Hemodynamic Assessment and In vivo Catabolism of Adenosine 5’-triphosphate in Doxorubicin or Isoproterenol-induced Cardiovascular Toxicity

Author(s): Pollen K. Yeung*, Sheyda Mohammadizadeh, Fatemeh Akhoundi, Kelsey Mann, Remigius U. Agu, Thomas Pulinilkunnil

Journal Name: Drug Metabolism Letters

Volume 14 , Issue 1 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objective: Previous studies have shown that catabolism of adenosine 5’-triphosphate (ATP) in systemic blood is a potential surrogate biomarker for cardiovascular toxicity. We compared the acute toxicity of high doses of doxorubicin (DOX) and isoproterenol (ISO) on hemodynamics and ATP catabolism in the systemic circulation.

Methods: sprague Dawley (SD) rats (n = 8 - 11) were each given either a single dose of 30 mg/kg ISO, or a twice-daily dose of 10 mg/kg of DOX or 4 doses of normal saline (control) by subcutaneous injection. Blood samples were collected up to 6 hours for measuring concentrations of ATP and its catabolites. Hemodynamics was recorded continuously. The difference was considered significant at p < 0.05 (ANOVA).

Results: Mortality was 1/8, 5/11, and 0/11 for the DOX, ISO, and control groups, respectively. Systolic blood pressure was significantly lower in the DOX and ISO treated rats than in control measured at the last recorded time (76 ± 9 for DOX vs. 42 ± 8 for ISO vs. 103 ± 5 mmHg for control, p < 0.05 for all). Blood pressure fell gradually after the final injection for both DOX and control groups, but abruptly after ISO, followed by a rebound and then gradual decline till the end of the experiment. Heart rate was significantly higher after ISO, but there were no differences between the DOX and control rats (p > 0.05). RBC concentrations of ADP and AMP, and plasma concentrations of adenosine and uric acid were significantly higher in the ISO group. In contrast, hypoxanthine concentrations were significantly higher in the DOX treated group (p < 0.05).

Conclusion: Acute cardiovascular toxicity induced by DOX and ISO may be measured by changes in hemodynamics and breakdown of ATP and adenosine in the systemic circulation, albeit a notable qualitative and quantitative difference was observed.

Keywords: ATP, adenosine, cardiotoxicity, doxorubicin, isoproterenol, catabolism, rats, toxicity.

Ely, S.W.; Berne, R.M. Protective effects of adenosine in myocardial ischemia. Circulation, 1992, 85(3), 893-904.
[http://dx.doi.org/10.1161/01.CIR.85.3.893] [PMID: 1537125]
Burnstock, G. Purinergic signaling and vascular cell proliferation and death. Arterioscler. Thromb. Vasc. Biol., 2002, 22(3), 364-373.
[http://dx.doi.org/10.1161/hq0302.105360] [PMID: 11884276]
Johnson, T.A.; Jinnah, H.A.; Kamatani, N. Shortage of Cellular ATP as a Cause of Diseases and Strategies to Enhance ATP. Front. Pharmacol., 2019, 10, 98.
[http://dx.doi.org/10.3389/fphar.2019.00098] [PMID: 30837873]
Berne, R.M. The role of adenosine in the regulation of coronary blood flow. Circ. Res., 1980, 47(6), 807-813.
[http://dx.doi.org/10.1161/01.RES.47.6.807] [PMID: 6254686]
Gerlach, E.; Becker, B.F.; Nees, S. The Topic and Perspectives in Adenosine Research Gerlach, E.; Becker, B. F.; Springer-Verlag: New York NY,; , 1987, pp. pp. 309-320.
Cohen, M.V.; Downey, J.M. Adenosine: trigger and mediator of cardioprotection. Basic Res. Cardiol., 2008, 103(3), 203-215.
[http://dx.doi.org/10.1007/s00395-007-0687-7] [PMID: 17999026]
Burnstock, G. Purinergic signalling: past, present and future. Braz. J. Med. Biol. Res., 2009, 42(1), 3-8.
[http://dx.doi.org/10.1590/S0100-879X2008005000037] [PMID: 18853040]
Das, M.; Das, D.K. Molecular mechanism of preconditioning. IUBMB Life, 2008, 60(4), 199-203.
[http://dx.doi.org/10.1002/iub.31] [PMID: 18344203]
Dal Ben, D.; Antonioli, L.; Lambertucci, C.; Fornai, M.; Blandizzi, C.; Volpini, R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front. Pharmacol., 2018, 9, 212.
[http://dx.doi.org/10.3389/fphar.2018.00212] [PMID: 29593540]
Camici, M.; Garcia-Gil, M.; Tozzi, M.G. The Inside Story of Adenosine. Int. J. Mol. Sci., 2018, 19(3), 784.
[http://dx.doi.org/10.3390/ijms19030784] [PMID: 29522447]
Bahreyni, A.; Samani, S.S.; Rahmani, F.; Behnam-Rassouli, R.; Khazaei, M.; Ryzhikov, M.; Parizadeh, M.R.; Avan, A.; Hassanian, S.M. Role of adenosine signaling in the pathogenesis of breast cancer. J. Cell. Physiol., 2018, 233(3), 1836-1843.
[http://dx.doi.org/10.1002/jcp.25944] [PMID: 28383816]
Rounds, S.; Hsieh, L.; Agarwal, K.C. Effects of endotoxin injury on endothelial cell adenosine metabolism. J. Lab. Clin. Med., 1994, 123(2), 309-317.
[PMID: 8301208]
Yeung, P.K.; Kolathuru, S.S.; Agu, R.U. Effect of Cardiovascular Injury on Catabolism of Adenosine and Adenosine 5-'Triphosphate in Systemic Blood in a Freely Moving Rat Model In Vivo. Drug Metab. Lett., 2016, 10(3), 219-226.
[http://dx.doi.org/10.2174/1872312810666160607013859] [PMID: 27280599]
Yeung, P. Anti-Ischemia Drugs have no Effect on the In Vivo Metabolism of ATP by RBC in Normotensive Restrained Rats. Open Drug Metab. J., 2011, 5, 1.
Yeung, P.K.; Xu, Z.; Seeto, D. Diltiazem reduces mortality and breakdown of ATP in red blood cell induced by isoproterenol in a freely moving rat model in vivo. Metabolites, 2014, 4(3), 775-789.
[http://dx.doi.org/10.3390/metabo4030775] [PMID: 25215514]
Dudzinska, W.; Lubkowska, A.; Dolegowska, B.; Safranow, K.; Jakubowska, K. Adenine, guanine and pyridine nucleotides in blood during physical exercise and restitution in healthy subjects. Eur. J. Appl. Physiol., 2010, 110(6), 1155-1162.
[http://dx.doi.org/10.1007/s00421-010-1611-7] [PMID: 20714766]
Yeung, P.K.; Dauphinee, J.; Marcoux, T. Effect of acute exercise on cardiovascular hemodynamic and red blood cell concentrations of purine nucleotides in hypertensive compared with normotensives rats. Ther. Adv. Cardiovasc. Dis., 2013, 7(2), 63-74.
[http://dx.doi.org/10.1177/1753944712470297] [PMID: 23389678]
Yeung, P.K.; Kolathuru, S.S.; Mohammadizadeh, S.; Akhoundi, F.; Linderfield, B. Adenosine 5′-Triphosphate Metabolism in Red Blood Cells as a Potential Biomarker for Post-Exercise Hypotension and a Drug Target for Cardiovascular Protection. Metabolites, 2018, 8(2), 20.
[http://dx.doi.org/10.3390/metabo8020030] [PMID: 29724022]
Yeung, P.; Seeto, D. A study of the effect of isoproterenol on red blood cell concentrations of adenine nucleotides in a freely moving rat model in vivo. Cardiovas Pharmacol, 2013, 2(1), 102. [Open Access].
Thorn, C.F.; Oshiro, C.; Marsh, S.; Hernandez-Boussard, T.; McLeod, H.; Klein, T.E.; Altman, R.B. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
Rochette, L.; Guenancia, C.; Gudjoncik, A.; Hachet, O.; Zeller, M.; Cottin, Y.; Vergely, C. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci., 2015, 36(6), 326-348.
[http://dx.doi.org/10.1016/j.tips.2015.03.005] [PMID: 25895646]
Angsutararux, P.; Luanpitpong, S.; Issaragrisil, S. Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress. Oxid. Med. Cell. Longev., 2015, 2015, 795602.
[http://dx.doi.org/10.1155/2015/795602] [PMID: 26491536]
Sabbah, H.N. Targeting the Mitochondria in Heart Failure: A Translational Perspective. JACC Basic Transl. Sci., 2020, 5(1), 88-106.
[http://dx.doi.org/10.1016/j.jacbts.2019.07.009] [PMID: 32043022]
Bartlett, J.J.; Trivedi, P.C.; Yeung, P.; Kienesberger, P.C.; Pulinilkunnil, T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem. J., 2016, 473(21), 3769-3789.
[http://dx.doi.org/10.1042/BCJ20160385] [PMID: 27487838]
Kalyanaraman, B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol., 2020, 29, 101394.
[http://dx.doi.org/10.1016/j.redox.2019.101394] [PMID: 31790851]
Lee, H.Y.; Oh, B.H. Fimasartan: A New Angiotensin Receptor Blocker. Drugs, 2016, 76(10), 1015-1022.
[http://dx.doi.org/10.1007/s40265-016-0592-1] [PMID: 27272555]
Gu, J.; Hu, W.; Zhang, D.D. Resveratrol, a polyphenol phytoalexin, protects against doxorubicin-induced cardiotoxicity. J. Cell. Mol. Med., 2015, 19(10), 2324-2328.
[http://dx.doi.org/10.1111/jcmm.12633] [PMID: 26177159]
Abdel-Rahman, O.; Alorabi, M. Use of angiotensin-converting enzyme inhibitors in the prophylaxis of anthracycline or trastuzumab-related cardiac dysfunction: preclinical and clinical considerations. Expert Rev. Anticancer Ther., 2015, 15(7), 829-837.
[http://dx.doi.org/10.1586/14737140.2015.1047766] [PMID: 26013380]
Negrette-Guzmán, M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur. J. Pharmacol., 2019, 859, 172513.
[http://dx.doi.org/10.1016/j.ejphar.2019.172513] [PMID: 31260654]
Songbo, M.; Lang, H.; Xinyong, C.; Bin, X.; Ping, Z.; Liang, S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett., 2019, 307, 41-48.
[http://dx.doi.org/10.1016/j.toxlet.2019.02.013] [PMID: 30817977]
Conway, A.; McCarthy, A.L.; Lawrence, P.; Clark, R.A. The prevention, detection and management of cancer treatment-induced cardiotoxicity: a meta-review. BMC Cancer, 2015, 15, 366.
[http://dx.doi.org/10.1186/s12885-015-1407-6] [PMID: 25948399]
Sun, F.; Qi, X.; Geng, C.; Li, X. Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am. J. Med. Sci., 2015, 349(5), 406-412.
[http://dx.doi.org/10.1097/MAJ.0000000000000432] [PMID: 25723884]
Yeung, P.K.; Purcell, C.; Akhoundi, F.; Agu, R.U. Adenosine and Adenosine 5′-triphosphate Catabolism in Systemic Blood as a Potential Biomarker for Doxorubicin Cardiotoxicity in an Experimental Rat Model in vivo. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(3), 224-233.
[http://dx.doi.org/10.2174/1871529X18666180406125225] [PMID: 29623860]
Tatlidede, E.; Sehirli, O.; Velioğlu-Oğünc, A.; Cetinel, S.; Yeğen, B.C.; Yarat, A.; Süleymanoğlu, S.; Sener, G. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic. Res., 2009, 43(3), 195-205.
[http://dx.doi.org/10.1080/10715760802673008] [PMID: 19169920]
Starr, L.; Purcell, C.; Yeung, P. Effect of doxorubicin on cardiovascular hemodynamic and RBC concentrations of ATP in rats in vivo. Curr. Top. Pharmacol., 2012, 16, 59.
Yeung, P.; Ding, L.; Casley, W.L. HPLC assay with UV detection for determination of RBC purine nucleotide concentrations and application for biomarker study in vivo. J. Pharm. Biomed. Anal., 2008, 47(2), 377-382.
[http://dx.doi.org/10.1016/j.jpba.2008.01.020] [PMID: 18295998]
Feng, J.D.; Yeung, P.K. A simple high-performance liquid chromatography assay for simultaneous measurement of adenosine, guanosine, and the oxypurine metabolites in plasma. Ther. Drug Monit., 2000, 22(2), 177-183.
[http://dx.doi.org/10.1097/00007691-200004000-00007] [PMID: 10774630]
Yeung, P.; Narayanan, S. Hemodynamic effects of single dose of cladribine in a restrained rat model. Curr. Top. Pharmacol., 2011, 15(1), 39.
Elayi, C.S.; Di Biase, L.; Bai, R.; Burkhardt, J.D.; Mohanty, P.; Santangeli, P.; Sanchez, J.; Hongo, R.; Gallinghouse, G.J.; Horton, R.; Bailey, S.; Beheiry, S.; Natale, A. Administration of isoproterenol and adenosine to guide supplemental ablation after pulmonary vein antrum isolation. J. Cardiovasc. Electrophysiol., 2013, 24(11), 1199-1206.
[http://dx.doi.org/10.1111/jce.12252] [PMID: 24020649]
Tap, W.D.; Wagner, A.J.; Schöffski, P.; Martin-Broto, J.; Krarup-Hansen, A.; Ganjoo, K.N.; Yen, C.C.; Abdul Razak, A.R.; Spira, A.; Kawai, A.; Le Cesne, A.; Van Tine, B.A.; Naito, Y.; Park, S.H.; Fedenko, A.; Pápai, Z.; Soldatenkova, V.; Shahir, A.; Mo, G.; Wright, J.; Jones, R.L. ANNOUNCE Investigators. Effect of Doxorubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients With Advanced Soft Tissue Sarcomas: The ANNOUNCE Randomized Clinical Trial. JAMA, 2020, 323(13), 1266-1276.
[http://dx.doi.org/10.1001/jama.2020.1707] [PMID: 32259228]
Mantawy, E.M.; El-Bakly, W.M.; Esmat, A.; Badr, A.M.; El-Demerdash, E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur. J. Pharmacol., 2014, 728, 107-118.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.065] [PMID: 24509133]
Agrawal, Y.O.; Sharma, P.K.; Shrivastava, B.; Arya, D.S.; Goyal, S.N. Hesperidin blunts streptozotocin-isoproternol induced myocardial toxicity in rats by altering of PPAR-γ receptor. Chem. Biol. Interact., 2014, 219, 211-220.
[http://dx.doi.org/10.1016/j.cbi.2014.06.010] [PMID: 24954035]
Kurra, V.; Vehmas, T.; Eräranta, A.; Jokihaara, J.; Pirttiniemi, P.; Ruskoaho, H.; Tokola, H.; Niemelä, O.; Mustonen, J.; Pörsti, I. Effects of oxonic acid-induced hyperuricemia on mesenteric artery tone and cardiac load in experimental renal insufficiency. BMC Nephrol., 2015, 16, 35.
[http://dx.doi.org/10.1186/s12882-015-0033-5] [PMID: 25886588]
Pospieszna, B.; Kusy, K. The Effect of Training on Erythrocyte Energy Status and Plasma Purine Metabolites in Athletes: Metabolites. 2019, 10(1), 5.
Pai, V.B.; Nahata, M.C. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf., 2000, 22(4), 263-302.
[http://dx.doi.org/10.2165/00002018-200022040-00002] [PMID: 10789823]
Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst., 2010, 102(1), 14-25.
[http://dx.doi.org/10.1093/jnci/djp440] [PMID: 20007921]
Yeh, E.T.; Bickford, C.L. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol., 2009, 53(24), 2231-2247.
[http://dx.doi.org/10.1016/j.jacc.2009.02.050] [PMID: 19520246]
Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1453-H1467.
[http://dx.doi.org/10.1152/ajpheart.00554.2015] [PMID: 26386112]
Feridooni, T.; Mac Donald, C.; Shao, D.; Yeung, P.; Agu, R.U. Cytoprotective potential of anti-ischemic drugs against chemotherapy-induced cardiotoxicity in H9c2 myoblast cell line. Acta Pharm., 2013, 63(4), 493-503.
[http://dx.doi.org/10.2478/acph-2013-0038] [PMID: 24451074]
Ghibu, S.; Delemasure, S.; Richard, C.; Guilland, J.C.; Martin, L.; Gambert, S.; Rochette, L.; Vergely, C. General oxidative stress during doxorubicin-induced cardiotoxicity in rats: absence of cardioprotection and low antioxidant efficiency of alpha-lipoic acid. Biochimie, 2012, 94(4), 932-939.
[http://dx.doi.org/10.1016/j.biochi.2011.02.015] [PMID: 21396425]
Viale, P.H.; Yamamoto, D.S. Cardiovascular toxicity associated with cancer treatment. Clin. J. Oncol. Nurs., 2008, 12(4), 627-638.
[http://dx.doi.org/10.1188/08.CJON.627-638] [PMID: 18676329]
Tiwari, R.; Mohan, M.; Kasture, S.; Maxia, A.; Ballero, M. Cardioprotective potential of myricetin in isoproterenol-induced myocardial infarction in Wistar rats. Phytother. Res., 2009, 23(10), 1361-1366.
[http://dx.doi.org/10.1002/ptr.2688] [PMID: 19306480]
Rahnavard, M.; Hassanpour, M.; Ahmadi, M.; Heidarzadeh, M.; Amini, H.; Javanmard, M.Z.; Nouri, M.; Rahbarghazi, R.; Safaie, N. Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J. Cell. Biochem., 2019. Online ahead of print
[http://dx.doi.org/10.1002/jcb.28480] [PMID: 30775806]
Feng, L.; Ren, J.; Li, Y.; Yang, G.; Kang, L.; Zhang, S.; Ma, C.; Li, J.; Liu, J.; Yang, L.; Qi, Z. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Radic. Res., 2019, 53(1), 82-93.
[http://dx.doi.org/10.1080/10715762.2018.1554901] [PMID: 30526144]
Jensen, F.B. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow. J. Exp. Biol., 2009, 212(Pt 21), 3387-3393.
[http://dx.doi.org/10.1242/jeb.023697] [PMID: 19837879]
Bergfeld, G.R.; Forrester, T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc. Res., 1992, 26(1), 40-47.
[http://dx.doi.org/10.1093/cvr/26.1.40] [PMID: 1325292]
López-Barneo, J.; Nurse, C.A.; Nilsson, G.E.; Buck, L.T.; Gassmann, M.; Bogdanova, A.Y. First aid kit for hypoxic survival: sensors and strategies. Physiol. Biochem. Zool., 2010, 83(5), 753-763.
[http://dx.doi.org/10.1086/651584] [PMID: 20578845]
Panayiotou, C.; Solaroli, N.; Karlsson, A. The many isoforms of human adenylate kinases. Int. J. Biochem. Cell Biol., 2014, 49, 75-83.
[http://dx.doi.org/10.1016/j.biocel.2014.01.014] [PMID: 24495878]
Kaur, H.; Lakatos-Karoly, A.; Vogel, R.; Nöll, A.; Tampé, R.; Glaubitz, C. Coupled ATPase-adenylate kinase activity in ABC transporters. Nat. Commun., 2016, 7, 13864.
[http://dx.doi.org/10.1038/ncomms13864] [PMID: 28004795]
Dzeja, P.; Terzic, A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int. J. Mol. Sci., 2009, 10(4), 1729-1772.
[http://dx.doi.org/10.3390/ijms10041729] [PMID: 19468337]
Klepinin, A.; Ounpuu, L.; Guzun, R.; Chekulayev, V.; Timohhina, N.; Tepp, K.; Shevchuk, I.; Schlattner, U.; Kaambre, T. Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J. Bioenerg. Biomembr., 2016, 48(5), 531-548.
[http://dx.doi.org/10.1007/s10863-016-9687-3] [PMID: 27854030]
Ertracht, O.; Malka, A.; Atar, S.; Binah, O. The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol. Ther., 2014, 142(1), 33-40.
[http://dx.doi.org/10.1016/j.pharmthera.2013.11.003] [PMID: 24275322]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 21 October, 2020
Page: [80 - 88]
Pages: 9
DOI: 10.2174/1872312814666201022103802
Price: $65

Article Metrics

PDF: 430