Chemical and Biological Evaluation of Thiosemicarbazone-Bearing Heterocyclic Metal Complexes

Author(s): Ana I. Matesanz, Jorge M. Herrero, Adoración G. Quiroga*

Journal Name: Current Topics in Medicinal Chemistry

Volume 21 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Thiosemicarbazones (TSCNs) constitute a broad family of compounds (R1R2C=N-NH-C(S)- NR3R4), particularly attractive because many of them display some biological activity against a wide range of microorganisms and cancer cells. Their activity can be related to their electronic and structural properties, which offer a rich set of donor atoms for metal coordination and a high electronic delocalization providing different binding modes for biomolecules. Heterocycles such as pyrrole, imidazole and triazole are present in biological molecules such as Vitamine B12 and amino acids and could potentially target multiple biological processes. Considering this, we have explored the chemistry and biological properties of thiosemicarbazones series and their complexes bearing heterocycles such as pyrrole, imidazole, thiazole and triazole. We focus at the chemistry and cytotoxicity of those derivatives to find out the structure activity relationships, and particularly we analyzed those examples with the TSCN units in which the mechanism of action information has been profoundly studied and pathways determined, to promote future studies for heterocycle derivatives.

Keywords: Biological-activity, Coordination, Heterocycles, Metallodrugs, Structure-activity relationship, Thiosemicarbazones.

[1]
de Siqueira, L.R.P.; de Moraes Gomes, P.A.T.; de Lima Ferreira, L.P.; de Melo Rêgo, M.J.B.; Leite, A.C.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.024] [PMID: 30904782]
[2]
Siddiqui, E.J.; Azad, I.; Khan, A.R.; Khan, T. Thiosemicarbazone Complexes as versatile medicinal chemistry agents: A Review. J. Drug Deliv. Ther., 2019, 9(3), 689-703.
[3]
Englinger, B.; Pirker, C.; Heffeter, P.; Terenzi, A.; Kowol, C.R.; Keppler, B.K.; Berger, W. Metal drugs and the anticancer immune response. Chem. Rev., 2019, 119(2), 1519-1624.
[http://dx.doi.org/10.1021/acs.chemrev.8b00396] [PMID: 30489072]
[4]
Quiroga, A.G.; Ranninger, C.N. Contribution to the SAR field of metallated and coordination complexes. Studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord. Chem. Rev., 2004, 248(1-2), 119-133.
[http://dx.doi.org/10.1016/j.cct.2003.11.004]
[5]
Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796.
[http://dx.doi.org/10.1021/acs.chemrev.8b00338] [PMID: 30507157]
[6]
Salas, P.F.; Herrmann, C.; Orvig, C. Metalloantimalarials. Chem. Rev., 2013, 113(5), 3450-3492.
[http://dx.doi.org/10.1021/cr3001252] [PMID: 23425067]
[7]
Lobana, T.S.; Sharma, R.; Bawa, G.; Khanna, S. Bonding and structure trends of thiosemicarbazone derivatives of metals--An overview. Coord. Chem. Rev., 2009, 253(7-8), 977-1055.
[http://dx.doi.org/10.1016/j.ccr.2008.07.004]
[8]
Rejmund, M.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Pyrkosz-Bulska, M.; Gajcy, K.; Sajewicz, M.; Musiol, R.; Polanski, J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One, 2018, 13(4)e0188767
[http://dx.doi.org/10.1371/journal.pone.0188767] [PMID: 29652894]
[9]
Shakya, B.; Yadav, P.N. Thiosemicarbazones as potent anticancer agents and their modes of action. Mini Rev. Med. Chem., 2020, 20(8), 638-661.
[http://dx.doi.org/10.2174/1389557519666191029130310] [PMID: 31660812]
[10]
Zhu, T.; Shen, S.; Lu, Q.; Ye, X.; Ding, W.; Chen, R.; Xie, J.; Zhu, W.; Xu, J.; Jia, L.; Wu, W.; Ma, T. Design and synthesis of novel N()-substituted thiosemicarbazones bearing a pyrrole unit as potential anticancer agents. Oncol. Lett., 2017, 13(6), 4493-4500.
[http://dx.doi.org/10.3892/ol.2017.5995] [PMID: 28599449]
[11]
Chen, J.; Lu, M.; Jing, Y.; Dong, J. The synthesis of L-carvone and limonene derivatives with increased antiproliferative effect and activation of ERK pathway in prostate cancer cells. Bioorg. Med. Chem., 2006, 14(19), 6539-6547.
[http://dx.doi.org/10.1016/j.bmc.2006.06.013] [PMID: 16806947]
[12]
Vandresen, F.; Falzirolli, H.; Almeida Batista, S.A.; da Silva-Giardini, A.P.B.; de Oliveira, D.N.; Catharino, R.R.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Foglio, M.A.; da Silva, C.C.; Novel, R. Novel R-(+)-limonene-based thiosemicarbazones and their antitumor activity against human tumor cell lines. Eur. J. Med. Chem., 2014, 79, 110-116.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.086] [PMID: 24727464]
[13]
Lobana, T.S.; Kumari, P.; Bawa, G.; Hundal, G.; Butcher, R.J.; Fernandez, F.J.; Jasinski, J.P.; Golen, J.A. Pyrrole-2-carbaldehyde thiosemicarbazonates of nickel(ii) and palladium(ii): synthesis, structure, and spectroscopy. Z. Anorg. Allg. Chem., 2012, 638(5), 804-810.
[http://dx.doi.org/10.1002/zaac.201200012]
[14]
Bermejo, E.; Castiñeiras, A.; Pérez, T.; Carballo, R.; Hiller, W. Synthesis and structural characterization of metal complexes of 2-formylpyrrole-4n-ethylthiosemicarbazone (4-el1) and 2-acetylpyrrole-4n-ethylthiosemicarbazone (4-EL2). Z. Anorg. Allg. Chem., 2001, 627(10), 2377-2385.
[http://dx.doi.org/10.1002/1521-3749(200110)627:10<2377:AID-ZAAC2377>3.0.CO;2-O]
[15]
Lobana, T.S.; Rekha, R.; Butcher, R.J.; Castineiras, A.; Bermejo, E.; Bharatam, P.V. Bonding trends of thiosemicarbazones in mononuclear and dinuclear copper(I) complexes: syntheses, structures, and theoretical aspects. Inorg. Chem., 2006, 45(4), 1535-1542.
[http://dx.doi.org/10.1021/ic051018j] [PMID: 16471964]
[16]
Abram, U.; Ortner, K.; Gust, R.; Sommer, K. Gold complexes with thiosemicarbazones: reactions of bi- and tridentate thiosemicarbazones with dichloro[2-(dimethylaminomethyl)phenyl-C1, gold(III). J. Chem. Soc., Dalton Trans., 2000, (5), 735-744. [Au(damp-Š)Cl2
[http://dx.doi.org//10.1039/a908712e]
[17]
Lobana, T.S.; Bawa, G.; Castineiras, A.; Butcher, R.J. First example of pyrrole-2-carbaldehyde thiosemicarbazone as tridentate dianion in [Pd(Ε3-N4,N3,S-ptsc)(PPh3)] complex. Inorg. Chem. Commun., 2007, 10(4), 506-509.
[http://dx.doi.org/10.1016/j.inoche.2006.12.024]
[18]
Paul, P.; Bhattacharya, S. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties. J. Chem. Sci., 2014, 126, 1547-1555.
[http://dx.doi.org/10.1007/s12039-014-0699-4]
[19]
Xie, J.; Dong, H.; Yu, Y.; Cao, S. Inhibitory effect of synthetic aromatic heterocycle thiosemicarbazone derivatives on mushroom tyrosinase: Insights from fluorescence, (1)H NMR titration and molecular docking studies. Food Chem., 2016, 190, 709-716.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.124] [PMID: 26213029]
[20]
Lobana, T.S.; Kumari, P.; Butcher, R.J.; Akitsu, T.; Aritake, Y.; Perles, J.; Fernandez, F.J.; Vega, M.C. Thiosemicarbazonates of palladium(II): The presence of methyl/phenyl substituents (R2) at C2 carbon atom induces C-H activation of R1 rings of thiosemicarbazones R1R2C2N3N2HC1(S)N1HR3. J. Organomet. Chem., 2012, 701, 17-26.
[http://dx.doi.org/10.1016/j.jorganchem.2011.11.028]
[21]
Li, X-J.; Mao, P-D.; Wu, W-N.; Kou, K.; Liu, S-Y.; Wang, Y. Ni/Cu complexes with two pyrrole thiosemicarbazone ligands: crystal structures and dna interaction. Wuji Huaxue Xuebao, 2017, 33(7), 1257-1265.
[22]
Suganya, S.; Udhayakumari, D.; Velmathi, S. Heterocyclic thiosemicarbazones as fluorescent sensors for the selective recognition of cations in the aqueous phase. Anal. Methods, 2013, 5(16), 4179-4183.
[http://dx.doi.org/10.1039/c3ay40381e]
[23]
Vigushin, D.M.; Poon, G.K.; Boddy, A.; English, J.; Halbert, G.W.; Pagonis, C.; Jarman, M.; Coombes, R.C. Phase I and pharmacokinetic study of D-limonene in patients with advanced cancer. Cancer Chemother. Pharmacol., 1998, 42(2), 111-117.
[http://dx.doi.org/10.1007/s002800050793] [PMID: 9654110]
[24]
Sen, S.K.; Assefa, A.G. Synthesis, characterization and antimicrobial studies of oxo vanadium (iv & v) complexes with semi and thiosemicarbazones of furan-2-carbaldehyde and pyrrole-2-carbaldehyde. Chem. Sci. Int. J., 2015, 7(4), 227-235.
[25]
Fonseca, N.C.; da Cruz, L.F.; da Silva Villela, F.; do Nascimento Pereira, G.A.; de Siqueira-Neto, J.L.; Kellar, D.; Suzuki, B.M.; Ray, D.; de Souza, T.B.; Alves, R.J.; Sales Júnior, P.A.; Romanha, A.J.; Murta, S.M.F.; McKerrow, J.H.; Caffrey, C.R.; de Oliveira, R.B.; Ferreira, R.S. Synthesis of a sugar-based thiosemicarbazone series and structure-activity relationship versus the parasite cysteine proteases rhodesain, cruzain, and Schistosoma mansoni cathepsin B1. Antimicrob. Agents Chemother., 2015, 59(5), 2666-2677.
[http://dx.doi.org/10.1128/AAC.04601-14] [PMID: 25712353]
[26]
Özkay, Y.; Yurttas, L.; Mohsen, U.; Sever, B.; Hussein, W.; Öztürk, Ö.; Sağlık, B.; Acar, U.; Erdoğan, Ö.; Pekbag, A.; Kaplancıklı, Z. Studies On Thiazolyl-Hydrazone Derivatives As Acetylcholinesterase Inhibitors. J. Marmara Uni. Inst. Health Sci., 2014, 4, 39-42.
[http://dx.doi.org/10.5455/musbed.20140101090010]
[27]
Yurttaş, L.; Özkay, Y.; Kaplancıklı, Z.A.; Tunalı, Y.; Karaca, H. Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(4), 830-835.
[http://dx.doi.org/10.3109/14756366.2012.688043] [PMID: 22651798]
[28]
Lukmanova, D.N.; Prikhodeko, Y.I.; Dmitriev, M.V.; Mashevskaya, I.V.; Maslivets, A.N. Synthesis of spiro[pyrrole-2,5-thiazoles] by heterocyclization of pyrrolobenzoxazinetriones with aromatic aldehyde thiosemicarbazones. Russ. J. Org. Chem., 2015, 55(1), 108-114.
[http://dx.doi.org/10.1134/S1070428019010135]
[29]
Rodrigues-Argülles, M.C.; López-Silva, E.C.; Sanmarta, J.; Bacchi, A.; Pelizzi, C.; Zani, F. Cobalt and nickel complexes of versatile imidazole- and pyrrole-2-carbaldehyde thiosemicarbazones. Synthesis, characterisation and antimicrobial activity. Inorg. Chim. Acta, 2004, 357(9), 2543-2552.
[http://dx.doi.org/10.1016/j.ica.2004.02.013]
[30]
Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37-55.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202]
[31]
Palamarciuc, O.; Milunovi, M.N.M.; Sarbu, A.; Stratulat, E.; Pui, A.; Gligorijevic, N.; Radulovic, S. Ko¡ek, J.; Darvasiova, D.; Rapta, P.; Enyedy, E. A.; Novitchi, G.; Shova, S.; Arion, V. B., Investigation of the cytotoxic potential of methyl imidazole-derived thiosemicarbazones and their copper(II) complexes with dichloroacetate as a co-ligand. New J. Chem., 2019, 43(3), 1340-1357.
[http://dx.doi.org/10.1039/C8NJ04041A]
[32]
Jallapally, A.; Addla, D.; Yogeeswari, P.; Sriram, D.; Kantevari, S. 2-Butyl-4-chloroimidazole based substituted piperazine-thiosemicarbazone hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2014, 24(23), 5520-5524.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.084] [PMID: 25451998]
[33]
Oliveira, A.P.A.; Freitas, J.T.J.; Diniz, R.; Pessoa, C.; Maranhão, S.S.; Ribeiro, J.M.; Souza-Fagundes, E.M.; Beraldo, H. Triethylphosphinegold(i) complexes with secnidazole-derived thiosemicarbazones: cytotoxic activity against hct-116 colorectal cancer cells under hypoxia conditions. ACS Omega, 2020, 5(6), 2939-2946.
[http://dx.doi.org/10.1021/acsomega.9b03778] [PMID: 32095716]
[34]
Tiwari, D.; Basnet, K.; Lamichhane, J.; Niraula, P.; Bhandari, S.; Yadav, P.N. Copper complexes of imidazole-2-carbaldehyde n (4)-substituted thiosemicarbazones: synthesis, characterization and antimicrobial activity. Asian J. Chem., 2016, 28(12)
[http://dx.doi.org/10.14233/ajchem.2016.20127]
[35]
Rodríguez-Argüelles, M.C.; López-Silva, E.C.; Sanmartín, J.; Pelagatti, P.; Zani, F. Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J. Inorg. Biochem., 2005, 99(11), 2231-2239.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.07.018] [PMID: 16188319]
[36]
Reis, D.C.; Despaigne, A.A.R.; Da Silva, J.G.; Silva, N.F.; Vilela, C.F.; Mendes, I.C.; Takahashi, J.A.; Beraldo, H. Structural studies and investigation on the activity of imidazole-derived thiosemicarbazones and hydrazones against crop-related fungi. Molecules, 2013, 18(10), 12645-12662.
[http://dx.doi.org/10.3390/molecules181012645] [PMID: 24129274]
[37]
Prajapati, N.P.; Patel, K.D.; Vekariya, R.H.; Patel, H.D.; Rajani, D.P. Thiazole fused thiosemicarbazones: Microwave-assisted synthesis, biological evaluation and molecular docking study. J. Mol. Struct., 2019, 1179, 401-410.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.025]
[38]
Lisic, E.C.; Rand, V.G.; Ngo, L.; Kent, P.; Rice, J.; Gerlach, D.; Papish, E.T.; Jiang, X. Cu (ii) propionyl-thiazole thiosemicarbazone complexes: crystal structure, inhibition of human topoisomerase iii, and activity against breast cancer cells. Open J. Med. Chem., 2018, 8(2), 30-46.
[http://dx.doi.org/10.4236/ojmc.2018.82004]
[39]
Ertas, M.; Sahin, Z.; Bulbul, E.F.; Bender, C.; Biltekin, S.N.; Berk, B.; Yurttas, L.; Nalbur, A.M.; Celik, H.; Demirayak, Ş. Potent ribonucleotide reductase inhibitors: Thiazole-containing thiosemicarbazone derivatives. Arch. Pharm. (Weinheim), 2019, 352(11)e1900033
[http://dx.doi.org/10.1002/ardp.201900033] [PMID: 31475759]
[40]
Koutentis, P.A.; Constantinides, C.P.; Katritzky, A.R.; Ramsden, C.A.; Scriven, E.F.V.; Taylor, R.J.K. 5.10 - 1,3,4-Thiadiazoles. Comprehensive Heterocyclic Chemistry III; Elsevier: Oxford, 2008, pp. 567-605.
[http://dx.doi.org/10.1016/B978-008044992-0.00510-1]
[41]
Tahtaci, H.; Er, M.; Karakurt, T.; Onaran, A. Synthesis, structural characterization, and biological evaluation of novel substituted 1, 3 thiazole derivatives containing schiff bases. J. Heterocycl. Chem., 2017, 54(1), 183-193.
[http://dx.doi.org/10.1002/jhet.2565]
[42]
Laverick, R.J.; Carter, A.B.; Klein, H.A.; Fitzpatrick, A.J.; Keene, T.D.; Morgan, G.G.; Kitchen, J.A. Synthesis and characterisation of Fe(III) and Co(III) complexes of thiazole-containing thiosemicarbazone ligands. Inorg. Chim. Acta, 2017, 463, 126-133.
[http://dx.doi.org/10.1016/j.ica.2017.04.008]
[43]
Braga, S.F.P.; Fonseca, N.C.; Ramos, J.P.; Souza-Fagundes, E.M.d.; Oliveira, R.B.d. Synthesis and cytotoxicity evaluation of thiosemicarbazones and their thiazole derivatives. Braz. J. Pharm. Sci., 2016, 52, 299-308.
[http://dx.doi.org/10.1590/S1984-82502016000200008]
[44]
Bera, P.; Brando, P.; Mondal, G.; Jana, H.; Jana, A.; Santra, A.; Bera, P. Synthesis of a new pyridinyl thiazole ligand with hydrazone moiety and its cobalt(III) complex: X-ray crystallography, in vitro evaluation of antibacterial activity. Polyhedron, 2017, 134, 230-237.
[http://dx.doi.org/10.1016/j.poly.2017.06.024]
[45]
Jasass, R.S.; Alshehrei, F.; Farghaly, T.A. Microwave assisted synthesis of antimicrobial agents containing carbazole and thiazole moieties. J. Heterocycl. Chem., 2018, 55(9), 2099-2106.
[http://dx.doi.org/10.1002/jhet.3253]
[46]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[47]
Morris, W.H.; Ngo, L.; Wilson, J.T.; Medawala, W.; Brown, A.R.; Conner, J.D.; Fabunmi, F.; Cashman, D.J.; Lisic, E.C.; Yu, T.; Deweese, J.E.; Jiang, X. Structural and metal ion effects on human topoisomerase III inhibition by (N)-heterocyclic thiosemicarbazones. Chem. Res. Toxicol., 2019, 32(1), 90-99.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00204] [PMID: 30484632]
[48]
Schulze, B.; Schubert, U.S. Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev., 2014, 43(8), 2522-2571.
[http://dx.doi.org/10.1039/c3cs60386e] [PMID: 24492745]
[49]
Küçükgüzel, Ş.G.; Çıkla-Süzgün, P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem., 2015, 97, 830-870.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.033] [PMID: 25563511]
[50]
Kinfe, H.H.; Belay, Y.H.; Joseph, J.S.; Mukwevho, E. Evaluation of the Influence of thiosemicarbazone-triazole hybrids on genes implicated in lipid oxidation and accumulation as potential anti-obesity agents. Bioorg. Med. Chem. Lett., 2013, 23(19), 5275-5278.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.028] [PMID: 23988353]
[51]
Ayeleso, A.O.; Joseph, J.S.; Oguntibeju, O.O.; Mukwevho, E. Evaluation of free radical scavenging capacity of methoxy containing-hybrids of thiosemicarbazone-triazole and their influence on glucose transport. BMC Pharmacol. Toxicol., 2018, 19(1), 84.
[http://dx.doi.org/10.1186/s40360-018-0266-6] [PMID: 30522526]
[52]
Temraz, M.G.; Elzahhar, P.A.; El-Din, A.; Bekhit, A.; Bekhit, A.A.; Labib, H.F.; Belal, A.S.F.; Belal, A.S.F. Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. Eur. J. Med. Chem., 2018, 151, 585-600.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.003] [PMID: 29656201]
[53]
Naveen; Tittal, R. K.; Ghule, V. D.; Kumar, N.; Kumar, L.; Lal, K.; Kumar, A., Design, synthesis, biological activity, molecular docking and computational studies on novel 1,4-disubstituted-1,2,3-Triazole-Thiosemicarbazone hybrid molecules. J. Mol. Struct., 2020, 1209, 127951-127958.
[http://dx.doi.org/10.1016/j.molstruc.2020.127951]
[54]
Matesanz, A.I.; Perles, J.; Souza, P. New palladium and platinum complexes with bioactive 3,5-diacetyl-1,2,4-triazol bis(4-cyclohexyl thiosemicarbazone) ligand: chemistry, antiproliferative activity and preliminary toxicity studies. Dalton Trans., 2012, 41(40), 12538-12547.
[http://dx.doi.org/10.1039/c2dt31199b] [PMID: 22955178]
[55]
Matesanz, A.I.; Herrero, J.M.; Faraco, E.J.; Cubo, L.; Quiroga, A.G. New Platinum(II) Triazole Thiosemicarbazone Complexes: Analysis of Their Reactivity and Potential Antitumoral Action. ChemBioChem, 2020, 21(8), 1226-1232.
[http://dx.doi.org/10.1002/cbic.201900545] [PMID: 31746118]
[56]
Lo Meo, P.; Gruttadauria, M.; Noto, R. Oxidative cyclization of aldehyde thiosemicarbazones induced by potassium ferricyanide and by tris(p-bromophenyl)amino hexachloroantimoniate. A joint experimental and computational study (05-1281CP). ARKIVOC, 2005, 2005(1), 114-129.
[57]
Siddiqui, S.M.; Salahuddin, A.; Azam, A. Thiosemicarbazone fragment embedded within 1,2,4-triazole ring as inhibitors of Entamoeba histolytica. Bioorg. Med. Chem. Lett., 2012, 22(8), 2768-2771.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.084] [PMID: 22444681]
[58]
Gogoi, A.; Guin, S.; Rajamanickam, S.; Rout, S.K.; Patel, B.K. Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C-N Bond Over C-S Bond Formation. J. Org. Chem., 2015, 80(18), 9016-9027.
[http://dx.doi.org/10.1021/acs.joc.5b00956] [PMID: 26332253]
[59]
Fuentes, L.; Quiroga, A.G.; Organero, J.A.; Matesanz, A.I. Exploring DNA binding ability of two novel α-N-heterocyclic thiosemicarbazone palladium(II) complexes. J. Inorg. Biochem., 2020, 203, 110875-110885.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110875] [PMID: 31706223]
[60]
García-Ruiz, J.P.; Matesanz Garcia, A.I.; Souza, A.P.; Castelo, P.S. Thiosemicarbazone-pt(ii) complex causes a growth inhibitory effect on human mesenchymal stem cells. Med. Chem., 2015, 11(7), 670-675.
[http://dx.doi.org/10.2174/1573406411666150514101026] [PMID: 25974080]
[61]
Balachandran, C.; Haribabu, J.; Jeyalakshmi, K.; Bhuvanesh, N.S.P.; Karvembu, R.; Emi, N.; Awale, S. Nickel(II) bis(isatin thiosemicarbazone) complexes induced apoptosis through mitochondrial signaling pathway and G0/G1 cell cycle arrest in IM-9 cells. J. Inorg. Biochem., 2018, 182, 208-221.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.02.014] [PMID: 29510336]
[62]
Haribabu, J.; Jeyalakshmi, K.; Arun, Y.; Bhuvanesh, N.S.P.; Perumal, P.T.; Karvembu, R. Synthesis, DNA/protein binding, molecular docking, DNA cleavage and in vitro anticancer activity of nickel(II) bis(thiosemicarbazone) complexes. RSC Advances, 2015, 5(57), 46031-46049.
[http://dx.doi.org/10.1039/C5RA04498G]
[63]
Pati, M.L.; Niso, M.; Spitzer, D.; Berardi, F.; Contino, M.; Riganti, C.; Hawkins, W.G.; Abate, C. Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, Sigma-2 (σ2) receptor and P-gp protein in the cytotoxic action: In vitro and in vivo activity in pancreatic tumors. Eur. J. Med. Chem., 2018, 144, 359-371.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.024] [PMID: 29287249]
[64]
Ali, A.Q.; Teoh, S.G.; Eltayeb, N.E.; Khadeer Ahamed, M.B.; Abdul Majid, A.M.S.; Almutaleb, A.A.A. Synthesis, structure and in vitro anticancer, DNA binding and cleavage activity of palladium (II) complexes based on isatin thiosemicarbazone derivatives. Appl. Organomet. Chem., 2017, 31(12), 3813-3824.
[http://dx.doi.org/10.1002/aoc.3813]
[65]
Pirrung, M.C.; Pansare, S.V.; Sarma, K.D.; Keith, K.A.; Kern, E.R. Combinatorial optimization of isatin-beta-thiosemicarbazones as anti-poxvirus agents. J. Med. Chem., 2005, 48(8), 3045-3050.
[http://dx.doi.org/10.1021/jm049147h] [PMID: 15828843]
[66]
Bauer, D.J. Clinical experience with the antiviral drug marboran (1-methylisatin 3-thiosemicarbazone). Ann. N. Y. Acad. Sci., 1965, 130(1), 110-117.
[http://dx.doi.org/10.1111/j.1749-6632.1965.tb12545.x] [PMID: 5323377]
[67]
Sebastian, L.; Desai, A.; Shampur, M.N.; Perumal, Y.; Sriram, D.; Vasanthapuram, R. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Virol. J., 2008, 5(1), 64.
[http://dx.doi.org/10.1186/1743-422X-5-64] [PMID: 18498627]
[68]
Hall, M.D.; Brimacombe, K.R.; Varonka, M.S.; Pluchino, K.M.; Monda, J.K.; Li, J.; Walsh, M.J.; Boxer, M.B.; Warren, T.H.; Fales, H.M.; Gottesman, M.M. Synthesis and structure-activity evaluation of isatin-β-thiosemicarbazones with improved selective activity toward multidrug-resistant cells expressing P-glycoprotein. J. Med. Chem., 2011, 54(16), 5878-5889.
[http://dx.doi.org/10.1021/jm2006047] [PMID: 21721528]
[69]
Kowol, C.R.; Trondl, R.; Heffeter, P.; Arion, V.B.; Jakupec, M.A.; Roller, A.; Galanski, M.; Berger, W.; Keppler, B.K. Impact of metal coordination on cytotoxicity of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (triapine) and novel insights into terminal dimethylation. J. Med. Chem., 2009, 52(16), 5032-5043.
[http://dx.doi.org/10.1021/jm900528d] [PMID: 19637923]
[70]
Aneesrahman, K.N.; Ramaiah, K.; Rohini, G.; Stefy, G.P.; Bhuvanesh, N.S.P.; Sreekanth, A. Synthesis and characterisations of copper(II) complexes of 5-methoxyisatin thiosemicarbazones: Effect of N-terminal substitution on DNA/protein binding and biological activities. Inorg. Chim. Acta, 2019, 492, 131-141.
[http://dx.doi.org/10.1016/j.ica.2019.04.019]
[71]
Verbeek, J.; Eriksson, J.; Syvenen, S.; Huisman, M.; Schuit, R. C.; Molthoff, C. F. M.; Voskuyl, R. A.; de Lange, E. C.; Lammertsma, A. A.; Windhorst, A. D. Synthesis and preliminary preclinical evaluation of fluorine-18 labelled isatin-4-(4-methoxyphenyl)-3-thiosemicarbazone ([18-F] 4FIMPTC) as a novel PET tracer of Pglycoprotein expression. EJNMMI radiopharmacy and chemistry, 2018, 3(1), 11.
[72]
Saranya, S.; Haribabu, J.; Vadakkedathu Palakkeezhillam, V.N.; Jerome, P.; Gomathi, K.; Rao, K.K.; Hara Surendra Babu, V.H.; Karvembu, R.; Gayathri, D. Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. J. Mol. Struct., 2019, 1198126904
[http://dx.doi.org/10.1016/j.molstruc.2019.126904]
[73]
Ganim, M.A.; Baloglu, M.C.; Aygun, A.; Altunoglu, Y.C.; Sayiner, H.S.; Kandemirli, F.; Sen, F. Analysis of DNA protection, interaction and antimicrobial activity of isatin derivatives. Int. J. Biol. Macromol., 2019, 122, 1271-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.084] [PMID: 30227206]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 1
Year: 2021
Published on: 22 October, 2020
Page: [59 - 72]
Pages: 14
DOI: 10.2174/1568026620666201022144004
Price: $65

Article Metrics

PDF: 33
HTML: 3