59]
Ting DS, Tan KA, Phua V, Tan GS, Wong CW, Wong TY. Biomarkers of Diabetic Retinopathy. Curr Diab Rep 2016; 16(12): 125.
[http://dx.doi.org/10.1007/s11892-016-0812-9] [PMID: 27778251]
[60]
Ji H, Yi Q, Chen L, et al. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clin Chim Acta 2020. 501: 147-53.
[PMID: 31678272]
[61]
Hu K, Li JL, Yuan XW. MicroRNA-411 plays a protective role in diabetic retinopathy through targeted regulating Robo4. Eur Rev Med Pharmacol Sci 2019; 23(21): 9171-9.
[PMID: 31773667]
[62]
Lu JM, Zhang ZZ, Ma X, Fang SF, Qin XH. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 2020; 190: 107886.
[http://dx.doi.org/10.1016/j.exer.2019.107886] [PMID: 31759996]
[63]
Yao R, Yao X, Liu R, Peng J, Tian T. Glucose-induced microRNA-218 suppresses the proliferation and promotes the apoptosis of human retinal pigment epithelium cells by targeting RUNX2. Biosci Rep 2019; 39(12): BSR20192580.
[http://dx.doi.org/10.1042/BSR20192580] [PMID: 31830266]
[64]
Xiao H, Liu Z. Effects of microRNA-217 on high glucose-induced inflammation and apoptosis of human retinal pigment epithelial cells (ARPE-19) and its underlying mechanism. Mol Med Rep 2019; 20(6): 5125-33.
[http://dx.doi.org/10.3892/mmr.2019.10778] [PMID: 31702814]
[65]
Jadeja RN, Jones MA, Abdelrahman AA, et al. Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration. Redox Biol 2020; 28101336
[http://dx.doi.org/10.1016/j.redox.2019.101336] [PMID: 31590045]
[66]
Chen P, Miao Y, Yan P, Wang XJ, Jiang C, Lei Y. MiR-455-5p ameliorates HG-induced apoptosis, oxidative stress and inflammatory via targeting SOCS3 in retinal pigment epithelial cells. J Cell Physiol 2019; 234(12): 21915-24.
[http://dx.doi.org/10.1002/jcp.28755] [PMID: 31041827]
[67]
Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci 2018; 207: 212-8.
[http://dx.doi.org/10.1016/j.lfs.2018.06.005] [PMID: 29883722]
[68]
Zhang J, Cui C, Xu H. Downregulation of miR-145-5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5. Biosci Biotechnol Biochem 2019; 83(9): 1655-62.
[http://dx.doi.org/10.1080/09168451.2019.1630251] [PMID: 31272285]
[69]
Zhang X, Yang Y, Feng Z. Suppression of microRNA-495 alleviates high-glucose-induced retinal ganglion cell apoptosis by regulating Notch/PTEN/Akt signaling. Biomed Pharmacother 2018; 106: 923-9.
[http://dx.doi.org/10.1016/j.biopha.2018.07.018] [PMID: 30119264]
[70]
Dai C, Jiang S, Chu C, Xin M, Song X, Zhao B. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp Mol Pathol 2019; 106: 123-30.
[http://dx.doi.org/10.1016/j.yexmp.2019.01.002] [PMID: 30625293]
[71]
Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Hum Cell 2019; 32(3): 260-74.
[http://dx.doi.org/10.1007/s13577-019-00240-w] [PMID: 30706373]
[72]
Thounaojam MC, Jadeja RN, Warren M, et al. MicroRNA-34a (miR-34a) Mediates Retinal Endothelial Cell Premature Senescence through Mitochondrial Dysfunction and Loss of Antioxidant Activities. Antioxidants 2019; 8(9)E328
[http://dx.doi.org/10.3390/antiox8090328] [PMID: 31443378]
[73]
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem 2018; 82(8): 1366-76.
[http://dx.doi.org/10.1080/09168451.2018.1459179] [PMID: 29658404]
[74]
Mao XB, Cheng YH, Xu YY. miR-204-5p promotes diabetic retinopathy development via downregulation of microtubule-associated protein 1 light chain 3. Exp Ther Med 2019; 17(4): 2945-52.
[http://dx.doi.org/10.3892/etm.2019.7327] [PMID: 30936964]
[75]
Zhang R, Garrett Q, Zhou H, et al. Upregulation of miR-195 accelerates oxidative stress-induced retinal endothelial cell injury by targeting mitofusin 2 in diabetic rats. Mol Cell Endocrinol 2017; 452: 33-43.
[http://dx.doi.org/10.1016/j.mce.2017.05.009] [PMID: 28487236]
[76]
Zhao J, Gao S, Zhu Y, Shen X. Significant role of microRNA-219-5p in diabetic retinopathy and its mechanism of action. Mol Med Rep 2018; 18(1): 385-90.
[http://dx.doi.org/10.3892/mmr.2018.8988] [PMID: 29749515]
[77]
Qing S, Yuan S, Yun C, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem 2014; 34(5): 1733-40.
[http://dx.doi.org/10.1159/000366374] [PMID: 25427542]
[78]
Murinello S, Usui Y, Sakimoto S, et al. miR-30a-5p inhibition promotes interaction of Fas+ endothelial cells and FasL+ microglia to decrease pathological neovascularization and promote physiological angiogenesis. Glia 2019; 67(2): 332-44.
[http://dx.doi.org/10.1002/glia.23543] [PMID: 30484883]
[79]
Mammadzada P, Bayle J, Gudmundsson J, Kvanta A, André H. Identification of Diagnostic and Prognostic microRNAs for Recurrent Vitreous Hemorrhage in Patients with Proliferative Diabetic Retinopathy. J Clin Med 2019; 8(12): E2217.
[http://dx.doi.org/10.3390/jcm8122217] [PMID: 31847440]
[80]
Han N, Xu H, Yu N, Wu Y, Yu L. MiR-203a-3p inhibits retinal angiogenesis and alleviates proliferative diabetic retinopathy in oxygen-induced retinopathy (OIR) rat model via targeting VEGFA and HIF-1α. Clin Exp Pharmacol Physiol 2020; 47(1): 85-94.
[http://dx.doi.org/10.1111/1440-1681.13163] [PMID: 31408201]
[81]
Wang Y, Yan H. MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy. Sci Rep 2016; 6: 26909.
[http://dx.doi.org/10.1038/srep26909] [PMID: 27225425]
[82]
Cowan C, Muraleedharan CK, O’Donnell JJ III, et al. MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Invest Ophthalmol Vis Sci 2014; 55(8): 4944-51.
[http://dx.doi.org/10.1167/iovs.13-13631] [PMID: 24985472]
[83]
Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep 2017; 37(2): BSR20160572.
[http://dx.doi.org/10.1042/BSR20160572] [PMID: 28122882]
[84]
Wang Q, Navitskaya S, Chakravarthy H, et al. Dual Anti-Inflammatory and Anti-Angiogenic Action of miR-15a in Diabetic Retinopathy. EBioMedicine 2016; 11: 138-50.
[http://dx.doi.org/10.1016/j.ebiom.2016.08.013] [PMID: 27531575]
[85]
Shi L, Kim AJ, Chang RC, et al. Deletion of miR-150 Exacerbates Retinal Vascular Overgrowth in High-Fat-Diet Induced Diabetic Mice. PLoS One 2016; 11(6)e0157543
[http://dx.doi.org/10.1371/journal.pone.0157543] [PMID: 27304911]
[86]
Dong N, Xu B, Shi H, Lu Y. miR-124 Regulates Amadori-Glycated Albumin-Induced Retinal Microglial Activation and Inflammation by Targeting Rac1. Invest Ophthalmol Vis Sci 2016; 57(6): 2522-32.
[http://dx.doi.org/10.1167/iovs.15-18224] [PMID: 27159442]
[87]
Lin X, Zhou X, Liu D, et al. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN. In Vitro Cell Dev Biol Anim 2016; 52(4): 419-26.
[http://dx.doi.org/10.1007/s11626-015-9990-z] [PMID: 26822433]
[88]
Wu JH, Wang YH, Wang W, et al. MiR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int J Biochem Cell Biol 2016; 73: 41-52.
[http://dx.doi.org/10.1016/j.biocel.2016.02.002] [PMID: 26851511]
[89]
Athyros VG, Katsiki N, Karagiannis A. Editorial: microRNAs: Potential Targets for the Treatment of Cardiovascular Disease. Curr Vasc Pharmacol 2015; 13(3): 366-7.
[http://dx.doi.org/10.2174/157016111303150707103801] [PMID: 26156266]
[90]
Athyros VG, Katsiki N, Karagiannis A. Is Targeting microRNAs the Philosopher’s Stone for Vascular Disease? Curr Vasc Pharmacol 2016; 14(1): 88-97.
[http://dx.doi.org/10.2174/1570161113666150401101603] [PMID: 25827195]
[91]
Wang SS, Wu LJ, Li JJ, Xiao HB, He Y, Yan YX. A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci 2018; 215: 170-81.
[http://dx.doi.org/10.1016/j.lfs.2018.11.016] [PMID: 30423308]
[92]
Liu H, Xiong W, Liu F, et al. Significant role and mechanism of microRNA-143-3p/KLLN axis in the development of coronary heart disease. Am J Transl Res 2019; 11(6): 3610-9.
[PMID: 31312371]
[93]
Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 2012; 11: 55.
[http://dx.doi.org/10.1186/1476-511X-11-55] [PMID: 22587332]
[94]
Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease. Pathol Res Pract 2018; 214(11): 1873-8.
[http://dx.doi.org/10.1016/j.prp.2018.09.004] [PMID: 30249504]
[95]
Zhang J, Li Y, Zhao Q. Circulating miR-23b as a Novel Biomarker for Early Risk Stratification After ST-Elevation Myocardial Infarction. Med Sci Monit 2018; 24: 1517-23.
[http://dx.doi.org/10.12659/MSM.908060] [PMID: 29535290]
[96]
Lin DC, Lin JB, Chen Z, et al. Independent and combined effects of environmental factors and miR-126, miR-143, and miR-145 on the risk of coronary heart disease. J Geriatr Cardiol 2017; 14(11): 688-95.
[PMID: 29321799]
[97]
Ren J, Ma R, Zhang ZB, Li Y, Lei P, Men JL. Effects of microRNA-330 on vulnerable atherosclerotic plaques formation and vascular endothelial cell proliferation through the WNT signaling pathway in acute coronary syndrome. J Cell Biochem 2018; 119(6): 4514-27.
[http://dx.doi.org/10.1002/jcb.26584] [PMID: 29236323]
[98]
Huang WQ, Wei P, Lin RQ, Huang F. Protective Effects of Microrna-22 Against Endothelial Cell Injury by Targeting NLRP3 Through Suppression of the Inflammasome Signaling Pathway in a Rat Model of Coronary Heart Disease. Cell Physiol Biochem 2017; 43(4): 1346-58.
[http://dx.doi.org/10.1159/000481846] [PMID: 28992621]
[99]
Zhao P, Zhang BL, Liu K, Qin B, Li ZH. Overexpression of miR-638 attenuated the effects of hypoxia/reoxygenation treatment on cell viability, cell apoptosis and autophagy by targeting ATG5 in the human cardiomyocytes. Eur Rev Med Pharmacol Sci 2018; 22(23): 8462-71.
[PMID: 30556888]
[100]
Yang L, Gao C. MiR-590 Inhibits Endothelial Cell Apoptosis by Inactivating the TLR4/NF-κB Pathway in Atherosclerosis. Yonsei Med J 2019; 60(3): 298-307.
[http://dx.doi.org/10.3349/ymj.2019.60.3.298] [PMID: 30799593]
[101]
Yuan L, Tang C, Li D, Yang Z. MicroRNA-18a Expression in Female Coronary Heart Disease and Regulatory Mechanism on Endothelial Cell by Targeting Estrogen Receptor. J Cardiovasc Pharmacol 2018; 72(6): 277-84.
[http://dx.doi.org/10.1097/FJC.0000000000000623] [PMID: 30365458]
[102]
Yamac AH, Huyut MA, Yilmaz E, et al. MicroRNA 199a Is Downregulated in Patients After Coronary Artery Bypass Graft Surgery and Is Associated with Increased Levels of Sirtuin 1 (SIRT 1) Protein and Major Adverse Cardiovascular Events at 3-Year Follow-Up. Med Sci Monit 2018; 24: 6245-54.
[http://dx.doi.org/10.12659/MSM.912065] [PMID: 30192743]
[103]
Jia QW, Chen ZH, Ding XQ, et al. Predictive Effects of Circulating miR-221, miR-130a and miR-155 for Coronary Heart Disease: A Multi-Ethnic Study in China. Cell Physiol Biochem 2017; 42(2): 808-23.
[http://dx.doi.org/10.1159/000478071] [PMID: 28628920]
[104]
Gorur A, Celik A, Yildirim DD, Gundes A, Tamer L. Investigation of possible effects of microRNAs involved in regulation of lipid metabolism in the pathogenesis of atherosclerosis. Mol Biol Rep 2019; 46(1): 909-20.
[http://dx.doi.org/10.1007/s11033-018-4547-3] [PMID: 30612280]
[105]
Chen B, Luo L, Zhu W, et al. miR-22 contributes to the pathogenesis of patients with coronary artery disease by targeting MCP-1: An observational study. Medicine (Baltimore) 2016; 95(33): e4418.
[http://dx.doi.org/10.1097/MD.0000000000004418] [PMID: 27537567]
[106]
Li S, Ren J, Xu N, et al. MicroRNA-19b functions as potential anti-thrombotic protector in patients with unstable angina by targeting tissue factor. J Mol Cell Cardiol 2014; 75: 49-57.
[http://dx.doi.org/10.1016/j.yjmcc.2014.06.017] [PMID: 24998411]
[107]
de Ronde MWJ, Kok MGM, Moerland PD, et al. High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis 2017; 263: 377-84.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.03.045] [PMID: 28457624]
[108]
Cao RY, Li Q, Miao Y, et al. The Emerging Role of MicroRNA-155 in Cardiovascular Diseases. BioMed Res Int 2016; 2016: 9869208.
[http://dx.doi.org/10.1155/2016/9869208] [PMID: 28018919]
[109]
Li K, Lin T, Chen L, Wang N. MicroRNA-93 elevation after myocardial infarction is cardiac protective. Med Hypotheses 2017; 106: 23-5.
[http://dx.doi.org/10.1016/j.mehy.2017.07.003] [PMID: 28818266]
[110]
Lin B, Feng D, Xu J. Cardioprotective effects of microRNA-18a on acute myocardial infarction by promoting cardiomyocyte autophagy and suppressing cellular senescence via brain derived neurotrophic factor. Cell Biosci 2019; 9: 38.
[http://dx.doi.org/10.1186/s13578-019-0297-8] [PMID: 31168354]
[111]
Fang Y, Chen S, Liu Z, et al. Endothelial stem cells attenuate cardiac apoptosis via downregulating cardiac microRNA-146a in a rat model of coronary heart disease. Exp Ther Med 2018; 16(5): 4246-52.
[http://dx.doi.org/10.3892/etm.2018.6702] [PMID: 30344699]
[112]
Tang QJ, Lei HP, Wu H, et al. Plasma miR-142 predicts major adverse cardiovascular events as an intermediate biomarker of dual antiplatelet therapy. Acta Pharmacol Sin 2019; 40(2): 208-15.
[http://dx.doi.org/10.1038/s41401-018-0041-7] [PMID: 29891858]
[113]
Kim JS, Pak K, Goh TS, et al. Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Med J 2018; 59(4): 495-500.
[http://dx.doi.org/10.3349/ymj.2018.59.4.495] [PMID: 29749132]
[114]
Zhao D, Li Y, Yu X, Zhu Y, Ma B. Associations between miR-146a rs2910164 polymorphisms and risk of ischemic cardio-cerebrovascular diseases. Medicine 2019; 98(42): e17106.
[http://dx.doi.org/10.1097/MD.0000000000017106] [PMID: 31626081]
[115]
Lu JY, Chen MH, Zhang JF, Li ZZ, Liao PH. Association between miR-499 rs3746444 polymorphism and coronary heart disease susceptibility: An evidence-based meta-analysis of 5063 cases and 4603 controls. Gene 2019; 698: 34-40.
[http://dx.doi.org/10.1016/j.gene.2019.02.045] [PMID: 30802538]
[116]
Bastami M, Choupani J, Saadatian Z, et al. miRNA Polymorphisms and Risk of Cardio-Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20(2): E293.
[http://dx.doi.org/10.3390/ijms20020293] [PMID: 30642078]
[117]
Wang Y, Li Q, Mambiya M, et al. A Meta-Analysis of the Association between Microrna-196A2 and Risk of Ischemic Stroke and Coronary Artery Disease in Asian Population. J Stroke Cerebrovasc Dis 2018; 27(11): 3008-19.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.06.035] [PMID: 30072171]
[118]
Sung JH, Kim SH, Yang WI, et al. miRNA polymorphisms (miR‑146a, miR‑149, miR‑196a2 and miR‑499) are associated with the risk of coronary artery disease. Mol Med Rep 2016; 14(3): 2328-42.
[http://dx.doi.org/10.3892/mmr.2016.5495] [PMID: 27430349]
[119]
Luo M, Wang G, Xu C, et al. Circulating miR-30c as a predictive biomarker of type 2 diabetes mellitus with coronary heart disease by regulating PAI-1/VN interactions. Life Sci 2019; 239: 117092.
[http://dx.doi.org/10.1016/j.lfs.2019.117092] [PMID: 31760103]
[120]
Rawal S, Munasinghe PE, Shindikar A, et al. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res 2017; 113(1): 90-101.
[http://dx.doi.org/10.1093/cvr/cvw235] [PMID: 28065883]
[121]
Rawal S, Nagesh PT, Coffey S, et al. Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 2019; 18(1): 13.
[http://dx.doi.org/10.1186/s12933-019-0814-4] [PMID: 30696455]
[122]
Mirzaei H, Momeni F, Saadatpour L, et al. MicroRNA: Relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol 2018; 233(2): 856-65.
[http://dx.doi.org/10.1002/jcp.25787] [PMID: 28067403]
[123]
Peng H, Yang H, Xiang X, Li S. ΜicroRNA-221 participates in cerebral ischemic stroke by modulating endothelial cell function by regulating the PTEN/PI3K/AKT pathway. Exp Ther Med 2020; 19(1): 443-50.
[PMID: 31885694]
[124]
Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 2019; 24: 37.
[http://dx.doi.org/10.1186/s11658-019-0160-2] [PMID: 31168302]
[125]
Du K, Zhao C, Wang L, et al. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1. Aging 2019; 11(9): 2762-86.
[http://dx.doi.org/10.18632/aging.101948] [PMID: 31064890]
[126]
Lv H, Li J, Che YQ. MicroRNA-150 contributes to ischemic stroke through its effect on cerebral cortical neuron survival and function by inhibiting ERK1/2 axis via Mal. J Cell Physiol 2019; 234(2): 1477-90.
[http://dx.doi.org/10.1002/jcp.26960] [PMID: 30144062]
[127]
Liu X, Feng Z, Du L, et al. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21(1): E120.
[http://dx.doi.org/10.3390/ijms21010120] [PMID: 31878035]
[128]
Sun M, Hou X, Ren G, Zhang Y, Cheng H. Dynamic changes in miR-124 levels in patients with acute cerebral infarction. Int J Neurosci 2019; 129(7): 649-53.
[http://dx.doi.org/10.1080/00207454.2018.1513931] [PMID: 30124350]
[129]
Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 2016; 91: 151-65.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.025] [PMID: 27031810]
[130]
Wang J, Huang Q, Ding J, Wang X. Elevated serum levels of brain-derived neurotrophic factor and miR-124 in acute ischemic stroke patients and the molecular mechanism. 3 Biotech 2019; 9(11): 386.
[131]
He XW, Shi YH, Liu YS, et al. Increased plasma levels of miR-124-3p, miR-125b-5p and miR-192-5p are associated with outcomes in acute ischaemic stroke patients receiving thrombolysis. Atherosclerosis 2019; 289: 36-43.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.08.002] [PMID: 31450012]
[132]
Wang Z, Lu G, Sze J, et al. Plasma miR-124 Is a Promising Candidate Biomarker for Human Intracerebral Hemorrhage Stroke. Mol Neurobiol 2018; 55(7): 5879-88.
[http://dx.doi.org/10.1007/s12035-017-0808-8] [PMID: 29101647]
[133]
Liu Y, Zhang J, Han R, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci 2015; 22(2): 291-5.
[http://dx.doi.org/10.1016/j.jocn.2014.05.042] [PMID: 25257664]
[134]
Sun Y, Luo ZM, Guo XM, Su DF, Liu X. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 2015; 9: 193.
[http://dx.doi.org/10.3389/fncel.2015.00193] [PMID: 26041995]
[135]
Venkat P, Chopp M, Chen J. Cell-Based and Exosome Therapy in Diabetic Stroke. Stem Cells Transl Med 2018; 7(6): 451-5.
[http://dx.doi.org/10.1002/sctm.18-0014] [PMID: 29498242]
[136]
Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 2010; 107(6): 810-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[137]
Chen J, Ning R, Zacharek A, et al. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells 2016; 34(1): 102-13.
[http://dx.doi.org/10.1002/stem.2193] [PMID: 26299579]
[138]
Chen J, Cui C, Zacharek A, et al. Abstract WMP43: Neurorestorative therapy of stroke in T2DM mice with exosomes derived from brain endothelial cells. Stroke 2017; 48 (Suppl. 1).
[139]
Yang S, Zhao J, Chen Y, Lei M. Biomarkers Associated with Ischemic Stroke in Diabetes Mellitus Patients. Cardiovasc Toxicol 2016; 16(3): 213-22.
[http://dx.doi.org/10.1007/s12012-015-9329-8] [PMID: 26175178]
[140]
Ning R, Venkat P, Chopp M, et al. D-4F increases microRNA-124a and reduces neuroinflammation in diabetic stroke rats. Oncotarget 2017; 8(56): 95481-94.
[http://dx.doi.org/10.18632/oncotarget.20751] [PMID: 29221142]
[141]
Cui C, Ye X, Chopp M, et al. miR-145 Regulates Diabetes-Bone Marrow Stromal Cell-Induced Neurorestorative Effects in Diabetes Stroke Rats. Stem Cells Transl Med 2016; 5(12): 1656-67.
[http://dx.doi.org/10.5966/sctm.2015-0349] [PMID: 27460851]
[142]
Altintas O, Ozgen Altintas M, Kumas M, Asil T. Neuroprotective effect of ischemic preconditioning via modulating the expression of cerebral miRNAs against transient cerebral ischemia in diabetic rats. Neurol Res 2016; 38(11): 1003-11.
[http://dx.doi.org/10.1080/01616412.2016.1232013] [PMID: 27635859]
[143]
Hamburg NM, Leeper NJ. Therapeutic Potential of Modulating MicroRNA in Peripheral Artery Disease. Curr Vasc Pharmacol 2015; 13(3): 316-23.
[http://dx.doi.org/10.2174/15701611113119990014] [PMID: 23713861]
[144]
Sun Y, Gao Y, Song T, Yu C, Nie Z, Wang X. MicroRNA-15b participates in the development of peripheral arterial disease by modulating the growth of vascular smooth muscle cells. Exp Ther Med 2019; 18(1): 77-84.
[http://dx.doi.org/10.3892/etm.2019.7552] [PMID: 31258640]
[145]
Chen Z, Wang M, Huang K, He Q, Li H, Chang G. MicroRNA-125b Affects Vascular Smooth Muscle Cell Function by Targeting Serum Response Factor. Cell Physiol Biochem 2018; 46(4): 1566-80.
[http://dx.doi.org/10.1159/000489203] [PMID: 29689557]
[146]
Welten SMJ, de Jong RCM, Wezel A, et al. Inhibition of 14q32 microRNA miR-495 reduces lesion formation, intimal hyperplasia and plasma cholesterol levels in experimental restenosis. Atherosclerosis 2017; 261: 26-36.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.04.011] [PMID: 28445809]
[147]
Forte A, Rinaldi B, Berrino L, Rossi F, Galderisi U, Cipollaro M. Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research. Clin Sci (Lond) 2014; 127(11): 615-34.
[http://dx.doi.org/10.1042/CS20140131] [PMID: 25072327]
[148]
Hu W, Chang G, Zhang M, et al. MicroRNA-125a-3p affects smooth muscle cell function in vascular stenosis. J Mol Cell Cardiol 2019; 136: 85-94.
[http://dx.doi.org/10.1016/j.yjmcc.2019.08.014] [PMID: 31499051]
[149]
Zhu ZR, He Q, Wu WB, et al. MiR-140-3p is Involved in In-Stent Restenosis by Targeting C-Myb and BCL-2 in Peripheral Artery Disease. J Atheroscler Thromb 2018; 25(11): 1168-81.
[http://dx.doi.org/10.5551/jat.44024] [PMID: 29760303]
[150]
Stojkovic S, Jurisic M, Kopp CW, et al. Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation. Atherosclerosis 2018; 269: 197-203.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.020] [PMID: 29366993]
[151]
Zhang J, Wang Q, Rao G, Qiu J, He R. Curcumin improves perfusion recovery in experimental peripheral arterial disease by upregulating microRNA-93 expression. Exp Ther Med 2019; 17(1): 798-802.
[PMID: 30651865]
[152]
Hsu PY, Hsi E, Wang TM, Lin RT, Liao YC, Juo SH. MicroRNA let-7g possesses a therapeutic potential for peripheral artery disease. J Cell Mol Med 2017; 21(3): 519-29.
[http://dx.doi.org/10.1111/jcmm.12997] [PMID: 27696675]
[153]
Togliatto G, Trombetta A, Dentelli P, et al. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64(4): 1370-82.
[http://dx.doi.org/10.2337/db14-0991] [PMID: 25368096]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy