Synthesis and Docking Study of Some Bioactive N-(benzo[d]thiazol-2-yl)- 2-(4-((substituted)phenoxy)acetamide on Cyclo-oxygenase-2 Enzyme and In vivo Analgesic Activity Evaluation

Author(s): Sumit Kumar, Arvind Kumar*, Amit Verma, Arun Kumar Mishra*

Journal Name: Letters in Drug Design & Discovery

Volume 18 , Issue 4 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The benzothiazole and its derivatives reported an extremely crucial duty in the progress of commercially important intermediary molecules, which are wanted for the manufacturing of various pharmacologically active agents.

Introduction: As a necessary element of ongoing examination for the synthesis of new nonsteroidal anti-inflammatory agents (NSAIDs), a number of new benzothiazole derivatives were taken under consideration for the synthesis and were computationally studied along with their biological activity.

Methods: Obtainable benzothiazole derivatives were synthesized by the condensing of 2-(4- aminophenoxy)-N-(benzo[d]thiazol-2-yl)acetamide with substituted acetophenones in ethanol in the presence of a catalytic amount of glacial acetic acid. The structures of newly synthesized compounds were characterized by IR, NMR spectroscopy and elemental analysis techniques. Several molecular properties of these derivatives were computed in order to estimate their drug like candidates. Molecular docking was performed to these synthesized derivatives with particular reference to cyclooxygenase-2 (COX-2) enzyme. The synthesized derivatives were screened for their biological activity, including analgesic and anti-inflammatory activity as COX-2 inhibitors.

Results: From all data, it established that among all target compounds, S-4 (N-(benzo[d]thiazol- 2-yl)-2-(4-((1-(3-nitrophenyl)ethylidene)amino)phenoxy)acetamide) displayed the highest antiinflammatory and analgesic effects.

Conclusion: All these findings recommended that S-4 might be utilized as a promising new lead compound for Nonsteroidal anti-inflammatory drug (NSAIDs) development.

Keywords: Indole, molecular docking, analgesic activity, anti-inflammatory activity, benzothiazole, biological activity.

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 4
Year: 2021
Published on: 22 October, 2020
Page: [396 - 405]
Pages: 10
DOI: 10.2174/1570180817999201022193901
Price: $65

Article Metrics

PDF: 47