Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Efficient Synthesis and Spectroscopic Characterization of Biologically Relevant Pregnane Derivatives, and its Glycoside

Author(s): Arun Sethi*, Ranvijay Pratap Singh, Akriti Bhatia and Priyanka Yadav

Volume 1, Issue 1, 2021

Published on: 29 October, 2020

Page: [72 - 79] Pages: 8

DOI: 10.2174/2666001601999201029204603

Abstract

Objective: In the present research article, we synthesized novel pregnane derivatives from 16- dehydropregnenolone acetate (1) obtained by the degradation of naturally occurring plant productdiosgenin. The oxime esters, 3β-acetoxy-pregn-5,16-diene, 20-one O-(2-(6-methoxynaphthalene-2yl) propionyl) oxime (5) and 3β-hydroxy-pregn-5, 16-diene, 20-one O-(2-(4-isobutyl phenyl) propionyl) oxime (6) have been synthesized by reaction of 3β-acetoxy-5,16-pregnadien-20-oxime (3) with NSAIDs Ibuprofen and naproxen, respectively.

Methods: The epoxide derivative 3β-hydroxy-16α, 17α-epoxypregn-5-ene-20-one (4) was opened by BF3.Et2O and yielding product 3,16-di-hydroxy pregn-5-ene-20-one (7) and 3,16,17-tri-hydroxy pregn-5- ene-20-one (8), both the synthesized compounds underwent esterification with Ibuprofen affording 3,16- di-(2-(4-isobutyl phenyl) propionoxy) pregn-5-ene-20-one (9) and 3,16-di-(2-(4-isobutyl phenyl) propionoxy) 17-hydroxy pregn-5-ene-20-one (10), respectively.

Results: A one novel pregnane glycoside 3β-[2′,3′,4′,6′-tetra-O-acetyl-β-D-glucopy-ranosyl]-Oxy-20β- hydroxy-16α-methoxy-pregn-5-ene (15) has also been synthesized from 3β, 20β-dihydroxy-16α-methoxypregn- 5-ene (12).

Conclusion: After the synthesis, all the compounds have been characterized by modern spectroscopic techniques.

Keywords: Pregnane, NSAIDs, oxime, steglich esterification, glycoside, spectroscopic characterization, steroids.

Graphical Abstract
[1]
Schwartz, N.; Verma, A.; Bivens, C.B.; Schwartz, Z.; Boyan, B.D. Rapid steroid hormone actions via membrane receptors. Biochim. Biophys. Acta, 2016, 1863(9), 2289-2298.
[http://dx.doi.org/10.1016/j.bbamcr.2016.06.004] [PMID: 27288742]
[2]
Nobile, A.; Charney, A.W.; Perlman, P.L.; Herzog, H.L.; Paynee, C.C.; Tully, M.E.; Jevnik, M.A.; Hershberg, E.B. Microbiological transformation of steroids. I. δ1,4-DIENE-3-KETOSTEROIDS. J. Am. Chem. Soc., 1955, 77, 4184.
[http://dx.doi.org/10.1021/ja01620a079]
[3]
Shen, Y.; Burgoyne, D.L. Efficient synthesis of IPL576,092: a novel anti-asthma agent. J. Org. Chem., 2002, 67(11), 3908-3910.
[http://dx.doi.org/10.1021/jo0108717] [PMID: 12027712]
[4]
Ramakrishna, R.; Kumar, D.; Bhateria, M.; Gaikwad, A.N.; Bhatta, R.S. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters. J. Steroid Biochem. Mol. Biol., 2017, 168, 110-117.
[http://dx.doi.org/10.1016/j.jsbmb.2017.02.013] [PMID: 28232149]
[5]
Iqbal, C.M.; Shahab, A.M.; Atta-Ur-Rahman, A.U.; Yousuf, S.; Wu, Y.C.; Lin, A.S.; Shaheen, F. Pregnenolone derivatives as potential anticancer agents. Steroids, 2011, 76(14), 1554-1559.
[http://dx.doi.org/10.1016/j.steroids.2011.09.006] [PMID: 21964577]
[6]
Riveros, A.C.; Bratoeff, E. Synthesis and identification of pregnenolone derivatives as inhibitors of Isoenzymes of 5 – Reductase. Arch. Pharm. Chem. Life Sci., 2015, 348, 808-816.
[http://dx.doi.org/10.1002/ardp.201500220]
[7]
Lauro Figueroa-Valverde, L.F.; Cedillo, F.D.; Ramos, M.L.; Cervera, E.G.; Cruz, R.T.; Jorge Reyna-Moo, J.R. Antimicrobial activity of pregnenolone-carbamazepine complex on S. aureus, K. pneumoniae and E. coli. Int. J. Pharm. Sci. Rev. Res., 2010, 4(1), 7-12.
[8]
Berényi, Á.; Minorics, R.; Iványi, Z.; Ocsovszki, I.; Ducza, E.; Thole, H.; Messinger, J.; Wölfling, J.; Mótyán, G.; Mernyák, E.; Frank, É.; Schneider, G.; Zupkó, I. Synthesis and investigation of the anticancer effects of estrone-16-oxime ethers in vitro. Steroids, 2013, 78(1), 69-78.
[http://dx.doi.org/10.1016/j.steroids.2012.10.009] [PMID: 23127813]
[9]
MacNevin, C.J.; Atif, F.; Sayeed, I.; Stein, D.G.; Liotta, D.C. Development and screening of water-soluble analogues of progesterone and allopregnanolone in models of brain injury. J. Med. Chem., 2009, 52(19), 6012-6023.
[http://dx.doi.org/10.1021/jm900712n] [PMID: 19791804]
[10]
Friend, D.R.; Chang, G.W. Drug glycosides: potential prodrugs for colon-specific drug delivery. J. Med. Chem., 1985, 28(1), 51-57.
[http://dx.doi.org/10.1021/jm00379a012] [PMID: 3965714]
[11]
Sethi, A. Progress in O-glycosylation of pregnanes. Chem. Biol. Interface, 2012, 2(3), 122-139.
[12]
Li, Y.; Aioub, A.A.A.; Lv, B.; Hu, Z.; Wu, W. Antifungal activity of pregnane glycosides isolated from Periploca sepium root barks against various phytopathogenic fungi. Ind. Crops Prod., 2019, 132, 150-155.
[http://dx.doi.org/10.1016/j.indcrop.2019.02.009]
[13]
Raees, M.A.; Hussain, H.; Al-Rawahi, A.; Csuk, R.; Muhammad, S.A.; Khan, H.Y.; Rehman, N.U.; Abbas, G.; Al-Broumi, M.A.; Green, I.R.; Elyassi, A.; Mahmood, T.; Al-Harrasi, A. Anti-proliferative and computational studies of two new pregnane glycosides from Desmidorchis flava. Bioorg. Chem., 2016, 67, 95-104.
[http://dx.doi.org/10.1016/j.bioorg.2016.05.008] [PMID: 27299811]
[14]
Sethi, A.; Bhatia, G.; Khanna, A.K.; Khan, M.M.; Bishnoi, A.; Pandey, A.K.; Maurya, A. Bioorg. Expeditious and convenient synthesis of pregnanes and its glycosides as potential anti-dyslipidemic and anti-oxidant agents. Med. Chem. Res., 2011, 20, 36-46.
[http://dx.doi.org/10.1007/s00044-009-9280-y]
[15]
Qui, S.X.; Cordell, G.A.; Kumar, B.R.; Rao, Y.N.; Ramesh, M.; Kokate, C.; Rao, A.V.N.A. Bisdesmosidic pregnane glycosides from Caralluma lasiantha. Phytochemistry, 1999, 50, 485-491.
[16]
Wang, L.; Yin, Z.Q.; Zhang, Q.W.; Zhang, X.Q.; Zhang, D.M.; Liu, K.; Li, Y.L.; Yao, X.S.; Ye, W.C. Five new C21 steroidal glycosides from Periploca sepium. Steroids, 2011, 76(3), 238-243.
[http://dx.doi.org/10.1016/j.steroids.2010.11.004] [PMID: 21110993]
[17]
Regalado, E.L.; Turk, T.; Tasdemir, D.; Gorjanc, M.; Kaiser, M.; Thomas, O.P.; Fernández, R.; Amade, P. Cytotoxic and haemolytic steroidal glycosides from the Caribbean sponge Pandaros acanthifolium. Steroids, 2011, 76(12), 1389-1396.
[http://dx.doi.org/10.1016/j.steroids.2011.07.010] [PMID: 21820457]
[18]
Pan, W.B.; Chang, F.R.; Wei, L.M.; Wu, Y.C. New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. J. Nat. Prod., 2003, 66(2), 161-168.
[http://dx.doi.org/10.1021/np0203382] [PMID: 12608845]
[19]
Fukushima, D.K.; Gallanger, T.F. The action of alcoholic potassium hydroxide on δ16-20 ketosteroids. J. Am. Chem. Soc., 1951, 73, 196-201.
[http://dx.doi.org/10.1021/ja01145a067]
[20]
Muller, G.P.; Norton, L.L. Ring-D reactions of 3β-Acetoxy-5α-pregn-16-ene-12,20-dione. J. Am. Chem. Soc., 1995, 77, 143.
[http://dx.doi.org/10.1021/ja01606a043]
[21]
Frank, B. Cotton 1954.Patent 2727909,
[22]
Haneesian, S.; Banoub, J. Chemistry of the glycosidic linkage.O-glycosylations catalyzed by stannic chloride, in the D-ribofuranose and D-glucopyranose series. Carbohydr. Res., 1977, 59, 261.
[http://dx.doi.org/10.1016/S0008-6215(00)83314-5]

© 2024 Bentham Science Publishers | Privacy Policy