Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Nanovesicle Ethosome: A Potential Carrier of Microwave Assisted Polyherbal Extracts as Cosmecueticals

Author(s): Jasma Jena*, Sushma Mahendrakar, Dipika Sahu, Baby Sahu, Niranjan Patro, Biswa M. Sahoo and Jammula Sruti

Volume 6, Issue 1, 2021

Published on: 26 October, 2020

Page: [31 - 42] Pages: 12

DOI: 10.2174/2405461505999201026201917

Price: $65

Abstract

Background: Deep rooted mission for long life and having a sound skin has apparently achieved uncommon statures in our time of stamped populace maturing, aging alludes to the different procedures of mileage that influence us ceaselessly. Therefore, three primary ideal models such as ‘packed dismalness’, ‘decelerated maturing’ and ‘captured maturing’ are recognized in organic research on ageing. Various examinations have announced that ceaseless introduction to receptive free radicals can invigorate skin maturing and that over the top fat testimony can cause a hindered skin hindrance and tissue structure modifications.

Objectives: Safe and effective formulations deliver active substances to the desired site of action with negligible discomfort and side effects. Herbal cosmetics have a restorative effect and are an important endowment of nature. Different innovative advances have been created to beat the problems raised in the penetration of cosmetic ingredients. One such procedure is the utilization of ethosomes.

Methods: Development product of liposome have less ethanol content. Ethosomes are mainly the transdermal course of medication which facilitates good skin penetration. It can be used for developing various cosmeceuticals to overcome various skin ailments.

Conclusion: Ethosomes are nanophospholipid vesicular systems of an average size of 1.112 micrometre produced by combinations of phospholipid, ethanol, and water. Clitorea ternatea separates are usually utilized in the traditional system of medicine as a restoring formula. Trigonella foenum-graecum Linn has various medical advantages and physiological characteristics taken together; our findings may provide scientific evidence supporting the development of various cosmetic preparations.

Keywords: Clitorea ternatea, Trigonella foenum-graecum, microwave extraction, nanovesicles, ethosomes, cosmeceuticals.

Graphical Abstract
[1]
Che CT, Wang ZJ, Chow MSS, Lam CWK. Herb-herb combination for therapeutic enhancement and advancement: theory, practice and future perspectives. Molecules 2013; 18(5): 5125-41.
[http://dx.doi.org/10.3390/molecules18055125]
[2]
Wills RB, Bone K, Morgan M. Herbal products: active constituents, modes of action and quality control. Nutr Res Rev 2000; 13(1): 47-77.
[http://dx.doi.org/10.1079/095442200108729007]
[3]
Abraham R, Paridhavi M. A review of comprehensive study on medicinal plants of polyherbal formulation-Churna. Asian J Pharm Clin Res 2013; 6(4): 11-8.
[4]
Pandey S, Meshya N, Viral D. Herbs play an important role in the field of cosmetics. Int J Pharm Tech Res 2010; 2: 632-9.
[5]
Mukul S, Surabhi K, Atul N. Cosmeceuticals for the skin: an overview. Asian J Pharm Clin Res 2011; 4: 1-6.
[6]
Dureja H, Kaushik D, Gupta M, Kumar V, Lather V. Cosmeceuticals: an emerging concept. Indian J Pharm 2005; 37: 155-9.
[http://dx.doi.org/10.4103/0253-7613.16211]
[7]
Suzuki D. The “Dirty Dozen” ingredients investigated in the David Suzuki foundation survey of chemicals in cosmetics. Backgrounder 2010; 1-15. Available at: https://davidsuzuki.org/wp-content/uploads/2017/10/dirty-dozen-cosmetics-ingredients-backgrounder.pdf
[8]
Zuloaga O, Etxebarria N, Fernandez LA, Madariaga JM. Optimization and comparison of microwave assisted extraction and Soxhlet extraction for the determination of polychlorinated biphenyls in soil samples using an experimental design approach 1999; 50(2): 345-57.
[9]
Huie CW. A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 2002; 373(1-2): 23-30.
[http://dx.doi.org/10.1007/s00216-002-1265-3]
[10]
Kratchanova M, Pavlova E, Panchev I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr Polym 2004; 56: 181-6.
[http://dx.doi.org/10.1016/j.carbpol.2004.01.009]
[11]
Li H, Chen B, Zhang Z, Yao S. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. ( E. ulmodies ). Talanta 2004; 63(3): 659-65.
[http://dx.doi.org/10.1016/j.talanta.2003.12.028]
[12]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003]
[13]
Yadav D, Suri S, Choudhary AA, Sikender M. Novel approach: herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Tech 2011; 3: 3092-116.
[14]
Hadgraft J. Passive enhancement strategies in topical and transdermal drug delivery. Int J Pharm 1999; 184(1): 1-6.
[http://dx.doi.org/10.1016/S0378-5173(99)00095-2]
[15]
Akhtar N. Vesicles: a recently developed novel carrier for enhanced topical drug delivery. Curr Drug Deliv 2014; 11(1): 87-97.
[http://dx.doi.org/10.2174/15672018113106660064]
[16]
Bhope SG, Nagore DH, Kuber VV, Gupta PK, Patil MJ. Design and development of a stable polyherbal formulation based on the results of compatibility studies. Pharmacognosy Res 2011; 3(2): 122-9.
[http://dx.doi.org/10.4103/0974-8490.81960]
[17]
Alok S, Gupta N, Kumar A, Malik A. An update on Ayurvedic herb vishnukanta (Clitoria ternatea Linn.): a review. Int J Life Sci Rev 2015; 1(1): 1-9.
[18]
Basch E, Ulbricht C, Kuo G, Szapary P, Smith M. Therapeutic applications of fenugreek. Altern Med Rev 2003; 8(1): 20-7.
[19]
Cobley LS. An Introduction to the Botany of Tropical Crops. 2nd ed. Bristol: Longman Higher Education 1956.
[20]
Taur DJ, Taware SB, Patil RN, Patil RY, Kharya M. Pharmacognostical and preliminary phytochemical evaluation of Clitoria ternatea leaves. Pharmacogn J 2010; 2(9): 260-5.
[http://dx.doi.org/10.1016/S0975-3575(10)80114-2]
[21]
Mukherjee PK, Kumar V, Kumar NS, Heinrich M. The Ayurvedic medicine Clitoria ternatea-from traditional use to scientific assessment. J Ethnopharmacol 2008; 120(3): 291-301.
[http://dx.doi.org/10.1016/j.jep.2008.09.009]
[22]
Conway MJ, Mc Cosker K, Osten V, Coaker S, Pengelly BC. Planting and establishment. In: Collins R, Grundy T, eds. The butterfly pea book: a guide to establishing and managing butterfly pea pastures in central Queensland, eds. Brisbane: Department of Primary Industries and Fisheries 2005; 6-9.
[23]
Saito N, Abe K, Honda T, Timberlake CF, Bridle P. Acylated delphinidin glucosides and flavonols from Clitoria ternatea . Phytochemistry 1985; 24: 1583-6.
[24]
Kulshrestha DK, Khare MP. Chemical investigation of the seeds of Clitoria ternatea. Curr Sci 1967; 36: 124-5.
[25]
Maity N, Nema NK, Sarkar BK, Mukherjee PK. Standardized Clitoria ternatea leaf extract as hyaluronidase, elastase and matrix-metalloproteinase-1 inhibitor. Indian J Pharmacol 2012; 44(5): 584-7.
[http://dx.doi.org/10.4103/0253-7613.100381]
[26]
Morita N, Arisawa M, Nagase M, Hsu H-Y, Chen YP. Studies on the constituents of Formosan leguminosae. I. The constituents in the leaves of Clitoria ternatea L (author’s transl). Yakugaku Zasshi 1977; 97(6): 649-53.
[http://dx.doi.org/10.1248/yakushi1947.97.6_649]
[27]
Kazuma K, Noda N, Suzuki M. Flavonoid composition related to petal color in different lines of Clitoria ternatea . Phytochemistry 2003; 64(6): 1133-9.
[http://dx.doi.org/10.1016/S0031-9422(03)00504-1]
[28]
Terahara N, Saito N, Matsui T, Osmajima Y, Saito N. Five new anthocyanins A3, B4, B3, B2 and D2 from. J Nat Prod 1996; 59: 139-44.
[http://dx.doi.org/10.1021/np960050a]
[29]
Grindley DN, Burden EHWJ, Akour A. The seed oils of Clitoria ternatea and Entada phaseoloides . J Sci Food Agric 1954; 5: 278-80.
[http://dx.doi.org/10.1002/jsfa.2740050605]
[30]
Terahara N, Saito N, Honda T, Toki K, Osajima Y. Acylated anthocyanins of Clitoria ternatea flowers and their acyl moieties. Phytochemistry 1990; 29: 949-53.
[http://dx.doi.org/10.1016/0031-9422(90)80053-J]
[31]
Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proc Nutr Soc 2010; 69(3): 273-8.
[http://dx.doi.org/10.1017/S002966511000162X]
[32]
Banerjee SK, Chakravarti RN. Taraxerol from Clitoria ternatea Linn. Bull Calcutta Sch Trop Med 1963; 11: 106-7.
[33]
Banerjee SK, Chakravarti RN. Taraxerone from Clitoria ternatea Linn. Bull Calcutta Sch Trop Med 1964; 12: 23.
[34]
Vasisht K, Dhobi M, Khullar S, Mandal SK, Karan M. Nor neolignans from the roots of Clitoria ternatea L. Tetrahedron Lett 2016; 57: 1758-62.
[http://dx.doi.org/10.1016/j.tetlet.2016.03.024]
[35]
Siti Azima AM, Noriham A, Manshoor N. Phenolic, antioxidants and colour properties of aqueous pigmented plant extracts: Ardisia colorata var. elliptica, Clitoria ternatea , Garcinia mangostana and Syzygium cumini . J Funct Foods 2017; 38: 232-41.
[http://dx.doi.org/10.1016/j.jff.2017.09.018]
[36]
Nguyen KN, Nguyen GK, Nguyen PQ, Ang KH, Dedon PC, Tam JP. Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea ( Clitoria ternatea ). FEBS J 2016; 283(11): 2067-90.
[http://dx.doi.org/10.1111/febs.13720]
[37]
Poth AG, Colgrave ML, Philip R, et al. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem Biol 2011; 6(4): 345-55.
[http://dx.doi.org/10.1021/cb100388j]
[38]
Kavitha LR, Premalakshmi V. Phytochemical analysis of ethanolic extract of leaves of Clitoria ternatea. Int J Pharma Bio Sci 2013; 4: 236-42.
[39]
Lakshmia DM, Mahithaa B, Madhavia T, Sushma JN. Phytochemical screening and FTIR analysis of Clitoria ternatea Leaves. Int J Sci Eng Res 2015; 6: 287-90.
[40]
Kamilla L, Mansor SM, Ramanathan S, Sasidharan S. Effects of Clitoria ternatea leaf extract on growth and morphogenesis of Aspergillus niger . Microsc Microanal 2009; 15(4): 366-72.
[http://dx.doi.org/10.1017/S1431927609090783]
[41]
Ajesh K, Sreejith K. A novel antifungal protein with lysozyme-like activity from seeds of Clitoria ternatea. Appl Biochem Biotechnol 2014; 173: 682-93.
[http://dx.doi.org/10.1007/s12010-014-0880-8]
[42]
Gilding EK, Jackson MA, Poth AG, et al. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol 2016; 210(2): 717-30.
[http://dx.doi.org/10.1111/nph.13789]
[43]
Shahid M, Shahzad A, Anis M. Antibacterial potential of the extracts derived from leaves and in vitro raised calli of medicinal plants Pterocarpus marsupium Roxb. Clitoria ternatea L. and Sanseveiria cylindrica Bojer ex Hook. Orient Pharm Exp Med 2009; 9: 174-81.
[http://dx.doi.org/10.3742/OPEM.2009.9.2.174]
[44]
Pasukamonset P, Kwon O, Adisakwattana S. Oxidative stability of cooked pork patties incorporated with Clitoria ternatea extract (blue pea flower petal) during refrigerated storage. J Food Process Preserv 2017; 41(1): 2751.
[http://dx.doi.org/10.1111/jfpp.12751]
[45]
Taur DJ, Patil RY. Evaluation of antiasthmatic activity of Clitoria ternatea L. roots. J Ethnopharmacol 2011; 136(2): 374-6.
[http://dx.doi.org/10.1016/j.jep.2011.04.064]
[46]
Jacob L, Latha MS. Anticancer activity of Clitoria ternatea Linn. Against Dalton’s lymphoma. Int J Pharmacognosy Phytochem Res 2012; 4(4): 207-12.
[47]
Chauhan N, Rajvaidhya S, Dubey BK, et al. Antiasthmatic effect of roots of Clitorea ternatea Linn. IJPSR 2012; 3(4): 1076-9.
[48]
Jain NN, Ohal CC, Shroff SK, et al. Clitoria ternatea and the CNS. Pharmacol Biochem Behav 2003; 75(3): 529-36.
[http://dx.doi.org/10.1016/S0091-3057(03)00130-8]
[49]
Chusak C, Henry CJ, Chantarasinlapin P, Techasukthavorn V, Adisakwattana S. Influence of Clitoria ternatea flower extract on the in vitro enzymatic digestibility of starch and its application in bread. Foods 2018; 7(7): 102.
[http://dx.doi.org/10.3390/foods7070102]
[50]
Parimaladevi B, Boominathan R, Mandal SC. Evaluation of antipyretic potential of Clitoria ternatea L. extract in rats. Phytomedicine 2004; 11(4): 323-6.
[http://dx.doi.org/10.1078/0944711041495191]
[51]
Taranalli AD, Cheeramkuzhy TC. Influence of Clitoria ternatea extracts on memory and central cholinergic activity in rats. Pharm Biol 2000; 38(1): 51-6.
[http://dx.doi.org/10.1076/1388-0209(200001)3811-BFT051]
[52]
Solanki YB, Jain SM. Antihyperlipidemic activity of Clitoria ternatea and Vigna mungo in rats. Pharm Biol 2010; 48(8): 915-23.
[http://dx.doi.org/10.3109/13880200903406147]
[53]
Petropoulos GA, Kouloumbis P. Fenugreek: the genus trigonella, medicinal and aromatic plants-industrial profiles. London: Taylor Francis Inc 2002.
[54]
Al-Habori M, Raman A. Pharmacological Properties in Fenugreek-the genus Trigonella. 1st ed. London, UK: Taylor Francis 2002.
[55]
Kapoor LD. Handbook of ayurvedic medicinal plants CRC Press. Boca Raton, London: Taylor Francis Group 2004.
[56]
Kirtikar B. Indian Medicinal PlantsBio-green books. 2nd ed. India: International Book Distributors 2012.
[57]
Egwaikhide PA, Okeniyi SO, Gimba CE. Screening for anti-microbial activity and phytochemical constituents of some Nigerian medicinal plants. Adv Biol Res (Faisalabad) 2007; 1(5-6): 155-8.
[58]
Kaur GJ, Arora DS. Antibacterial and phytochemical screening of Anethum graveolens , Foeniculum vulgare and Trachyspermum ammi. BMC Complement Altern Med 2009; 9: 30.
[http://dx.doi.org/10.1186/1472-6882-9-30]
[59]
Rashmi Y, Richa T, Partha C, Chandan Kumar P. A pharmacognostical monograph of Trigonella foenum-graecum seeds. Int J Pharm Pharm Sci 2011; 3(5): 442-5.
[60]
Yadav SK, Sehgal S. Effect of home processing and storage on ascorbic acid and beta-carotene content of Bathua (Chenopodium album) and fenugreek (Trigonella foenum graecum) leaves. Plant Foods Hum Nutr 1997; 50(3): 239-47.
[http://dx.doi.org/10.1007/BF02436060]
[61]
He Y, Ding C, Wang X, Wang H, Suo Y. Using response surface methodology to optimize countercurrent chromatographic separation of polyphenol compounds from fenugreek (Trigonella foenum-graecumL.) seeds. J Liq Chromatogr 2015; 38(1): 29-35.
[62]
Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M, Pillai KK. A pharmacological appraisal of medicinal plants with antidiabetic potential. J Pharm Bioallied Sci 2012; 4(1): 27-42.
[http://dx.doi.org/10.4103/0975-7406.92727]
[63]
Vyas S, Agrawal RP, Solanki P, Trivedi P. Analgesic and anti-inflammatory activities of Trigonella foenum-graecum (seed) extract. Acta Pol Pharm 2008; 65(4): 473-6.
[64]
Pundarikakshudu K, Shah DH, Panchal AH, Bhavsar GC. Anti-inflammatory activity of fenugreek (Trigonella foenum-graecum Linn) seed petroleum ether extract. Indian J Pharmacol 2016; 48(4): 441-4.
[http://dx.doi.org/10.4103/0253-7613.186195]
[65]
Kaviarasan S, Naik G, Gangabhagirathi R, et al. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum-graecum) seeds. Food Chem 2007; 103: 31-7.
[http://dx.doi.org/10.1016/j.foodchem.2006.05.064]
[66]
Subhashini N, Thangathirupathi A, Lavanya N. Antioxidant activity of Trigonella Foenum Graecum using various in vitro and ex vivo models. Int J Pharm Pharm Sci 2011; 3(2): 96-102.
[67]
Pawar VS, Hugar S. Adaptogenic activity of Trigonella foenum graecum(Linn). Seeds in rodents exposed to anoxia and immobilization stress. Asian Pacific J Trop Biomed 2012; 2(1): S208-11.
[68]
Pandian RS, Anuradha CV, Viswanathan P. Gastroprotective effect of fenugreek seeds (Trigonella foenum graecum) on experimental gastric ulcer in rats. J Ethnopharmacol 2002; 81(3): 393-7.
[http://dx.doi.org/10.1016/S0378-8741(02)00117-4]
[69]
Verma SK, Singh SK, Mathur A. In vitro cytotoxicity of Calotropis procera and Trigonella foenum-graecum against human cancer cell lines. J Chem Pharm Res 2010; 2: 861-5.
[70]
Aburjai T, Natsheh FM. Plants used in cosmetics. Phytother 2003; 17(9): 987-1000.
[http://dx.doi.org/10.1002/ptr.1363]
[71]
Sreeja S, Anju VS, Sreeja S. In vitro estrogenic activities of fenugreek Trigonella foenum graecum seeds. Indian J Med Res 2010; 131: 814-9.
[72]
Kamal R, Yadav R, Sharma JD. Efficacy of the steroidal fraction of fenugreek seed extract on fertility of male albino rats. Phytother Res 1993; 7(2): 134-8.
[http://dx.doi.org/10.1002/ptr.2650070208]
[73]
Meera R, Devi P, Kameswari B, Madhumitha B, Merlin NJ. Antioxidant and hepatoprotective activities of Ocimum basilicum Linn. T. foenum-graecum Linn. Against H2O2 and CCL4 induced hepatotoxicity in goat liver. Indian J Exp Biol 2009; 47: 584-90.
[74]
Frias J, Martinaez-Villaluenga C, Gulewicz P. Biogenic amines and HL60 citotoxicity of alfalfa and fenugreek sprouts. Food Chem 2007; 105(3): 959-67.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.043]
[75]
Smith BL, Carpentier MH. The microwave engineering handbook, microwave technology series, Chapman and Hall. London: Springer US 1993.
[76]
Bethe HA. The electromagnetic shift of energy levels. Phys Rev 1947; 72: 339-41.
[http://dx.doi.org/10.1103/PhysRev.72.339]
[77]
Spigno G, De Faveri DM. Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 2009; 93: 210-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.01.006]
[78]
Burkert R, Helberg HW, Von Schiitz JU. Longitudinal and transverse conductivity in (2, 5-Me 2-DCNQI) Cu fibres. Synth Met 1993; 56: 2519-24.
[http://dx.doi.org/10.1016/0379-6779(93)90451-2]
[79]
Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG. Microwave assisted extraction of anthocyanins from grape skins. Food Chem 2011; 124: 1238-43.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.053]
[80]
Gordy WV. Microwave spectroscopy. 1st ed. New York: John Wiley Sons 1953.
[81]
Goldman R. Ultrasonic technology. New York: Van Nostrand Reinhold 1962.
[82]
Kingston HM, Haswell SJ. Microwave-enhanced chemistry fundamentals, sample preparation and applications. 1st ed. Washington, DC: American Chemical Society 1997.
[83]
Delhaes P, Drillon M. Organic and inorganic low-dimensional crystalline materials plenum. 1st ed. New York: Springer US 1987.
[84]
Gao M, Song B, Lin C. Dynamic microwave assisted extraction of flavonoids from Saussurea medusa Maxim. Cultured cells. Biochem Eng J 2006; 332: 79-83.
[http://dx.doi.org/10.1016/j.bej.2006.09.004]
[85]
Osborne DM, Armacost RL. Review of techniques for optimizing multiple quality characteristics in product development. Comput Ind Eng 1996; 31(1/2): 107-10.
[http://dx.doi.org/10.1016/0360-8352(96)00089-7]
[86]
Manalisha D, Chandra KJ. Preliminary phytochemical analysis and acute oral toxicity study of Clitoria ternatea Linn in albino mice. Int Res J Pharm 2011; 2(12): 139-40.
[87]
Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 2000; 55(6): 481-504.
[http://dx.doi.org/10.1016/S0031-9422(00)00235-1]
[88]
Mahmooda MN, Yahya IK. Nutrient and Phytochemical of Fenugreek (Trigonella Foenum graecum) seeds. Int J Sci Basic Appl Res 2017; 36(30): 203-13.
[89]
Singleton V, Rossi J. Colorimetry of total phenolic with phosphor molibdic phosphotungstic acid reagents. Am J Enol Vitic 1965; 16: 144-58.
[90]
Coklar H, Akbulut M. Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. J Funct Foods 2017; 35: 166-74.
[http://dx.doi.org/10.1016/j.jff.2017.05.037]
[91]
Samatha T, Shyamsundarachary R, Srinivas P, Swamy NA. Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum indicum L. KURZ Asian J Pharm. Clin Res 2012; 5(4): 177-9.
[92]
Abdel-Aal ESM, Hucl P. A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem 1999; 76: 350-4.
[http://dx.doi.org/10.1094/CCHEM.1999.76.3.350]
[93]
Oberlerchner JT, Fuchs C, Grausgruber H, Potthast A, Böhmdorfer S. À côté calibration - making optimal use of time and space in quantitative high performance thin layer chromatography. J Chromatogr A 2018; 1533: 193-8.
[http://dx.doi.org/10.1016/j.chroma.2017.12.016]
[94]
Jain H, Patel J, Joshi K, Patel P, Upadhyay UM. Ethosomes: a novel drug carrier. Pharmacie Globale Int J Clin Prac 2011; 7(01): 1-4.
[95]
Touitou E, Dayan N, Levi-Schaffer F, Piliponsky A. A novel lipid vesicular system for enhanced delivery. J Lipid Res 1998; 8: 113.
[96]
Mahale NB, et al. Ethosomal drug delivery system: a review. Indo Am J Pharm Res 2011; 1(5): 469-75.
[97]
Kumar KP, Radhika PR, Sivakumar T. Ethosomes-a priority in transdermal drug delivery. Int J Adv Pharm Sci 2010; 1: 111-21.
[98]
Patel S. Ethosomes: a promising tool for transdermal delivery of drug. Pharma Info Net 2007; 5(3)
[99]
Pannala S, Sri Samala U. Ethosomes, novel transdermal drug delivery systems: a review. J Pharm Res 2012; 4: 4628-30.
[100]
Chandel A, Patil V, Goyal R, Dhamija H, Parashar B. Ethosomes: a novel Approach towards transdermal drug delivery. Int J Pharm Chem Sci 2012; 1: 563-9.
[101]
Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001; 22(22): 3053-9.
[http://dx.doi.org/10.1016/S0142-9612(01)00052-7]
[102]
Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004; 56(5): 675-711.
[http://dx.doi.org/10.1016/j.addr.2003.10.028]
[103]
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 2006; 322(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.027]
[104]
Hamideh R, Janfaza S. Ethosome: a nanocarrier for transdermal drug delivery. J Paramed Sci 2015; 6(2): 38-43.
[105]
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 2007; 332(1): 77-1.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005]
[106]
Mezei M, Gulasekharam V. Liposomes-a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci 1980; 26(18): 1473-7.
[http://dx.doi.org/10.1016/0024-3205(80)90268-4]
[107]
Sivakranth M, Anjuma AP, Krishnaveni C, Venkatesh E. Ethosomes: a novel vesicular drug delivery system. Int J Adv Pharma 2012; 2(1): 16-27.
[108]
Limsuwan T, Boonme P, Khongkow P, et al. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. BioMed Res Int 2017; 2017: 1-12.
[109]
Horwitz E, Pisanty S, Czerninsky R, Helser M, Eliav E, Touitou E. Oral Surg Oral Pathol Oral Radiol Endod 1999; 88: 700-5.
[http://dx.doi.org/10.1016/S1079-2104(99)70164-2]
[110]
Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release 2004; 94(2-3): 365-79.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.014]
[111]
Paolino D, Lucania G, Mardente D, Alhaique F, Fresta M. Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J Control Release 2005; 106(1-2): 99-110.
[http://dx.doi.org/10.1016/j.jconrel.2005.04.007]
[112]
Jain S, Jain N, Bhadra D, Tiwary AK, Jain NK. Transdermal delivery of an analgesic agent using elastic liposomes: preparation, characterization and performance evaluation. Curr Drug Deliv 2005; 2(3): 223-33.
[http://dx.doi.org/10.2174/1567201054368020]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy