Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy

Author(s): Jing Ji, Pengyu Tao, Qian Wang, Lingxing Li and Yuzhen Xu*

Volume 21, Issue 5, 2021

Published on: 29 October, 2020

Page: [835 - 842] Pages: 8

DOI: 10.2174/1871530320666201029143606

Price: $65

Abstract

Diabetic nephropathy (DN) is referred to as the microvascular complication of the kidneys induced by insufficient production of insulin or an ineffective cellular response to insulin, and is the main cause of end-stage renal disease. Currently, available therapies provide only symptomatic relief and fail to improve the outcome of diabetic nephropathy. Studies on diabetic animals had shown overexpression of SIRT1 in both podocytes and renal tubular cells attenuated proteinuria and kidney injury in the animal model of DN. Sirt1 exerts renoprotective effects in DKD in part through the deacetylation of transcription factors involved in the disease pathogenesis, such as NF-кB, Smad3, FOXO and p53. The purpose of this review is to highlight the protective mechanism of SIRT1 involved in the pathogenesis of diabetic nephropathy.

Keywords: Diabetic nephropathy, SIRT1, inflammation, calorie restriction, acetylation, ESRD.

Graphical Abstract
[1]
Cao, Z.; Cooper, M.E. Pathogenesis of diabetic nephropathy. J. Diabetes Investig., 2011, 2(4), 243-247.
[http://dx.doi.org/10.1111/j.2040-1124.2011.00131.x] [PMID: 24843491]
[2]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[3]
MacIsaac, R.J.; Jerums, G.; Ekinci, E.I. Effects of glycaemic management on diabetic kidney disease. World J. Diabetes, 2017, 8(5), 172-186.
[http://dx.doi.org/10.4239/wjd.v8.i5.172] [PMID: 28572879]
[4]
Yang, W.; Lu, J.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; Zhu, D.; Ge, J.; Lin, L.; Chen, L.; Guo, X.; Zhao, Z.; Li, Q.; Zhou, Z.; Shan, G.; He, J. China National Diabetes and Metabolic Disorders Study Group. Prevalence of diabetes among men and women in China. N. Engl. J. Med., 2010, 362(12), 1090-1101.
[http://dx.doi.org/10.1056/NEJMoa0908292] [PMID: 20335585]
[5]
Yan, Y.; Xie, M.; Zhang, L.; Zhou, X.; Xie, H.; Zhou, L.; Zheng, S.; Wang, W. Ras-related associated with diabetes gene acts as a suppressor and inhibits Warburg effect in hepatocellular carcinoma. OncoTargets Ther., 2016, 9, 3925-3937.
[http://dx.doi.org/10.2147/OTT.S106703] [PMID: 27418837]
[6]
Wakino, S.; Hasegawa, K.; Itoh, H. Sirtuin and metabolic kidney disease. Kidney Int., 2015, 88(4), 691-698.
[http://dx.doi.org/10.1038/ki.2015.157] [PMID: 26083654]
[7]
Balaiya, S.; Abu-Amero, K.K.; Kondkar, A.A.; Chalam, K.V. Sirtuins Expression and Their Role in Retinal Diseases. Oxid. Med. Cell. Longev., 2017, 20173187594
[http://dx.doi.org/10.1155/2017/3187594] [PMID: 28197299]
[8]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504.
[http://dx.doi.org/10.1038/nm.3363] [PMID: 24141423]
[9]
Blander, G.; Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem., 2004, 73(1), 417-435.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073651] [PMID: 15189148]
[10]
Suvarna, B.S. Sirtuins: the future insight. Kathmandu Univ. Med. J., 2012, 10(38), 77-82.
[PMID: 23132482]
[11]
Kyrylenko, S.; Baniahmad, A. Sirtuin family: a link to metabolic signaling and senescence. Curr. Med. Chem., 2010, 17(26), 2921-2932.
[http://dx.doi.org/10.2174/092986710792065009] [PMID: 20858173]
[12]
Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells, 2016, 39(2), 87-95.
[http://dx.doi.org/10.14348/molcells.2016.2318] [PMID: 26831453]
[13]
Feldman, J.L.; Dittenhafer-Reed, K.E.; Denu, J.M. Sirtuin catalysis and regulation. J. Biol. Chem., 2012, 287(51), 42419-42427.
[http://dx.doi.org/10.1074/jbc.R112.378877] [PMID: 23086947]
[14]
Sosnowska, B.; Mazidi, M.; Penson, P.; Gluba-Brzózka, A.; Rysz, J.; Banach, M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis, 2017, 265, 275-282.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.027] [PMID: 28870631]
[15]
Braidy, N.; Poljak, A.; Grant, R.; Jayasena, T.; Mansour, H.; Chan-Ling, T.; Smythe, G.; Sachdev, P.; Guillemin, G.J. Differential expression of sirtuins in the aging rat brain. Front. Cell. Neurosci., 2015, 9, 167.
[http://dx.doi.org/10.3389/fncel.2015.00167] [PMID: 26005404]
[16]
Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 2001, 107(2), 149-159.
[http://dx.doi.org/10.1016/S0092-8674(01)00527-X] [PMID: 11672523]
[17]
Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 2000, 403(6771), 795-800.
[http://dx.doi.org/10.1038/35001622] [PMID: 10693811]
[18]
Haigis, M.C.; Guarente, L.P. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev., 2006, 20(21), 2913-2921.
[http://dx.doi.org/10.1101/gad.1467506] [PMID: 17079682]
[19]
Gao, J.; Wang, W.Y.; Mao, Y.W.; Gräff, J.; Guan, J.S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 2010, 466(7310), 1105-1109.
[http://dx.doi.org/10.1038/nature09271] [PMID: 20622856]
[20]
Banks, A.S.; Kon, N.; Knight, C.; Matsumoto, M.; Gutiérrez-Juárez, R.; Rossetti, L.; Gu, W.; Accili, D. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab., 2008, 8(4), 333-341.
[http://dx.doi.org/10.1016/j.cmet.2008.08.014] [PMID: 18840364]
[21]
Uruno, A.; Yagishita, Y.; Yamamoto, M. The Keap1-Nrf2 system and diabetes mellitus. Arch. Biochem. Biophys., 2015, 566, 76-84.
[http://dx.doi.org/10.1016/j.abb.2014.12.012] [PMID: 25528168]
[22]
Gerhart-Hines, Z.; Rodgers, J.T.; Bare, O.; Lerin, C.; Kim, S.H.; Mostoslavsky, R.; Alt, F.W.; Wu, Z.; Puigserver, P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J., 2007, 26(7), 1913-1923.
[http://dx.doi.org/10.1038/sj.emboj.7601633] [PMID: 17347648]
[23]
Davenport, A.M.; Huber, F.M.; Hoelz, A. Structural and functional analysis of human SIRT1. J. Mol. Biol., 2014, 426(3), 526-541.
[http://dx.doi.org/10.1016/j.jmb.2013.10.009] [PMID: 24120939]
[24]
Poyan Mehr, A.; Parikh, S.M. PPARγ-Coactivator-1α, Nicotinamide Adenine Dinucleotide and Renal Stress Resistance. Nephron, 2017, 137(4), 253-255.
[http://dx.doi.org/10.1159/000471895] [PMID: 28591759]
[25]
Higashida, K.; Kim, S.H.; Jung, S.R.; Asaka, M.; Holloszy, J.O.; Han, D.H. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation. PLoS Biol., 2013, 11(7)e1001603
[http://dx.doi.org/10.1371/journal.pbio.1001603] [PMID: 23874150]
[26]
Oka, S.; Alcendor, R.; Zhai, P.; Park, J.Y.; Shao, D.; Cho, J.; Yamamoto, T.; Tian, B.; Sadoshima, J. PPARα-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell Metab., 2011, 14(5), 598-611.
[http://dx.doi.org/10.1016/j.cmet.2011.10.001] [PMID: 22055503]
[27]
Ponugoti, B.; Kim, D.H.; Xiao, Z.; Smith, Z.; Miao, J.; Zang, M.; Wu, S.Y.; Chiang, C.M.; Veenstra, T.D.; Kemper, J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem., 2010, 285(44), 33959-33970.
[http://dx.doi.org/10.1074/jbc.M110.122978] [PMID: 20817729]
[28]
Mariani, S.; Fiore, D.; Persichetti, A.; Basciani, S.; Lubrano, C.; Poggiogalle, E.; Genco, A.; Donini, L.M.; Gnessi, L. Circulating SIRT1 Increases After Intragastric Balloon Fat Loss in Obese Patients. Obes. Surg., 2016, 26(6), 1215-1220.
[http://dx.doi.org/10.1007/s11695-015-1859-4] [PMID: 26337692]
[29]
Khan, S.A.; Sathyanarayan, A.; Mashek, M.T.; Ong, K.T.; Wollaston-Hayden, E.E.; Mashek, D.G. ATGL-catalyzed lipolysis regulates SIRT1 to control PGC-1α/PPAR-α signaling. Diabetes, 2015, 64(2), 418-426.
[http://dx.doi.org/10.2337/db14-0325] [PMID: 25614670]
[30]
Russo, I.; Frangogiannis, N.G. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J. Mol. Cell. Cardiol., 2016, 90, 84-93.
[http://dx.doi.org/10.1016/j.yjmcc.2015.12.011] [PMID: 26705059]
[31]
Wu, H.; Li, G.N.; Xie, J.; Li, R.; Chen, Q.H.; Chen, J.Z.; Wei, Z.H.; Kang, L.N.; Xu, B. Resveratrol ameliorates myocardial fibrosis by inhibiting ROS/ERK/TGF-β/periostin pathway in STZ-induced diabetic mice. BMC Cardiovasc. Disord., 2016, 16, 5.
[http://dx.doi.org/10.1186/s12872-015-0169-z] [PMID: 26750922]
[32]
Huang, X.Z.; Wen, D.; Zhang, M.; Xie, Q.; Ma, L.; Guan, Y.; Ren, Y.; Chen, J.; Hao, C.M. Sirt1 activation ameliorates renal fibrosis by inhibiting the TGF-β/Smad3 pathway. J. Cell. Biochem., 2014, 115(5), 996-1005.
[http://dx.doi.org/10.1002/jcb.24748] [PMID: 24356887]
[33]
Liu, Z.; Gu, H.; Gan, L.; Xu, Y.; Feng, F.; Saeed, M.; Sun, C. Reducing Smad3/ATF4 was essential for Sirt1 inhibiting ER stressinduced apoptosis in mice brown adipose tissue. Oncotarget, 2017, 8(6), 9267-9279.
[http://dx.doi.org/10.18632/oncotarget.14035] [PMID: 28030827]
[34]
Guan, Y.; Hao, C. Podocyte SIRT1 Deficiency Contributes to Albuminuria and Renal Fibrosis in Diabetic Kidney Damage in Mice. Hong Kong J. Nephrol., 2015, 17(2), S9-S10.
[http://dx.doi.org/10.1016/j.hkjn.2015.08.033]
[35]
Yadav, H.; Quijano, C.; Kamaraju, A.K.; Gavrilova, O.; Malek, R.; Chen, W.; Zerfas, P.; Zhigang, D.; Wright, E.C.; Stuelten, C.; Sun, P.; Lonning, S.; Skarulis, M.; Sumner, A.E.; Finkel, T.; Rane, S.G. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab., 2011, 14(1), 67-79.
[http://dx.doi.org/10.1016/j.cmet.2011.04.013] [PMID: 21723505]
[36]
Huang, K.; Chen, C.; Hao, J.; Huang, J.; Wang, S.; Liu, P.; Huang, H. Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating Sirt1 to resist AGEs-induced upregulation of fibronetin and transforming growth factor-β1 in rat glomerular messangial cells. Mol. Cell. Endocrinol., 2015, 399, 178-189.
[http://dx.doi.org/10.1016/j.mce.2014.08.014] [PMID: 25192797]
[37]
Huang, K.; Huang, J.; Xie, X.; Wang, S.; Chen, C.; Shen, X.; Liu, P.; Huang, H. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells. Free Radic. Biol. Med., 2013, 65, 528-540.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.029] [PMID: 23891678]
[38]
Xiao, Z.; Chen, C.; Meng, T.; Zhang, W.; Zhou, Q. Resveratrol attenuates renal injury and fibrosis by inhibiting transforming growth factor-β pathway on matrix metalloproteinase 7. Exp. Biol. Med. (Maywood), 2016, 241(2), 140-146.
[http://dx.doi.org/10.1177/1535370215598401] [PMID: 26316584]
[39]
He, W.; Wang, Y.; Zhang, M.Z.; You, L.; Davis, L.S.; Fan, H.; Yang, H.C.; Fogo, A.B.; Zent, R.; Harris, R.C.; Breyer, M.D.; Hao, C.M. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest., 2010, 120(4), 1056-1068.
[http://dx.doi.org/10.1172/JCI41563] [PMID: 20335659]
[40]
Zhou, J.; Zhou, S. Inflammation: therapeutic targets for diabetic neuropathy. Mol. Neurobiol., 2014, 49(1), 536-546.
[http://dx.doi.org/10.1007/s12035-013-8537-0] [PMID: 23990376]
[41]
Zheng, S.; Powell, D.W.; Zheng, F.; Kantharidis, P.; Gnudi, L. Diabetic Nephropathy: Proteinuria, Inflammation, and Fibrosis. J. Diabetes Res., 2016, 2016, 5241549.
[http://dx.doi.org/10.1155/2016/5241549] [PMID: 26881250]
[42]
Du, Y.G.; Zhang, K.N.; Gao, Z.L.; Dai, F.; Wu, X.X.; Chai, K.F. Tangshen formula improves inflammation in renal tissue of diabetic nephropathy through SIRT1/NF-κB pathway. Exp. Ther. Med., 2018, 15(2), 2156-2164.
[http://dx.doi.org/10.3892/etm.2017.5621] [PMID: 29434819]
[43]
Ibrahim, Z.S.; Alkafafy, M.E.; Ahmed, M.M.; Soliman, M.M. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats. Mol. Med. Rep., 2016, 13(4), 3017-3026.
[http://dx.doi.org/10.3892/mmr.2016.4922] [PMID: 26936435]
[44]
Zhou, L.; Xu, D.Y.; Sha, W.G.; Shen, L.; Lu, G.Y.; Yin, X.; Wang, M.J. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J. Transl. Med., 2015, 13, 352.
[http://dx.doi.org/10.1186/s12967-015-0710-y] [PMID: 26552447]
[45]
Wang, X.H.; Zhu, L.; Hong, X.; Wang, Y.T.; Wang, F.; Bao, J.P.; Xie, X.H.; Liu, L.; Wu, X.T. Resveratrol attenuated TNF-α-induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Exp. Biol. Med. (Maywood), 2016, 241(8), 848-853.
[http://dx.doi.org/10.1177/1535370216637940] [PMID: 26946533]
[46]
Trocme, C.; Deffert, C.; Cachat, J.; Donati, Y.; Tissot, C.; Papacatzis, S.; Braunersreuther, V.; Pache, J.C.; Krause, K.H.; Holmdahl, R.; Barazzone-Argiroffo, C.; Carnesecchi, S. Macrophage-specific NOX2 contributes to the development of lung emphysema through modulation of SIRT1/MMP-9 pathways. J. Pathol., 2015, 235(1), 65-78.
[http://dx.doi.org/10.1002/path.4423] [PMID: 25116588]
[47]
Wang, W.; Li, F.; Xu, Y.; Wei, J.; Zhang, Y.; Yang, H.; Gao, B.; Yu, G.; Fang, D. JAK1-mediated Sirt1 phosphorylation functions as a negative feedback of the JAK1-STAT3 pathway. J. Biol. Chem., 2018, 293(28), 11067-11075.
[http://dx.doi.org/10.1074/jbc.RA117.001387] [PMID: 29789426]
[48]
Nie, Y.; Erion, D.M.; Yuan, Z.; Dietrich, M.; Shulman, G.I.; Horvath, T.L.; Gao, Q. STAT3 inhibition of gluconeogenesis is downregulated by SirT1. Nat. Cell Biol., 2009, 11(4), 492-500.
[http://dx.doi.org/10.1038/ncb1857] [PMID: 19295512]
[49]
Barzilai, N.; Huffman, D.M.; Muzumdar, R.H.; Bartke, A. The critical role of metabolic pathways in aging. Diabetes, 2012, 61(6), 1315-1322.
[http://dx.doi.org/10.2337/db11-1300] [PMID: 22618766]
[50]
Kume, S.; Kitada, M.; Kanasaki, K.; Maegawa, H.; Koya, D. Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch. Pharm. Res., 2013, 36(2), 230-236.
[http://dx.doi.org/10.1007/s12272-013-0019-4] [PMID: 23361587]
[51]
Bai, B.; Vanhoutte, P.M.; Wang, Y. Loss-of-SIRT1 function during vascular ageing: hyperphosphorylation mediated by cyclin-dependent kinase 5. Trends Cardiovasc. Med., 2014, 24(2), 81-84.
[http://dx.doi.org/10.1016/j.tcm.2013.07.001] [PMID: 23968571]
[52]
Rappou, E.; Jukarainen, S.; Rinnankoski-Tuikka, R.; Kaye, S.; Heinonen, S.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Saunavaara, V.; Rissanen, A.; Virtanen, K.A.; Pirinen, E.; Pietiläinen, K.H. Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue. J. Clin. Endocrinol. Metab., 2016, 101(3), 1263-1273.
[http://dx.doi.org/10.1210/jc.2015-3054] [PMID: 26760174]
[53]
Kato, M.; Lin, S.J. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst.), 2014, 23(2), 49-58.
[http://dx.doi.org/10.1016/j.dnarep.2014.07.009] [PMID: 25096760]
[54]
Imai, S.; Yoshino, J. The importance of NAMPT/NAD/SIRT1 in the systemic regulation of metabolism and ageing. Diabetes Obes. Metab., 2013, 15(Suppl. 3), 26-33.
[http://dx.doi.org/10.1111/dom.12171] [PMID: 24003918]
[55]
Takiyama, Y.; Haneda, M. Hypoxia in diabetic kidneys. BioMed Res. Int., 2014, 2014837421
[http://dx.doi.org/10.1155/2014/837421] [PMID: 25054148]
[56]
Yerra, V.G.; Kalvala, A.K.; Kumar, A. Isoliquiritigenin reduces oxidative damage and alleviates mitochondrial impairment by SIRT1 activation in experimental diabetic neuropathy. J. Nutr. Biochem., 2017, 47, 41-52.
[http://dx.doi.org/10.1016/j.jnutbio.2017.05.001] [PMID: 28528294]
[57]
Hirakawa, Y.; Tanaka, T.; Nangaku, M. Mechanisms of metabolic memory and renal hypoxia as a therapeutic target in diabetic kidney disease. J. Diabetes Investig., 2017, 8(3), 261-271.
[http://dx.doi.org/10.1111/jdi.12624] [PMID: 28097824]
[58]
Masoud, G.N.; Li, W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B, 2015, 5(5), 378-389.
[http://dx.doi.org/10.1016/j.apsb.2015.05.007] [PMID: 26579469]
[59]
Joo, H.Y.; Yun, M.; Jeong, J.; Park, E.R.; Shin, H.J.; Woo, S.R.; Jung, J.K.; Kim, Y.M.; Park, J.J.; Kim, J.; Lee, K.H. SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia. Biochem. Biophys. Res. Commun., 2015, 462(4), 294-300.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.119] [PMID: 25979359]
[60]
Fusaru, A.M.; Pisoschi, C.G.; Bold, A.; Taisescu, C.; Stănescu, R.; Hîncu, M.; Crăiţoiu, S.; Baniţă, I.M. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients. Rom. J. Morphol. Embryol., 2012, 53(4), 903-909.
[PMID: 23303012]
[61]
Lee, H.H.; Chang, C.C.; Shieh, M.J.; Wang, J.P.; Chen, Y.T.; Young, T.H.; Hung, S.C. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect. Sci. Rep., 2013, 3(3), 2683.
[http://dx.doi.org/10.1038/srep02683] [PMID: 24042188]
[62]
Chen, C.J.; Yu, W.; Fu, Y.C.; Wang, X.; Li, J.L.; Wang, W. Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem. Biophys. Res. Commun., 2009, 378(3), 389-393.
[http://dx.doi.org/10.1016/j.bbrc.2008.11.110] [PMID: 19059213]
[63]
Rosa, M.D.; Distefano, G.; Gagliano, C.; Rusciano, D.; Malaguarnera, L. Autophagy in Diabetic Retinopathy. Curr. Neuropharmacol., 2016, 14(8), 810-825.
[http://dx.doi.org/10.2174/1570159X14666160321122900] [PMID: 26997506]
[64]
Kume, S.; Koya, D. Autophagy: A Novel Therapeutic Target for Diabetic Nephropathy. Diabetes Metab. J., 2015, 39(6), 451-460.
[http://dx.doi.org/10.4093/dmj.2015.39.6.451] [PMID: 26706914]
[65]
Yamahara, K.; Yasuda, M.; Kume, S.; Koya, D.; Maegawa, H.; Uzu, T. The role of autophagy in the pathogenesis of diabetic nephropathy. J. Diabetes Res., 2013, 2013193757
[http://dx.doi.org/10.1155/2013/193757] [PMID: 24455746]
[66]
Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Ko, S.H.; Shin, S.J.; Choi, B.S.; Kim, H.W.; Kim, Y.S.; Lee, J.H.; Chang, Y.S.; Park, C.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1α axis in db/db mice. Diabetologia, 2013, 56(1), 204-217.
[http://dx.doi.org/10.1007/s00125-012-2747-2] [PMID: 23090186]
[67]
Hu, J.L.; He, G.Y.; Lan, X.L.; Zeng, Z.C.; Guan, J.; Ding, Y.; Qian, X.L.; Liao, W.T.; Ding, Y.Q.; Liang, L. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis, 2018, 7(2), 16.
[http://dx.doi.org/10.1038/s41389-018-0028-8] [PMID: 29459645]
[68]
Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3374-3379.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[69]
Liu, R.; Zhong, Y.; Li, X.; Chen, H.; Jim, B.; Zhou, M.M.; Chuang, P.Y.; He, J.C. Role of transcription factor acetylation in diabetic kidney disease. Diabetes, 2014, 63(7), 2440-2453.
[http://dx.doi.org/10.2337/db13-1810] [PMID: 24608443]
[70]
Ou, X.; Lee, M.R.; Huang, X.; Messina-Graham, S.; Broxmeyer, H.E. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells, 2014, 32(5), 1183-1194.
[http://dx.doi.org/10.1002/stem.1641] [PMID: 24449278]
[71]
Lim, C.J.; Lee, Y.M.; Kang, S.G.; Lim, H.W.; Shin, K.O.; Jeong, S.K.; Huh, Y.H.; Choi, S.; Kor, M.; Seo, H.S.; Park, B.D.; Park, K.; Ahn, J.K.; Uchida, Y.; Park, K. Aquatide Activation of SIRT1 Reduces Cellular Senescence through a SIRT1-FOXO1-Autophagy Axis. Biomol. Ther. (Seoul), 2017, 25(5), 511-518.
[http://dx.doi.org/10.4062/biomolther.2017.119] [PMID: 28822991]
[72]
Ingram, D.K.; Roth, G.S. Calorie restriction mimetics: can you have your cake and eat it, too? Ageing Res. Rev., 2015, 20, 46-62.
[http://dx.doi.org/10.1016/j.arr.2014.11.005] [PMID: 25530568]
[73]
Igarashi, M.; Guarente, L. mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction. Cell, 2016, 166(2), 436-450.
[http://dx.doi.org/10.1016/j.cell.2016.05.044] [PMID: 27345368]
[74]
Fry, J.L.; Al Sayah, L.; Weisbrod, R.M.; Roy, I.V.; Weng, X.; Cohen, R.A.; Bachschmid, M.M.; Seta, F. Vascular smooth muscle Sirtuin-1 protects against diet-induced aortic stiffness. Hypertension, 2016, 68(3), 775-84.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.07622] [PMID: 27432859]
[75]
Shen, J.; Fang, J.; Hao, J.; Zhong, X.; Wang, D.; Ren, H.; Hu, Z. SIRT1 Inhibits the Catabolic Effect of IL-1β Through TLR2/SIRT1/NF-κB Pathway in Human Degenerative Nucleus Pulposus Cells. Pain Physician, 2016, 19(1), E215-E226.
[PMID: 26752489]
[76]
Salminen, A.; Kauppinen, A.; Suuronen, T.; Kaarniranta, K. SIRT1 longevity factor suppresses NF-kappaB -driven immune responses: regulation of aging via NF-kappaB acetylation? BioEssays, 2008, 30(10), 939-942.
[http://dx.doi.org/10.1002/bies.20799] [PMID: 18800364]
[77]
Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr., 2016, 7(4), 706-718.
[http://dx.doi.org/10.3945/an.115.011627] [PMID: 27422505]
[78]
Tran, H.T.; Liong, S.; Lim, R.; Barker, G.; Lappas, M. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One, 2017, 12(3)e0173373
[http://dx.doi.org/10.1371/journal.pone.0173373] [PMID: 28278187]
[79]
Sin, T.K.; Yu, A.P.; Yung, B.Y.; Yip, S.P.; Chan, L.W.; Wong, C.S.; Ying, M.; Rudd, J.A.; Siu, P.M. Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J. Physiol., 2014, 592(12), 2535-2548.
[http://dx.doi.org/10.1113/jphysiol.2014.271387] [PMID: 24639483]
[80]
Ma, L.; Fu, R.; Duan, Z.; Lu, J.; Gao, J.; Tian, L.; Lv, Z.; Chen, Z.; Han, J.; Jia, L.; Wang, L. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol. Res. Pract., 2016, 212(4), 310-318.
[http://dx.doi.org/10.1016/j.prp.2016.02.001] [PMID: 26872534]
[81]
Wang, X.; Meng, L.; Zhao, L.; Wang, Z.; Liu, H.; Liu, G.; Guan, G. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res. Clin. Pract., 2017, 126, 172-181.
[http://dx.doi.org/10.1016/j.diabres.2016.12.005] [PMID: 28258028]
[82]
León, D.; Uribe, E.; Zambrano, A.; Salas, M. Implications of Resveratrol on Glucose Uptake and Metabolism. Molecules, 2017, 22(3)E398
[http://dx.doi.org/10.3390/molecules22030398] [PMID: 28272357]
[83]
Zare Javid, A.; Hormoznejad, R.; Yousefimanesh, H.A.; Zakerkish, M.; Haghighi-Zadeh, M.H.; Dehghan, P.; Ravanbakhsh, M. The Impact of Resveratrol Supplementation on Blood Glucose, Insulin, Insulin Resistance, Triglyceride, and Periodontal Markers in Type 2 Diabetic Patients with Chronic Periodontitis. Phytother. Res., 2017, 31(1), 108-114.
[http://dx.doi.org/10.1002/ptr.5737] [PMID: 27807887]
[84]
Marton, O.; Koltai, E.; Nyakas, C.; Bakonyi, T.; Zenteno-Savin, T.; Kumagai, S.; Goto, S.; Radak, Z. Aging and exercise affect the level of protein acetylation and SIRT1 activity in cerebellum of male rats. Biogerontology, 2010, 11(6), 679-686.
[http://dx.doi.org/10.1007/s10522-010-9279-2] [PMID: 20467811]
[85]
Bayod, S.; Del Valle, J.; Lalanza, J.F.; Sanchez-Roige, S.; de Luxán-Delgado, B.; Coto-Montes, A.; Canudas, A.M.; Camins, A.; Escorihuela, R.M.; Pallàs, M. Long-term physical exercise induces changes in sirtuin 1 pathway and oxidative parameters in adult rat tissues. Exp. Gerontol., 2012, 47(12), 925-935.
[http://dx.doi.org/10.1016/j.exger.2012.08.004] [PMID: 22940286]
[86]
Cantó, C.; Jiang, L.Q.; Deshmukh, A.S.; Mataki, C.; Coste, A.; Lagouge, M.; Zierath, J.R.; Auwerx, J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab., 2010, 11(3), 213-219.
[http://dx.doi.org/10.1016/j.cmet.2010.02.006] [PMID: 20197054]
[87]
Schafer, M.J.; White, T.A.; Evans, G.; Tonne, J.M.; Verzosa, G.C.; Stout, M.B.; Mazula, D.L.; Palmer, A.K.; Baker, D.J.; Jensen, M.D.; Torbenson, M.S.; Miller, J.D.; Ikeda, Y.; Tchkonia, T.; van Deursen, J.M.; Kirkland, J.L.; LeBrasseur, N.K. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. Diabetes, 2016, 65(6), 1606-1615.
[http://dx.doi.org/10.2337/db15-0291] [PMID: 26983960]
[88]
Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; Qiu, X.; Stockman, B.; Thanabal, V.; Varghese, A.; Ward, J.; Withka, J.; Ahn, K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem., 2010, 285(11), 8340-8351.
[http://dx.doi.org/10.1074/jbc.M109.088682] [PMID: 20061378]
[89]
Minor, R.K.; Baur, J.A.; Gomes, A.P.; Ward, T.M.; Csiszar, A.; Mercken, E.M.; Abdelmohsen, K.; Shin, Y.K.; Canto, C.; Scheibye-Knudsen, M.; Krawczyk, M.; Irusta, P.M.; Martín- Montalvo, A.; Hubbard, B.P.; Zhang, Y.; Lehrmann, E.; White, A.A.; Price, N.L.; Swindell, W.R.; Pearson, K.J.; Becker, K.G.; Bohr, V.A.; Gorospe, M.; Egan, J.M.; Talan, M.I.; Auwerx, J.; Westphal, C.H.; Ellis, J.L.; Ungvari, Z.; Vlasuk, G.P.; Elliott, P.J.; Sinclair, D.A.; De Cabo, R. SRT1720 improves survival and healthspan of obese mice.%A Minor RK. Sci. Rep., 2011, 1, 70.
[http://dx.doi.org/10.1038/srep00070] [PMID: 22355589]
[90]
Mitchell, S.J.; Martin-Montalvo, A.; Mercken, E.M.; Palacios, H.H.; Ward, T.M.; Abulwerdi, G.; Minor, R.K.; Vlasuk, G.P.; Ellis, J.L.; Sinclair, D.A.; Dawson, J.; Allison, D.B.; Zhang, Y.; Becker, K.G.; Bernier, M.; de Cabo, R. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep., 2014, 6(5), 836-843.
[http://dx.doi.org/10.1016/j.celrep.2014.01.031] [PMID: 24582957]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy