Stilbenes and Xanthones from Medicinal Plants as Potential Antitumor Agents

Author(s): Eugenia D. Teodor*, Oana Ungureanu, Veronica Moroeanu, Gabriel L. Radu

Journal Name: Current Bioactive Compounds

Volume 17 , Issue 7 , 2021


Article ID: e010621187203
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

There is an emerging interest in plant polyphenols as dietary ingredients, particularly for digestive disorders and/or as antitumor agents. The plant compounds or extracts continue to be an alternative to drug use, and many studies aim to find natural substances with selective cytotoxicity on abnormal cells. Phenolic compounds, as important secondary metabolites from plants, are intensively studied as a substitute for drugs. In this review, the recent literature data from the past five years about the potential anticancer/antitumor effect of some categories of phenolics such as stilbenes and xanthones extracted from medicinal plants were surveyed. The most important results concerning the effectiveness of these active compounds as antitumor/anticancer agents, isolated compounds or as plant extracts, some bioavailability aspects and their mechanism of action in vitro and in vivo, were considered.

Keywords: Stilbenes, xanthones, medicinal plants, cytotoxicity, antitumor/anticancer effect, bioavailability.

[1]
Costea, T.; Hudiță, A.; Ciolac, O.-A.; Gălățeanu, B.; Ginghină, O.; Costache, M.; Ganea, C.; Mocanu, M.-M. Chemoprevention of Colorectal Cancer by Dietary Compounds. IJMS, 2018.
[http://dx.doi.org/10.3390/ijms19123787]
[2]
Mohamed, S.I.A.; Jantan, I.; Haque, M.A. Naturally occurring immunomodulators with antitumor activity: An insight on their mechanisms of action. Int. Immunopharmacol., 2017, 50, 291-304.
[http://dx.doi.org/10.1016/j.intimp.2017.07.010] [PMID: 28734166]
[3]
Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci., 2009, 177, 143-155.
[http://dx.doi.org/10.1016/j.plantsci.2009.05.012]
[4]
Mazumder, R.; Dastidar, S.G.; Basu, S.P.; Mazumder, A.; Singh, S.K. Antibacterial potentiality of Mesua ferrea Linn. flowers. Phytother. Res., 2004, 18(10), 824-826.
[http://dx.doi.org/10.1002/ptr.1572] [PMID: 15551387]
[5]
Chukaew, A.; Saithong, S.; Chusri, S.; Limsuwan, S.; Watanapokasin, R.; Voravuthikunchai, S.P.; Chakthong, S. Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry, 2019, 157, 64-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.008] [PMID: 30368220]
[6]
Singh, O.; Ali, M.; Akhtar, N. New antifungal xanthones from the seeds of Rhus coriaria L. Z. Natforsch. C J. Biosci., 2011, 66(1-2), 17-23.
[http://dx.doi.org/10.1515/znc-2011-1-203] [PMID: 21476432]
[7]
Zheng, X-Y.; Yang, Y-F.; Li, W.; Zhao, X.; Sun, Y.; Sun, H.; Wang, Y-H.; Pu, X-P. Two xanthones from Swertia punicea with hepatoprotective activities in vitro and in vivo. J. Ethnopharmacol., 2014, 153(3), 854-863.
[http://dx.doi.org/10.1016/j.jep.2014.03.058] [PMID: 24690777]
[8]
Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human Gut Microbiota and Gastrointestinal Cancer. Genomics Proteomics Bioinformatics, 2018, 16(1), 33-49.
[http://dx.doi.org/10.1016/j.gpb.2017.06.002] [PMID: 29474889]
[9]
Wu, C-F.; Yang, J-Y.; Wang, F.; Wang, X-X. Resveratrol: botanical origin, pharmacological activity and applications. Chin. J. Nat. Med., 2013, 11, 1-15.
[http://dx.doi.org/10.3724/SP.J.1009.2013.00001]
[10]
Park, E-J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochimica et Biophysica Acta (BBA) -. Molecular Basis of Disease, 2015, 1852, 1071-1113.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.014]
[11]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40-41, 209-232.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[12]
Kim, C-W.; Hwang, K-A.; Choi, K-C. Anti-metastatic potential of resveratrol and its metabolites by the inhibition of epithelial-mesenchymal transition, migration, and invasion of malignant cancer cells. Phytomedicine, 2016, 23(14), 1787-1796.
[http://dx.doi.org/10.1016/j.phymed.2016.10.016] [PMID: 27912881]
[13]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines, 2018.
[http://dx.doi.org/10.3390/biomedicines6030091]
[14]
Mouhid, L.; Corzo-Martínez, M.; Torres, C.; Vázquez, L.; Reglero, G.; Fornari, T.; Ramírez de Molina, A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. J. Oncol., 2017, 2017, 7351976.
[http://dx.doi.org/10.1155/2017/7351976] [PMID: 28555156]
[15]
Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225.
[http://dx.doi.org/10.1530/ERC-13-0171] [PMID: 24500760]
[16]
Stakleff, K.S.; Sloan, T.; Blanco, D.; Marcanthony, S.; Booth, T.D.; Bishayee, A. Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac. J. Cancer Prev., 2012, 13(4), 1333-1340.
[http://dx.doi.org/10.7314/APJCP.2012.13.4.1333] [PMID: 22799328]
[17]
Amri, A.; Chaumeil, J.C.; Sfar, S.; Charrueau, C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J. Control. Release, 2012, 158(2), 182-193.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[18]
Chen, Y.-A.; Lien, H.-M.; Kao, M.-C.; Lo, U.-G.; Lin, L.-C.; Lin, C.-J.; Chang, S.-J.; Chen, C.-C.; Hsieh, J.-T.; Lin, H. Sensitization of Radioresistant Prostate Cancer Cells by Resveratrol Isolated from Arachis hypogaea Stems. PLoS ONE, 2017.
[19]
Gao, Y.; He, C.; Ran, R.; Zhang, D.; Li, D.; Xiao, P-G.; Altman, E. The resveratrol oligomers, cis- and trans-gnetin H, from Paeonia suffruticosa seeds inhibit the growth of several human cancer cell lines. J. Ethnopharmacol., 2015, 169, 24-33.
[http://dx.doi.org/10.1016/j.jep.2015.03.074] [PMID: 25862967]
[20]
Gao, Y.; He, C. Anti-proliferative and anti-metastasis effects of ten oligostilbenes from the seeds of Paeonia suffruticosa on human cancer cells. Oncol. Lett., 2017, 13(6), 4371-4377.
[http://dx.doi.org/10.3892/ol.2017.5982] [PMID: 28599439]
[21]
Almosnid, N.M.; Gao, Y.; He, C.; Park, H.S.; Altman, E. In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. Int. J. Oncol., 2016, 48(2), 646-656.
[http://dx.doi.org/10.3892/ijo.2015.3269] [PMID: 26647827]
[22]
Lertnitikul, N.; Jittham, P.; Khankhampoch, L.; Pattamadilok, C.; Sukrong, S.; Suttisri, R. Cytotoxic stilbenes from the roots of Paphiopedilum godefroyae. J. Asian Nat. Prod. Res., 2016, 18(12), 1143-1150.
[http://dx.doi.org/10.1080/10286020.2016.1183651] [PMID: 27311018]
[23]
Osei-Safo, D.; Dziwornu, G.A.; Salgado, A.; Sunassee, S.N.; Chama, M.A. Bi- and bisbibenzyls from the roots of Dichapetalum heudelotii and their antiproliferative activities. Fitoterapia, 2017, 122, 95-100.
[http://dx.doi.org/10.1016/j.fitote.2017.09.001] [PMID: 28882670]
[24]
Wang, Y.L.; Shen, Y.; Xu, J.P.; Han, K.; Zhou, Y.; Yang, S.; Yin, J.Y.; Min, D.L.; Hu, H.Y. Pterostilbene suppresses human endometrial cancer cells in vitro by down-regulating miR-663b. Acta Pharmacol. Sin., 2017, 38(10), 1394-1400.
[http://dx.doi.org/10.1038/aps.2017.60] [PMID: 28552912]
[25]
Chen, R.-J.; Kuo, H.-C.; Cheng, L.-H.; Lee, Y.-H.; Chang, W.-T.; Wang, B.-J.; Wang, Y.-J.; Cheng, H.-C. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer. IJMS, 2018.
[http://dx.doi.org/10.3390/ijms19010287]
[26]
Kim, A.; Ma, J.Y. Rhaponticin decreases the metastatic and angiogenic abilities of cancer cells via suppression of the HIF‑1α pathway. Int. J. Oncol., 2018, 53(3), 1160-1170.
[http://dx.doi.org/10.3892/ijo.2018.4479] [PMID: 30015877]
[27]
Kaennakam, S.; Siripong, P.; Tip-Pyang, S. Kaennacowanols A-C, three new xanthones and their cytotoxicity from the roots of Garcinia cowa. Fitoterapia, 2015, 102, 171-176.
[http://dx.doi.org/10.1016/j.fitote.2015.03.008] [PMID: 25771120]
[28]
Xia, Z.; Zhang, H.; Xu, D.; Lao, Y.; Fu, W.; Tan, H.; Cao, P.; Yang, L.; Xu, H. Xanthones from the Leaves of Garcinia cowa Induce Cell Cycle Arrest, Apoptosis, and Autophagy in Cancer Cells. Molecules, 2015, 20(6), 11387-11399.
[http://dx.doi.org/10.3390/molecules200611387] [PMID: 26102071]
[29]
Sukandar, E.R.; Ersam, T.; Fatmawati, S.; Siripong, P.; Aree, T.; Tip-pyang, S. Cylindroxanthones A-C, three new xanthones and their cytotoxicity from the stem bark of Garcinia cylindrocarpa. Fitoterapia, 2016, 108, 62-65.
[http://dx.doi.org/10.1016/j.fitote.2015.11.017] [PMID: 26611370]
[30]
Yang, R.; Li, P.; Li, N.; Zhang, Q.; Bai, X.; Wang, L.; Xiao, Y.; Sun, L.; Yang, Q.; Yan, J. Xanthones from the Pericarp of Garcinia mangostana. Molecules, 2017.
[http://dx.doi.org/10.3390/molecules22050683]
[31]
Akao, Y.; Nakagawa, Y.; Iinuma, M.; Nozawa, Y. Anti-cancer effects of xanthones from pericarps of mangosteen. Int. J. Mol. Sci., 2008, 9(3), 355-370.
[http://dx.doi.org/10.3390/ijms9030355] [PMID: 19325754]
[32]
Shibata, M.-A.; Iinuma, M.; Morimoto, J.; Kurose, H.; Akamatsu, K.; Okuno, Y.; Akao, Y.; Otsuki, Y. α-Mangostin extracted from the pericarp of the mangosteen (Garcinia mangostana Linn) reduces tumor growth and lymph node metastasis in an immunocompetent xenograft model of metastatic mammary cancer carrying a p53 mutation. BMC Med, 2011.
[33]
Brito, L.C.; Berenger, A.L.R.; Figueiredo, M.R. An overview of anticancer activity of Garcinia and Hypericum. Food Chem. Toxicol., 2017, 109(Pt 2), 847-862.
[http://dx.doi.org/10.1016/j.fct.2017.03.053] [PMID: 28363851]
[34]
Suksamrarn, S.; Komutiban, O.; Ratananukul, P.; Chimnoi, N.; Lartpornmatulee, N.; Suksamrarn, A. Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull. (Tokyo), 2006, 54(3), 301-305.
[http://dx.doi.org/10.1248/cpb.54.301] [PMID: 16508181]
[35]
Kaennakam, S.; Mudsing, K.; Rassamee, K.; Siripong, P.; Tip-Pyang, S. Two new xanthones and cytotoxicity from the bark of Garcinia schomburgkiana. J. Nat. Med., 2019, 73(1), 257-261.
[http://dx.doi.org/10.1007/s11418-018-1240-8] [PMID: 30171417]
[36]
Verma, R.S.; Padalia, R.C.; Chauhan, A.; Chanotiya, C.S.; Yadav, A. Chemical composition of the aliphatic compounds rich essential oil of Hypericum japonicum Thunb. ex Murray from India. J. Essent. Oil Res., 2012, 24, 501-505.
[http://dx.doi.org/10.1080/10412905.2012.728082]
[37]
Gao, W-N.; Luo, J-G.; Kong, L-Y. Quality evaluation of Hypericum japonicum by using high-performance liquid chromatography coupled with photodiode array detector and electrospray ionization tandem mass spectrometry. Biomed. Chromatogr., 2009, 23(9), 1022-1030.
[http://dx.doi.org/10.1002/bmc.1218] [PMID: 19358152]
[38]
Zhu, W.; Qiu, J.; Zeng, Y-R.; Yi, P.; Lou, H-Y.; Jian, J-Y.; Zuo, M-X.; Duan, L.; Gu, W.; Huang, L-J.; Li, Y.M.; Yuan, C.M.; Hao, X.J. Cytotoxic phenolic constituents from Hypericum japonicum. Phytochemistry, 2019, 164, 33-40.
[http://dx.doi.org/10.1016/j.phytochem.2019.04.012] [PMID: 31071600]
[39]
Tovilovic-Kovacevic, G.; Krstic-Milosevic, D.; Vinterhalter, B.; Toljic, M.; Perovic, V.; Trajkovic, V.; Harhaji-Trajkovic, L.; Zogovic, N. Xanthone-rich extract from Gentiana dinarica transformed roots and its active component norswertianin induce autophagy and ROS-dependent differentiation of human glioblastoma cell line. Phytomedicine, 2018, 47, 151-160.
[http://dx.doi.org/10.1016/j.phymed.2018.03.052] [PMID: 30166100]
[40]
Magcwebeba, T.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W. Anti-Inflammatory Effects of Aspalathus linearis and Cyclopia spp. Extracts in a UVB/Keratinocyte (HaCaT) Model Utilising Interleukin-1α Accumulation as Biomarker. Molecules, 2016, 21, 1323.
[http://dx.doi.org/10.3390/molecules21101323]
[41]
Magcwebeba, T.U.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W.C. In Vitro Chemopreventive Properties of Green Tea, Rooibos and Honeybush Extracts in Skin Cells. Molecules, 2016, 21(12), 1622.
[http://dx.doi.org/10.3390/molecules21121622] [PMID: 27897996]
[42]
Thida, M.; Kim, D.W.; Tran, T.T.T.; Pham, M.Q.; Lee, H.; Kim, I.; Lee, J.W. Gambogic acid induces apoptotic cell death in T98G glioma cells. Bioorg. Med. Chem. Lett., 2016, 26(3), 1097-1101.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.043] [PMID: 26631318]
[43]
Kashyap, D.; Mondal, R.; Tuli, H.S.; Kumar, G.; Sharma, A.K. Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumour Biol., 2016, 37(10), 12915-12925.
[http://dx.doi.org/10.1007/s13277-016-5194-8] [PMID: 27448303]
[44]
Ruan, J.; Zheng, C.; Liu, Y.; Qu, L.; Yu, H.; Han, L.; Zhang, Y.; Wang, T. Chemical and Biological Research on Herbal Medicines Rich in Xanthones. Molecules, 1698.
[45]
Wang, J.; Liu, W.; Zhao, Q.; Qi, Q.; Lu, N.; Yang, Y.; Nei, F-F.; Rong, J-J.; You, Q-D.; Guo, Q-L. Synergistic effect of 5-fluorouracil with gambogic acid on BGC-823 human gastric carcinoma. Toxicology, 2009, 256(1-2), 135-140.
[http://dx.doi.org/10.1016/j.tox.2008.11.014] [PMID: 19084572]
[46]
Wang, X.; Chen, W. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anticancer. Agents Med. Chem., 2012, 12(8), 994-1000.
[http://dx.doi.org/10.2174/187152012802650066] [PMID: 22339063]
[47]
Yang, Y.; Yang, L.; You, Q-D.; Nie, F-F.; Gu, H-Y.; Zhao, L.; Wang, X-T.; Guo, Q-L. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett., 2007, 256(2), 259-266.
[http://dx.doi.org/10.1016/j.canlet.2007.06.014] [PMID: 17693016]
[48]
Wang, T.; Wei, J.; Qian, X.; Ding, Y.; Yu, L.; Liu, B. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett., 2008, 262(2), 214-222.
[http://dx.doi.org/10.1016/j.canlet.2007.12.004] [PMID: 18248784]
[49]
Zhou, Z.; Wang, J. Phase I human tolerability trial of gambogic acid. Zhongguo Xin Yao Zazhi, 2007, 16, 79-83.
[50]
Parthsarathy, U.; Orupulasserimana, P.N. A Study on Nutrient and Medicinal Compositions of Selected Indian Garcinia Species. Curr. Bioact. Compd., 2014, 10, 55-61.
[http://dx.doi.org/10.2174/157340721001140725001152]
[51]
Li, X.; Wu, Y.; Wang, Y.; You, Q.; Zhang, X. ‘Click Chemistry’ Synthesis of Novel Natural Product-Like Caged Xanthones Bearing a 1,2,3-Triazole Moiety with Improved Druglike Properties as Orally Active Antitumor Agents. Molecules, 1834.
[52]
Xu, X.; Wu, Y.; Hu, M.; Li, X.; Bao, Q.; Bian, J.; You, Q.; Zhang, X. Novel natural product-like caged xanthones bearing a carbamate moiety exhibit antitumor potency and anti-angiogenesis activity in vivo. Sci Rep, 2016.
[http://dx.doi.org/10.1038/srep35771]
[53]
Wu, Y.; Hu, M.; Yang, L.; Li, X.; Bian, J.; Jiang, F.; Sun, H.; You, Q.; Zhang, X. Novel natural-product-like caged xanthones with improved druglike properties and in vivo antitumor potency. Bioorg. Med. Chem. Lett., 2015, 25(12), 2584-2588.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.031] [PMID: 25958244]
[54]
Prakash, O.; Usmani, S.; Gupta, A. Singh, R.; Singh, N. and Ved A. Bioactive Polyphenols as Promising Natural Medicinal Agents Against Cancer: The Emerging Trends and Prospective Goals. Curr. Bioact. Compd., 2020, 16, 243-264.
[http://dx.doi.org/10.2174/1573407214666181030122046]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 7
Year: 2021
Published on: 26 October, 2020
Article ID: e010621187203
Pages: 9
DOI: 10.2174/1573407216999201026194441
Price: $65

Article Metrics

PDF: 78
HTML: 2
EPUB: 1
PRC: 1