Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

It is Possible to Achieve Tablets With Good Tabletability From Solid Dispersions – The Case of the High Dose Drug Gemfibrozil

Author(s): Eduarda Rocha Bigogno, Luciano Soares, Matheus Henrique Ruela Mews, Melissa Zétola, Giovana Carolina Bazzo, Hellen Karine Stulzer and Bianca Ramos Pezzini*

Volume 18, Issue 4, 2021

Published on: 23 October, 2020

Page: [460 - 470] Pages: 11

DOI: 10.2174/1567201817666201023121948

Price: $65

Abstract

Background: Solid Dispersions (SDs) have been extensively used to increase the dissolution of poorly water-soluble drugs. However, there are few studies exploring SDs properties that must be considered during tablet development, like tabletability. Poorly water-soluble drugs with poor compression properties and high therapeutic doses, like gemfibrozil, are an additional challenge in the production of SDs-based tablets.

Objective: This study evaluates the applicability of SDs to improve both tabletability and dissolution rate of gemfibrozil. A SD-based tablet formulation was also proposed.

Methods: SDs were prepared by ball milling, using hydroxypropyl methylcellulose (HPMC) as a carrier, according to a 23 factorial design. The formulation variables were gemfibrozil:HPMC ratio, milling speed, and milling time. The response in the factorial analysis was the tensile strength of the compacted SDs. Dissolution rate and solid-state characterization of SDs were also performed.

Results: SDs showed simultaneous drug dissolution enhancement and improved tabletability when compared to corresponding physical mixtures and gemfibrozil. The main variable influencing drug dissolution and tabletability was the gemfibrozil:HPMC ratio. Tablets containing gemfibrozil- HPMC-SD (1:0.250 w/w) and croscarmellose sodium showed fast and complete drug release, while those containing the same SD and sodium starch glycolate exhibited poor drug release due to their prolonged disintegration time.

Conclusion: SDs proved to be effective for simultaneously improving tabletability and dissolution profile of gemfibrozil. Tablets containing gemfibrozil-HPMC-SD and croscarmellose sodium as disintegrating agent showed improved drug release and good mechanical strength, demonstrating the potential of HPMC-based SDs to simultaneously overcome the poor dissolution and tabletability properties of this drug.

Keywords: Gemfibrozil, solid dispersion, tabletability, tablet, drug dissolution, solubility.

Graphical Abstract
[1]
Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J. Pharm. Sci., 2016, 105(9), 2527-2544.
[http://dx.doi.org/10.1016/j.xphs.2015.10.008] [PMID: 26886314]
[2]
Paudwal, G.; Rawat, N.; Gupta, R.; Baldi, A.; Singh, G.; Gupta, P.N. Recent advances in solid dispersion technology for efficient delivery of poorly water-soluble drugs. Curr. Pharm. Des., 2019, 25(13), 1524-1535.
[http://dx.doi.org/10.2174/1381612825666190618121553] [PMID: 31258070]
[3]
Zhong, L.; Zhu, X.; Luo, X.; Su, W. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation. AAPS PharmSciTech., 2013, 14(2), 541-550.
[http://dx.doi.org/10.1208/s12249-013-9937-1] [PMID: 23430728]
[4]
Riekes, M.K.; Kuminek, G.; Rauber, G.S.; de Campos, C.E.M.; Bortoluzzi, A.J.; Stulzer, H.K. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions. Carbohydr. Polym., 2014, 99, 474-482.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.046] [PMID: 24274533]
[5]
Vo, C.L.N.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt B), 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[6]
Démuth, B.; Nagy, Z.K.; Balogh, A.; Vigh, T.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M.E. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int. J. Pharm., 2015, 486(1-2), 268-286.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.053] [PMID: 25827903]
[7]
Vojinović, T.; Medarević, D.; Vranić, E.; Potpara, Z.; Krstić, M.; Djuriš, J.; Ibrić, S. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi Pharm. J., 2018, 26(5), 725-732.
[http://dx.doi.org/10.1016/j.jsps.2018.02.017] [PMID: 29991917]
[8]
Grymonpré, W.; Verstraete, G.; Van Bockstal, P.J.; Van Renterghem, J.; Rombouts, P.; De Beer, T.; Remon, J.P.; Vervaet, C. In-line monitoring of compaction properties on a rotary tablet press during tablet manufacturing of hot-melt extruded amorphous solid dispersions. Int. J. Pharm., 2017, 517(1-2), 348-358.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.033] [PMID: 27988376]
[9]
Van Duong, T.; Van den Mooter, G. The role of the carrier in the formulation of pharmaceutical solid dispersions. Part I: crystalline and semi-crystalline carriers. Expert Opin. Drug Deliv., 2016, 13(11), 1583-1594.
[http://dx.doi.org/10.1080/17425247.2016.1198768] [PMID: 27321133]
[10]
Sun, C.C. Decoding powder tabletability: roles of particle adhesion and plasticity. J. Adhes. Sci. Technol., 2011, 25(4–5), 483-499.
[http://dx.doi.org/10.1163/016942410X525678]
[11]
Patel, S.; Kou, X.; Hou, H.H.; Huang, Y.B.; Strong, J.C.; Zhang, G.G.Z.; Sun, C.C. Mechanical properties and tableting behavior of amorphous solid dispersions. J. Pharm. Sci., 2017, 106(1), 217-223.
[http://dx.doi.org/10.1016/j.xphs.2016.08.021] [PMID: 27769519]
[12]
David, S.E.; Ramirez, M.; Timmins, P.; Conway, B.R. Comparative physical, mechanical and crystallographic properties of a series of gemfibrozil salts. J. Pharm. Pharmacol., 2010, 62(11), 1519-1525.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01025.x] [PMID: 21039537]
[13]
Ting, J.M.; Porter, W.W., III; Mecca, J.M.; Bates, F.S.; Reineke, T.M. Advances in polymer design for enhancing oral drug solubility and delivery. Bioconjug. Chem., 2018, 29(4), 939-952.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00646] [PMID: 29319295]
[14]
Mašková, E.; Kubová, K.; Raimi-Abraham, B.T.; Vllasaliu, D.; Vohlídalová, E.; Turánek, J.; Mašek, J. Hypromellose - a traditional pharmaceutical excipient with modern applications in oral and oromucosal drug delivery. J. Control. Release, 2020, 324, 695-727.
[http://dx.doi.org/10.1016/j.jconrel.2020.05.045] [PMID: 32479845]
[15]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[16]
Sun, C.C.; Kleinebudde, P. Mini review: mechanisms to the loss of tabletability by dry granulation. Eur. J. Pharm. Biopharm., 2016, 106, 9-14.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.003] [PMID: 27063416]
[17]
Tan, E.H.; Parmentier, J.; Low, A.; Möschwitzer, J.P. Downstream drug product processing of itraconazole nanosuspension: factors influencing tablet material properties and dissolution of compacted nanosuspension-layered sugar beads. Int. J. Pharm., 2017, 532(1), 131-138.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.107] [PMID: 28859940]
[18]
Liu, L.X.; Marziano, I.; Bentham, A.C.; Litster, J.D.; White, E.T.; Howes, T. Influence of particle size on the direct compression of ibuprofen and its binary mixtures. Powder Technol., 2013, 240, 66-73.
[http://dx.doi.org/10.1016/j.powtec.2012.07.006]
[19]
Trementozzi, A.N.; Leung, C.Y.; Osei-Yeboah, F.; Irdam, E.; Lin, Y.; MacPhee, J.M.; Boulas, P.; Karki, S.B.; Zawaneh, P.N. Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing. Int. J. Pharm., 2017, 523(1), 133-141.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.011] [PMID: 28284921]
[20]
Sun, D.D.; Lee, P.I. Haste makes waste: the interplay between dissolution and precipitation of supersaturating formulations. AAPS J., 2015, 17(6), 1317-1326.
[http://dx.doi.org/10.1208/s12248-015-9825-6] [PMID: 26338234]
[21]
Liu, H.; Taylor, L.S.; Edgar, K.J. The role of polymers in oral bioavailability enhancement; a review.S Polymer (Guildf.), 2015, 77, 399-415.
[http://dx.doi.org/10.1016/j.polymer.2015.09.026]
[22]
Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci., 2014, 10, 255-274.
[http://dx.doi.org/10.1016/j.ajps.2014.12.006]
[23]
Hussain, T.; Waters, L.J.; Parkes, G.M.B.; Shahzad, Y. Microwave processed solid dispersions for enhanced dissolution of gemfibrozil using non-ordered mesoporous silica. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 428-435.
[http://dx.doi.org/10.1016/j.colsurfa.2017.02.007]
[24]
Crisp, J.L.; Dann, S.E.; Blatchford, C.G. Antisolvent crystallization of pharmaceutical excipients from aqueous solutions and the use of preferred orientation in phase identification by powder X-ray diffraction. Eur. J. Pharm. Sci., 2011, 42(5), 568-577.
[http://dx.doi.org/10.1016/j.ejps.2011.02.010] [PMID: 21382490]
[25]
Luner, P.E.; Babu, S.R.; Radebaugh, G.W. The effects of bile salts and lipids on the physicochemical behavior of gemfibrozil. Pharm. Res., 1994, 11(12), 1755-1760.
[http://dx.doi.org/10.1023/A:1018967401000] [PMID: 7899240]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy