Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Chemometric Comparison of Data Files Using Several Thermal Analytical Techniques for Dating Fossil Bones from Two Old Burial Sites

Author(s): Mauro Tomassetti*, Elisabetta Martini, Mauro Castrucci, Luigi Campanella and Alfredo Coppa

Volume 17, Issue 4, 2021

Published on: 29 October, 2020

Page: [536 - 544] Pages: 9

DOI: 10.2174/1573411016999201029195141

Price: $65

Abstract

Background: The possibility of estimating the age of fossil bones using only classic thermogravimetry, on the basis of proper % mass loss ratio values, has been widely considered in the past years.

Objective: Our research has brought some innovations to the previous background, by using chemometric methods and by processing the numerical files of whole thermogravimetric curves. The objective of this paper is the selection, among the main thermal analysis methods available, i.e., thermogravimetry (TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA) and thermal dilatometry analysis (TDA), of the most suitable one, in order to evaluate the age of fossil bones.

Methods: Fossil bone samples from two ancient cemeteries in Sudan were analyzed using different thermal methods (TG, DTG, DTA, and TDA). Data of whole recorded thermal curves have been processed by PCA analysis.

Results: A systematic comparison of several thermal analytical techniques allowed to conclude that TG or DTG curves can provide more appropriate information to determine how old fossil bones of different ages are, as evidenced by PCA processing of the entire file set of TG or DTG curves.

Conclusion: It can be concluded that the chemometric processing of TG or DTG curves data files is the best method; however, discussing other thermal analytical curves (DTA and TDA) can complete the information found by means of chemometric processing of whole TG and DTG curves.

Keywords: Thermal analytical curves, whole curves' data files, TG-DTG-DTA-TDA methods, dating fossil bones, chemometry, ancient civilizations.

Graphical Abstract
[1]
Tomassetti, M.; Marini, F.; Bucci, R.; Campanella, L. A survey on innovative dating methods in archaeometry with focus on fossil bones. Trends Analyt. Chem., 2016, 79, 371-379.
[http://dx.doi.org/10.1016/j.trac.2015.11.017]
[2]
Szoor, G. Fossil age determination by thermal analysis. J. Therm. Anal. Calorim., 1982, 23, 83-91.
[http://dx.doi.org/10.1007/BF01908489]
[3]
Tomassetti, M.; Marini, F.; Campanella, L.; Coppa, A. Study of modern or ancient collagen and human fossil bones from an archaeological site of middle Nile by thermal analysis and chemometrics. Microchem. J., 2013, 108, 7-13.
[http://dx.doi.org/10.1016/j.microc.2012.11.006]
[4]
Coppa, A.; Macchiarelli, R. Human skeletal remains from the mesolithic site of Saggai 1 (Sudan). A descriptive and comparative anthropological study. Origini: Preistoria e protostoria delle civiltà antiche, 1983, 12, 116-139..
[5]
Blakey, M.L.; Coppa, A.; Damadio, S.; Vargiu, R. A comparison of dental enamel defects in Christian and Meroitic populations from Geili, central Sudan. Int. J. Anthropol., 1990, 5, 193-202.
[http://dx.doi.org/10.1007/BF02446244]
[6]
Jolliffe, I.T. Principal Component Analysis; Springer-Verlag: New York, NY, 2002.
[7]
Brereton, R.G. Chemometrics data analysis for the laboratory and chemical plant John Wiley Sons Ltd.: The Atrium, Southern Gate, Chichester, West Sussex PO198QS, England, 2003.
[9]
Tomassetti, M.; Marini, F.; Campanella, L.; Coppa, A. Archaeometric classification of ancient human fossil bones, with particular attention to their carbonate content, using chemometrics, thermogravimetry and ICP emission. Chem. Cent. J., 2014, 8, 26.
[http://dx.doi.org/10.1186/1752-153X-8-26 PMID: 24795778]
[10]
Coppa, A.; Palmieri, A.M. Changing dietary patterns in El Geili.In: El Geili, the History of a Middle Nile Environment 7000 B.C.-A.D.1500Cambridge Moographs in African Archaeology 29, International Series 424; Caneva, I., Ed.; BAR UK: Oxford, , 1988, pp. 275-302.
[11]
Haas, H.; Banewicz, J. Radiocarbon dating of bone apatite using thermal release of CO2. Radiocarbon, 1980, 22(2), 537-544.
[http://dx.doi.org/10.1017/S0033822200009863]
[12]
Bonucci, E.; Graziani, G. Comparative thermogravimetric, x-ray diffraction and electron microscope investigation of burnt bones from recent, ancient and prehistoric age. Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Nat. Rend., 1975, 59, 517-532.
[13]
Lozano, L.F.; Pena-Rico, M.A.; Heredia, A.; Ocotlan-Flores, A.; Gomez-Cortes, A.; Velazquez, R.; Belio, I.A.; Bucio, L. Thermal analysis study of human bone. J. Mater. Sci., 2003, 38(2), 4777-4782.
[http://dx.doi.org/10.1023/A:1027483220584]
[14]
Cook, S.F.; Ezra-Cohn, H.C. An evaluation of the fluorine dating method. Southwest. J. Anthropol., 1959, 15, 276-290.
[http://dx.doi.org/10.1086/soutjanth.15.3.3628977]
[15]
Schurr, M.R. Fluoride dating of prehistoric bones by ion selective electrode. J. Archaeol. Sci., 1989, 16(3), 265-270.
[http://dx.doi.org/10.1016/0305-4403(89)90005-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy