Nanotechnology Assisted Targeted Drug Delivery for Bone Disorders: Potentials and Clinical Perspectives

Author(s): Xiaofeng Zhao, Laifeng Li, Meikai Chen, Yifan Xu, Songou Zhang, Wangzhen Chen, Wenqing Liang*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 30 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Nanotechnology and its allied modalities have brought revolution in tissue engineering and bone healing. The research on translating the findings of the basic and preclinical research into clinical practice is ongoing. Advances in the synthesis and design of nanomaterials along with advances in genomics and proteomics, and tissue engineering have opened a bright future for bone healing and orthopedic technology. Studies have shown promising outcomes in the design and fabrication of porous implant substrates that can be exploited as bone defect augmentation and drug-carrier devices. However, there are dozens of applications in orthopedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from tens 10s of nanometers to a few micrometers. Nanotechnology has made promising advances in the synthesis of scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. This study reviews the basic and translational sciences and clinical implications of the nanotechnology in tissue engineering and bone diseases. Recent advances in NPs assisted osteogenic agents, nanocomposites, and scaffolds for bone disorders are discussed.

Keywords: Nanotechnology, Nanoparticles, Bone disorders, Bone healing, Tissue engineering, Implants, Scaffolds hydrogels.

[1]
Yang, M.; Lai, S.K.; Wang, Y.Y.; Zhong, W.; Happe, C.; Zhang, M.; Fu, J.; Hanes, J. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. Engl., 2011, 50(11), 2597-2600.
[http://dx.doi.org/10.1002/anie.201006849] [PMID: 21370345]
[2]
Noda, S.; Tsuji, Y.; Murakami, Y.; Maruyama, S. Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Appl. Phys. Lett., 2005, 86, 1-3.
[http://dx.doi.org/10.1063/1.1920417]
[3]
Yadollahpour, A.; Rashidi, S. Electromagnetic fields for the treatment of osteoarthritis: a review of potential clinical applications. Res. J. Pharm. Technol., 2017, 10, 641-644.
[http://dx.doi.org/10.5958/0974-360X.2017.00122.6]
[4]
Yadollahpour, A.; Rashidi, S. Therapeutic applications of low-intensity pulsed ultrasound in osteoporosis. Asian J. Pharm., 2017, 11, S1-S6.
[5]
Moghimi, S.M. Exploiting bone marrow microvascular structure for drug delivery and future therapies. Adv. Drug Deliv. Rev., 1995, 17, 61-73.
[http://dx.doi.org/10.1016/0169-409X(95)00041-5]
[6]
Yi, D.K.; Nanda, S.S.; Kim, K.; Tamil Selvan, S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(48), 9429-9451.
[http://dx.doi.org/10.1039/C7TB02532G] [PMID: 32264559]
[7]
Guan, X.; Avci-Adali, M.; Alarçin, E.; Cheng, H.; Kashaf, S.S.; Li, Y.; Chawla, A.; Jang, H.L.; Khademhosseini, A. Development of hydrogels for regenerative engineering. Biotechnol. J., 2017, 12(5), 12.
[http://dx.doi.org/10.1002/biot.201600394] [PMID: 28220995]
[8]
Pignatello, R.; Cenni, E.; Micieli, D.; Fotia, C.; Salerno, M.; Granchi, D.; Avnet, S.; Sarpietro, M.G.; Castelli, F.; Baldini, N. A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate. Nanomedicine (Lond.), 2009, 4(2), 161-175.
[http://dx.doi.org/10.2217/17435889.4.2.161] [PMID: 19193183]
[9]
Mohandas, R.; Gayathri, R.; Priya, V. Cancer nanotechnology: A review. Drug Invent. Today, 2018, 10, 2719-2726.
[10]
Lakshmi, P.J.; Anitha, R.; Lakshmi, T. Targeted drug delivery systems used in dentistry - A short review. Drug Invent. Today, 2018, 10, 2747-2751.
[11]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[12]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Applications of upconversion nanoparticles in molecular imaging: a review of recent advances and future opportunities. Biosci. Biotechnol. Res. Asia, 2015, 12, 131-140.
[http://dx.doi.org/10.13005/bbra/1615]
[13]
Giljohann, D.A.; Mirkin, C.A. Drivers of biodiagnostic development. Nature, 2009, 462(7272), 461-464.
[http://dx.doi.org/10.1038/nature08605] [PMID: 19940916]
[14]
Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109), 903-910.
[http://dx.doi.org/10.1126/science.1226338] [PMID: 23161990]
[15]
Colson, Y.L.; Grinstaff, M.W. Biologically responsive polymeric nanoparticles for drug delivery. Adv. Mater., 2012, 24(28), 3878-3886.
[http://dx.doi.org/10.1002/adma.201200420] [PMID: 22988558]
[16]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[17]
Sweetha, G.; Abraham, A.; Dhanraj, M.; Jain, A.R. Fabrication and evaluation of polylactic acid membrane for drug delivery system. Drug Invent. Today, 2018, 10, 433-436.
[18]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[19]
Chichieveishvili, N.; Khubulava, S.; Korsantiya, B.; Kristesashvili, G.; Pichhaia, G. The possibility of silver nanoparticle use in medicine. Drug Invent. Today, 2018, 10, 1222-1226.
[20]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[21]
Elazar, V.; Adwan, H.; Bäuerle, T.; Rohekar, K.; Golomb, G.; Berger, M.R. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis. Int. J. Cancer, 2010, 126(7), 1749-1760.
[PMID: 19739076]
[22]
Daubiné, F.; Cortial, D.; Ladam, G.; Atmani, H.; Haïkel, Y.; Voegel, J.C.; Clézardin, P.; Benkirane-Jessel, N. Nanostructured polyelectrolyte multilayer drug delivery systems for bone metastasis prevention. Biomaterials, 2009, 30(31), 6367-6373.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.002] [PMID: 19692117]
[23]
Hartono, S.B.; Gu, W.; Kleitz, F.; Liu, J.; He, L.; Middelberg, A.P.J.; Yu, C.; Lu, G.Q.; Qiao, S.Z. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano, 2012, 6(3), 2104-2117.
[http://dx.doi.org/10.1021/nn2039643] [PMID: 22385282]
[24]
Oh, J.M.; Park, C.B.; Choy, J.H. Intracellular drug delivery of layered double hydroxide nanoparticles. J. Nanosci. Nanotechnol., 2011, 11(2), 1632-1635.
[http://dx.doi.org/10.1166/jnn.2011.3409] [PMID: 21456254]
[25]
Clézardin, P.; Benzaïd, I.; Croucher, P.I. Bisphosphonates in preclinical bone oncology. Bone, 2011, 49(1), 66-70.
[http://dx.doi.org/10.1016/j.bone.2010.11.017] [PMID: 21145441]
[26]
Sun, M.; Iqbal, J.; Singh, S.; Sun, L.; Zaidi, M. The crossover of bisphosphonates to cancer therapy. Ann. N. Y. Acad. Sci., 2010, 1211, 107-112.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05812.x] [PMID: 21062299]
[27]
Luo, B.; Song, X.J.; Zhang, F.; Xia, A.; Yang, W.L.; Hu, J.H.; Wang, C.C. Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir, 2010, 26(3), 1674-1679.
[http://dx.doi.org/10.1021/la902635k] [PMID: 19754089]
[28]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials, 2011, 32(7), 1890-1905.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.028] [PMID: 21167595]
[29]
James, R.; Deng, M.; Laurencin, C.T.; Kumbar, S.G. Nanocomposites and bone regeneration. Front. Mater. Sci., 2011, 5, 342-357.
[http://dx.doi.org/10.1007/s11706-011-0151-3]
[30]
Mistry, A.S.; Mikos, A.G. Tissue engineering strategies for bone regeneration. Adv. Biochem. Eng. Biotechnol., 2005, 94, 1-22.
[http://dx.doi.org/10.1007/b99997] [PMID: 15915866]
[31]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[32]
Yadollahpour, A.; Rashidi, S. Therapeutic applications of electromagnetic fields in musculoskeletal disorders: a review of current techniques and mechanisms of action. Biomed. Pharmacol. J., 2014, 7, 23-32.
[http://dx.doi.org/10.13005/bpj/448]
[33]
Fassina, L.; Dubruel, P.; Magenes, G.; Van Vlierberghe, S. Potential of Electromagnetic and Ultrasound Stimulations for Bone Regeneration; Woodhead Publishing Limited: Washington, DC, 2014.
[http://dx.doi.org/10.1533/9780857098104.3.445]
[34]
Yadollahpour, A.; Rashidi, S. A review of electromagnetic field based treatments for different bone fractures. Biosci. Biotechnol. Res. Asia, 2014, 11, 611-620.
[http://dx.doi.org/10.13005/bbra/1313]
[35]
Bhowmick, A.; Banerjee, S.; Kumar, R.; Kundu, P.P. Hydroxyapatite-packed chitosan-pmma nanocomposite: a promising material for construction of synthetic bone. Adv. Polym. Sci., 2013, 254, 135-168.
[http://dx.doi.org/10.1007/12_2012_197]
[36]
Boyd, N.R.; Boyd, R.L.; Simon, G.P.; Nisbet, D.R. Synthetic multi-level matrices for bone regeneration.In: Tissue engineering in regenerative medicine; Humana Press: New Jersey, 2011, pp. 99-122.
[http://dx.doi.org/10.1007/978-1-61779-322-6_6]
[37]
Kumar, V.; Tripathi, B.; Srivastava, A.; Saxena, P.S. Nanocomposites as bone implant material.In Springer Handbook of Nanomaterials; Springer: Berlin, Heidelberg, 2013, pp. 941-975.
[http://dx.doi.org/10.1007/978-3-642-20595-8_26]
[38]
Webster, T.J.; Ahn, E.S. Nanostructured biomaterials for tissue engineering bone. Adv. Biochem. Eng. Biotechnol., 2007, 103, 275-308.
[http://dx.doi.org/10.1007/10_021] [PMID: 17195467]
[39]
Kuhn-Spearing, L. Carbonated apatite nanocrystals of bone.Miner.Met. Mater, 1996.
[40]
Murali, R.; Jain, A.R. Knowledge, attitude, and practice on impression materials used for implant placement among dental students and dental practitioners. Drug Invent. Today, 2018, 10, 604-610.
[41]
Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury, 2011, 42(6), 551-555.
[http://dx.doi.org/10.1016/j.injury.2011.03.031] [PMID: 21489527]
[42]
Runyan, C.M.; Gabrick, K.S. Biology of bone formation, fracture healing, and distraction osteogenesis. J. Craniofac. Surg., 2017, 28(5), 1380-1389.
[http://dx.doi.org/10.1097/SCS.0000000000003625] [PMID: 28562424]
[43]
Sirivisoot, S.; Webster, T.J. In situ bone growth detection using carbon nanotubes-titanium sensors. Bionanoscience, 2013, 3, 184-191.
[http://dx.doi.org/10.1007/s12668-013-0079-4]
[44]
Termine, J. Cell and Molecular Biology of Vertebrate Hard Tissues; John Wiley: Hoboken, 1988.
[45]
Roach, H.I. Why does bone matrix contain non-collagenous proteins? The possible roles of osteocalcin, osteonectin, osteopontin and bone sialoprotein in bone mineralisation and resorption. Cell Biol. Int., 1994, 18(6), 617-628.
[http://dx.doi.org/10.1006/cbir.1994.1088] [PMID: 8075622]
[46]
Baumann, M.; Eastell, R.; Hoyle, N.; Wieczorek, L. Bone Markers: Biochemical and Clinical Perspectives; CRC Press: Boca Raton, 2001.
[47]
Sullivan, M.P.; McHale, K.J.; Parvizi, J.; Mehta, S. Current concepts in orthopaedic surgery and future directions.Bone and Joint Journal,, 2014, 96 (B ), 569-573.
[48]
Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C. IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int., 2012, 23(9), 2239-2256.
[http://dx.doi.org/10.1007/s00198-012-1964-3] [PMID: 22419370]
[49]
Tavakkol, R.; Kavi, E.; Hassanipour, S.; Rabiei, H.; Malakoutikhah, M. The global prevalence of musculoskeletal disorders among operating room personnel: a systematic review and meta-analysis. Clin. Epidemiol. Glob. Health, 2020, 8(4), 1053-1061.
[http://dx.doi.org/10.1016/j.cegh.2020.03.019]
[50]
Pepper, M.; Akuthota, V.; McCarty, E.C. The pathophysiology of stress fractures. Clin. Sports Med., 2006, 25(1), 1-16. [vii.
[51]
Johnell, O.; Kanis, J.A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17(12), 1726-1733.
[http://dx.doi.org/10.1007/s00198-006-0172-4] [PMID: 16983459]
[52]
Romani, W.A.; Gieck, J.H.; Perrin, D.H.; Saliba, E.N.; Kahler, D.M. Mechanisms and management of stress fractures in physically active persons. J. Athl. Train., 2002, 37(3), 306-314.
[PMID: 16558676]
[53]
Chen, J.C.; Castillo, A.B.; Jacobs, C.R. Cellular and molecular mechanotransduction in bone.In Osteoporosis; Elsevier Inc.: Amsterdam, 2013, pp. 453-475.
[http://dx.doi.org/10.1016/B978-0-12-415853-5.00020-0]
[54]
Kalfas, I.H. Principles of bone healing. Neurosurg. Focus, 2001, 10(4) E1
[http://dx.doi.org/10.3171/foc.2001.10.4.2] [PMID: 16732625]
[55]
Wen, J.; Zhang, X.; Pan, M.; Yuan, J.; Jia, Z.; Zhu, L.A. Robust, tough and multifunctional polyurethane/tannic acid hydrogel fabricated by physical-chemical dual crosslinking. Polymers (Basel), 2020, 12(1), 12.
[http://dx.doi.org/10.3390/polym12010239] [PMID: 31963956]
[56]
K, C.; WH, C.; S, H.; S, H.; C, S. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, rank ligand and macrophage colony-stimulating factor. J. Orthop. Res., 2005, 23(6), 1308-1314.
[57]
Ehnert, S.; Schröter, S.; Aspera-Werz, R.H.; Eisler, W.; Falldorf, K.; Ronniger, M.; Nussler, A.K. Translational insights into extremely low frequency pulsed electromagnetic fields (elf-pemfs) for bone regeneration after trauma and orthopedic surgery. J. Clin. Med., 2019, 8(12), 2028.
[http://dx.doi.org/10.3390/jcm8122028] [PMID: 31756999]
[58]
Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ., 2003, 81(9), 646-656.
[PMID: 14710506]
[59]
Carano, R.A.D.; Filvaroff, E.H. Angiogenesis and bone repair. Drug Discov. Today, 2003, 8(21), 980-989.
[http://dx.doi.org/10.1016/S1359-6446(03)02866-6] [PMID: 14643161]
[60]
Giannoudis, P.V.; Einhorn, T.A.; Marsh, D. Fracture healing: the diamond concept. Injury, 2007, 38(Suppl. 4), S3-S6.
[http://dx.doi.org/10.1016/S0020-1383(08)70003-2] [PMID: 18224731]
[61]
Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V. Current concepts of molecular aspects of bone healing. Injury, 2005, 36(12), 1392-1404.
[http://dx.doi.org/10.1016/j.injury.2005.07.019] [PMID: 16102764]
[62]
Einhorn, T.A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res., 1998, (355), S7-S21.
[http://dx.doi.org/10.1097/00003086-199810001-00003]
[63]
Rausch, V.; Seybold, D.; Königshausen, M.; Köller, M.; Schildhauer, T.A.; Geßmann, J. Basic principles of fracture healing. Orthopade, 2017, 46(8), 640-647.
[http://dx.doi.org/10.1007/s00132-017-3449-8] [PMID: 28718007]
[64]
Carter, D.R.; Beaupré, G.S.; Giori, N.J.; Helms, J.A. Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res., 1998, (355)(Suppl.), S41-S55.
[65]
Kwong, F.N.K.; Harris, M.B. Recent developments in the biology of fracture repair. J. Am. Acad. Orthop. Surg., 2008, 16(11), 619-625.
[http://dx.doi.org/10.5435/00124635-200811000-00001] [PMID: 18978283]
[66]
Ansari, M. Bone tissue regeneration: biology, strategies and interface studies. Prog. Biomater., 2019, 8(4), 223-237.
[http://dx.doi.org/10.1007/s40204-019-00125-z] [PMID: 31768895]
[67]
Yaszemski, M.J.; Payne, R.G.; Hayes, W.C.; Langer, R.; Mikos, A.G. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials, 1996, 17(2), 175-185.
[http://dx.doi.org/10.1016/0142-9612(96)85762-0] [PMID: 8624394]
[68]
Pall, M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med., 2013, 17(8), 958-965.
[http://dx.doi.org/10.1111/jcmm.12088] [PMID: 23802593]
[69]
Marty, J.J.; Oppenheim, R.C.; Speiser, P. Nanoparticles--a new colloidal drug delivery system. Pharm. Acta Helv., 1978, 53(1), 17-23.
[PMID: 643885]
[70]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[71]
Kamaly, N.; Xiao, Z.; Valencia, P.M.; Radovic-Moreno, A.F.; Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev., 2012, 41(7), 2971-3010.
[http://dx.doi.org/10.1039/c2cs15344k] [PMID: 22388185]
[72]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[73]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[74]
Satchi-Fainaro, R.; Puder, M.; Davies, J.W.; Tran, H.T.; Sampson, D.A.; Greene, A.K.; Corfas, G.; Folkman, J. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med., 2004, 10(3), 255-261.
[http://dx.doi.org/10.1038/nm1002] [PMID: 14981512]
[75]
Segal, E.; Pan, H.; Benayoun, L.; Kopečková, P.; Shaked, Y.; Kopeček, J.; Satchi-Fainaro, R. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances. Biomaterials, 2011, 32(19), 4450-4463.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.059] [PMID: 21429572]
[76]
Segal, E.; Pan, H.; Ofek, P.; Udagawa, T.; Kopecková, P.; Kopecek, J.; Satchi-Fainaro, R. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One, 2009, 4(4)e5233
[http://dx.doi.org/10.1371/journal.pone.0005233] [PMID: 19381291]
[77]
Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer, 2002, 99(1), 130-137.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[78]
Kobayashi, T.; Ishida, T.; Okada, Y.; Ise, S.; Harashima, H.; Kiwada, H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm., 2007, 329(1-2), 94-102.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.039] [PMID: 16997518]
[79]
Mangraviti, A.; Gullotti, D.; Tyler, B.; Brem, H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J. Control. Release, 2016, 240, 443-453.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.031] [PMID: 27016141]
[80]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2004, 56(11), 1649-1659.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[81]
Torchilin, V.P. Passive and active drug targeting: drug delivery to tumors as an example.In: Handbook of experimental pharmacology; Springer: Berlin,, 2010, pp. 3-53.
[82]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[83]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D.; Papahadjopoulos, D.; Benz, C.C. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8(4), 1172-1181.
[PMID: 11948130]
[84]
Drummond, D.C.; Hong, K.; Park, J.W.; Benz, C.C.; Kirpotin, D.B. Liposome targeting to tumors using vitamin and growth factor receptors. Vitam. Horm., 2000, 60, 285-332.
[http://dx.doi.org/10.1016/S0083-6729(00)60022-5] [PMID: 11037627]
[85]
Adams, G.P.; Schier, R.; McCall, A.M.; Simmons, H.H.; Horak, E.M.; Alpaugh, R.K.; Marks, J.D.; Weiner, L.M. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res., 2001, 61(12), 4750-4755.
[PMID: 11406547]
[86]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[87]
Sasikala, R.; Jain, A.R.; Ranganathan, A.; Rakshagan, V. a review on primary stability of implants. Drug Invent. Today, 2019, 11, 905-908.
[88]
Hemani, K.; Dhanraj, M.; Jain, A.R. Contributing factors for peri-implantitis in endosseous dental implants - a review. Drug Invent. Today, 2018, 10, 664-668.
[89]
Carbone, E.J.; Rajpura, K.; Allen, B.N.; Cheng, E.; Ulery, B.D.; Lo, K.W.H. Osteotropic nanoscale drug delivery systems based on small molecule bone-targeting moieties. Nanomedicine (Lond.), 2017, 13(1), 37-47.
[http://dx.doi.org/10.1016/j.nano.2016.08.015] [PMID: 27562211]
[90]
Lavenus, S.; Louarn, G.; Layrolle, P. Nanotechnology and dental implants. Int. J. Biomater., 2010, 2010915327
[http://dx.doi.org/10.1155/2010/915327] [PMID: 21253543]
[91]
Zhang, X.; Awad, H.A.; O’Keefe, R.J.; Guldberg, R.E.; Schwarz, E.M. Perspective: engineering periosteum for structural bone graft healing. Clin. Orthop. Relat. Res., 2008, 466(8), 1777-17787.
[92]
Stylios, G.; Wan, T.; Giannoudis, P. Present status and future potential of enhancing bone healing using nanotechnology. Injury, 2007, 38(Suppl. 1), S63-S74.
[http://dx.doi.org/10.1016/j.injury.2007.02.011] [PMID: 17383487]
[93]
Zhang, Z.G.; Li, Z.H.; Mao, X.Z.; Wang, W.C. Advances in bone repair with nanobiomaterials: mini-review. Cytotechnology, 2011, 63(5), 437-443.
[http://dx.doi.org/10.1007/s10616-011-9367-4] [PMID: 21748262]
[94]
Harvey, E.J.; Henderson, J.E.; Vengallatore, S.T. Nanotechnology and bone healing. J. Orthop. Trauma, 2010, 24(Suppl. 1), S25-S30.
[http://dx.doi.org/10.1097/BOT.0b013e3181ca3b58] [PMID: 20182231]
[95]
Stankus, J.J.; Guan, J.; Fujimoto, K.; Wagner, W.R. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials, 2006, 27(5), 735-744.
[http://dx.doi.org/10.1016/j.biomaterials.2005.06.020] [PMID: 16095685]
[96]
Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules, 2002, 3(2), 232-238.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[97]
Lee, J.J.; Yu, H.S.; Hong, S.J.; Jeong, I.; Jang, J.H.; Kim, H.W. Nanofibrous membrane of collagen-polycaprolactone for cell growth and tissue regeneration. J. Mater. Sci. Mater. Med., 2009, 20(9), 1927-1935.
[http://dx.doi.org/10.1007/s10856-009-3743-z] [PMID: 19365614]
[98]
Kim, Y.; Hayashi, T.; Endo, M.; Vajtai, M.D. Carbon Nanofibers. Springer Handbook of Nanomaterials; Springer: Berlin, 2013.
[99]
De Jong, K.P.; Geus, J.W. Carbon nanofibers: catalytic synthesis and applications. Catal. Rev., Sci. Eng., 2000, 42, 481-510.
[http://dx.doi.org/10.1081/CR-100101954]
[100]
Yakobson, B.I.; Smalley, R.E. Fullerene nanotubes: c 1,000,000 and beyond: some unusual new molecules—long, hollow fibers with tantalizing electronic and mechanical properties—have joined diamonds and graphite in the carbon family. Am. Sci., 1997, 85, 324-337.
[101]
Kim, J.Y.; Khang, D.; Lee, J.E.; Webster, T.J. Decreased macrophage density on carbon nanotube patterns on polycarbonate urethane. J. Biomed. Mater. Res. A, 2009, 88(2), 419-426.
[http://dx.doi.org/10.1002/jbm.a.31799] [PMID: 18306321]
[102]
Jayarama Reddy, V.; Radhakrishnan, S.; Ravichandran, R.; Mukherjee, S.; Balamurugan, R.; Sundarrajan, S.; Ramakrishna, S. Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen., 2013, 21(1), 1-16.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00861.x] [PMID: 23126632]
[103]
Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009, 3(12), 3884-3890.
[http://dx.doi.org/10.1021/nn9010472] [PMID: 19957928]
[104]
Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7752-7777.
[http://dx.doi.org/10.1002/anie.200901678] [PMID: 19784976]
[105]
Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 2010, 11(9), 2345-2351.
[http://dx.doi.org/10.1021/bm100470q] [PMID: 20687549]
[106]
Kirkham, J.; Firth, A.; Vernals, D.; Boden, N.; Robinson, C.; Shore, R.C.; Brookes, S.J.; Aggeli, A. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res., 2007, 86(5), 426-430.
[http://dx.doi.org/10.1177/154405910708600507] [PMID: 17452562]
[107]
Yoshikawa, H.; Myoui, A. Bone tissue engineering with porous hydroxyapatite ceramics. J. Artif. Organs, 2005, 8(3), 131-136.
[http://dx.doi.org/10.1007/s10047-005-0292-1] [PMID: 16235028]
[108]
Schmitz, J.P.; Hollinger, J.O.; Milam, S.B. Reconstruction of bone using calcium phosphate bone cements: a critical review. J. Oral Maxillofac. Surg., 1999, 57(9), 1122-1126.
[http://dx.doi.org/10.1016/S0278-2391(99)90338-5] [PMID: 10484115]
[109]
Kon, E.; Delcogliano, M.; Filardo, G.; Altadonna, G.; Marcacci, M. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions. Knee Surg. Sports Traumatol. Arthrosc., 2009, 17(11), 1312-1315.
[http://dx.doi.org/10.1007/s00167-009-0819-8] [PMID: 19468711]
[110]
Frayssinet, P.; Trouillet, J.L.; Rouquet, N.; Azimus, E.; Autefage, A. Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition. Biomaterials, 1993, 14(6), 423-429.
[http://dx.doi.org/10.1016/0142-9612(93)90144-Q] [PMID: 8507788]
[111]
Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev., 2016, 97, 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[112]
Casaroli Marano, R.P.; Vilaró, S. The role of fibronectin, laminin, vitronectin and their receptors on cellular adhesion in proliferative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci., 1994, 35(6), 2791-2803.
[PMID: 7514582]
[113]
Stuart, C.H.; Riley, K.R.; Boyacioglu, O.; Herpai, D.M.; Debinski, W.; Qasem, S.; Marini, F.C.; Colyer, C.L.; Gmeiner, W.H. selection of a novel aptamer against vitronectin using capillary electrophoresis and next generation sequencing. Mol. Ther. Nucleic Acids, 2016, 5(11)e386
[http://dx.doi.org/10.1038/mtna.2016.91] [PMID: 27845768]
[114]
Sargeant, T.D.; Guler, M.O.; Oppenheimer, S.M.; Mata, A.; Satcher, R.L.; Dunand, D.C.; Stupp, S.I. Hybrid bone implants: self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials, 2008, 29(2), 161-171.
[http://dx.doi.org/10.1016/j.biomaterials.2007.09.012] [PMID: 17936353]
[115]
Kikuchi, L.; Park, J.Y.; Victor, C.; Davies, J.E. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials, 2005, 26(26), 5285-5295.
[http://dx.doi.org/10.1016/j.biomaterials.2005.01.009] [PMID: 15814126]
[116]
Kim, M.H.; Kim, B.S.; Park, H.; Lee, J.; Park, W.H. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int. J. Biol. Macromol., 2018, 109, 57-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.068] [PMID: 29246871]
[117]
Venkatesan, J.; Kim, S.K. Chitosan composites for bone tissue engineering--an overview. Mar. Drugs, 2010, 8(8), 2252-2266.
[http://dx.doi.org/10.3390/md8082252] [PMID: 20948907]
[118]
Sau, P.; Lupton, G.P.; Graham, J.H. Pilomatrix carcinoma. Cancer, 1993, 71(8), 2491-2498.
[http://dx.doi.org/10.1002/1097-0142(19930415)71:8<2491:AID-CNCR2820710811>3.0.CO;2-I] [PMID: 8453573]
[119]
Li, H.; Ogle, H.; Jiang, B.; Hagar, M.; Li, B. Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses. J. Orthop. Res., 2010, 28(8), 992-999.
[http://dx.doi.org/10.1002/jor.21115] [PMID: 20162715]
[120]
Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z.; Chu, P.K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials, 2011, 32(24), 5706-5716.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.040] [PMID: 21565401]
[121]
Nair, L.S.; Laurencin, C.T. Nanofibers and nanoparticles for orthopaedic surgery applications. J. Bone Joint Surg. Am., 2008, 90(Suppl. 1), 128-131.
[http://dx.doi.org/10.2106/JBJS.G.01520] [PMID: 18292367]
[122]
Gu, W.; Wu, C.; Chen, J.; Xiao, Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int. J. Nanomedicine, 2013, 8, 2305-2317.
[http://dx.doi.org/10.2147/IJN.S44393] [PMID: 23836972]
[123]
Wu, C.; Fan, W.; Chang, J. Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(21), 2710-2718.
[http://dx.doi.org/10.1039/c3tb20275e] [PMID: 32260976]
[124]
Tabia, Z.; El Mabrouk, K.; Bricha, M.; Nouneh, K. Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular: in vitro bioactivity. RSC Advances, 2019, 9, 12232-12246.
[125]
Lee, J.H.; Kang, M.S.; Mahapatra, C.; Kim, H.W. Effect of aminated mesoporous bioactive glass nanoparticles on the differentiation of dental pulp stem cells. PLoS One, 2016, 11(3)e0150727
[http://dx.doi.org/10.1371/journal.pone.0150727] [PMID: 26974668]
[126]
Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors, 2004, 22(4), 233-241.
[http://dx.doi.org/10.1080/08977190412331279890] [PMID: 15621726]
[127]
Mathews, S.; Bhonde, R.; Gupta, P.K.; Totey, S. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(8), 1825-1834.
[http://dx.doi.org/10.1002/jbm.b.33152] [PMID: 24723571]
[128]
Zhang, J.; Sun, H.; Ma, P.X. Host-guest interaction mediated polymeric assemblies: multifunctional nanoparticles for drug and gene delivery. ACS Nano, 2010, 4(2), 1049-1059.
[http://dx.doi.org/10.1021/nn901213a] [PMID: 20112968]
[129]
Hak, D.J. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J. Am. Acad. Orthop. Surg., 2007, 15(9), 525-536.
[http://dx.doi.org/10.5435/00124635-200709000-00003] [PMID: 17761609]
[130]
Samartzis, D.; Shen, F.H.; Goldberg, E.J.; An, H.S. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine, 2005, 30(15), 1756-1761.
[http://dx.doi.org/10.1097/01.brs.0000172148.86756.ce] [PMID: 16094278]
[131]
Joyce, M.J. Safety and FDA regulations for musculoskeletal allografts: perspective of an orthopaedic surgeon. Clin. Orthop. Relat. Res., 2005, (435), 22-30.
[http://dx.doi.org/10.1097/01.blo.0000165849.32661.5e]
[132]
Stubbs, D.; Deakin, M.; Chapman-Sheath, P.; Bruce, W.; Debes, J.; Gillies, R.M.; Walsh, W.R. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials, 2004, 25(20), 5037-5044.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.014] [PMID: 15109866]
[133]
Kim, K.; Fisher, J.P. Nanoparticle technology in bone tissue engineering. J. Drug Target., 2007, 15(4), 241-252.
[http://dx.doi.org/10.1080/10611860701289818] [PMID: 17487693]
[134]
Shi, X.; Hudson, J.L.; Spicer, P.P.; Tour, J.M.; Krishnamoorti, R.; Mikos, A.G. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules, 2006, 7(7), 2237-2242.
[http://dx.doi.org/10.1021/bm060391v] [PMID: 16827593]
[135]
Chun, A.L.; Moralez, J.G.; Webster, T.J.; Fenniri, H. Helical rosette nanotubes: a biomimetic coating for orthopedics? Biomaterials, 2005, 26(35), 7304-7309.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.080] [PMID: 16023193]
[136]
B., G.; S. M., S.S.; L., A.V.; Lakshmi, T. Green synthesis of silver nanoparticles from heartwood extracts - family of fabaceae. Drug Invent. Today, 2018, 10, 3210-3213.
[137]
Wright, J.B.; Lam, K.; Burrell, R.E. Wound management in an era of increasing bacterial antibiotic resistance: a role for topical silver treatment. Am. J. Infect. Control, 1998, 26(6), 572-577.
[http://dx.doi.org/10.1053/ic.1998.v26.a93527] [PMID: 9836841]
[138]
Anselme, K.; Sharrock, P.; Hardouin, P.; Dard, M. In vitro growth of human adult bone-derived cells on hydroxyapatite plasma-sprayed coatings. J. Biomed. Mater. Res., 1997, 34(2), 247-259.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199702)34:2<247:AID-JBM14>3.0.CO;2-F] [PMID: 9029305]
[139]
Hamilton, D.W.; Chehroudi, B.; Brunette, D.M. Comparative response of epithelial cells and osteoblasts to microfabricated tapered pit topographies in vitro and in vivo. Biomaterials, 2007, 28(14), 2281-2293.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.026] [PMID: 17303236]
[140]
Hacking, S.A.; Tanzer, M.; Harvey, E.J.; Krygier, J.J.; Bobyn, J.D. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings. Clin. Orthop. Relat. Res., 2002, (405), 24-38.
[http://dx.doi.org/10.1097/00003086-200212000-00004]
[141]
Hacking, S.A.; Bobyn, J.D.; Tanzer, M.; Krygier, J.J. The osseous response to corundum blasted implant surfaces in a canine hip model. Clin. Orthop. Relat. Res., 1999, (364), 240-253.
[http://dx.doi.org/10.1097/00003086-199907000-00031] [PMID: 10416415]
[142]
Salgado, A.J.; Gomes, M.E.; Coutinho, O.P.; Reis, R.L. Isolation and osteogenic differentiation of bone-marrow progenitor cells for application in tissue engineering. Methods Mol. Biol., 2004, 238, 123-130.
[PMID: 14970443]
[143]
Orban, J.M.; Marra, K.G.; Hollinger, J.O. Composition options for tissue-engineered bone. Tissue Eng., 2002, 8(4), 529-539.
[http://dx.doi.org/10.1089/107632702760240454] [PMID: 12201993]
[144]
Oldham, J.B.; Lu, L.; Zhu, X.; Porter, B.D.; Hefferan, T.E.; Larson, D.R.; Currier, B.L.; Mikos, A.G.; Yaszemski, M.J. Biological activity of rhBMP-2 released from PLGA microspheres. J. Biomech. Eng., 2000, 122(3), 289-292.
[http://dx.doi.org/10.1115/1.429662] [PMID: 10923299]
[145]
Lu, L.; Yaszemski, M.J.; Mikos, A.G. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J. Bone Joint Surg. Am, 2001. 83-A(Pt 2)(Suppl. 1), S82-S91.
[PMID: 11314800]
[146]
Rose, F.R.A.J.; Hou, Q.; Oreffo, R.O.C. Delivery systems for bone growth factors - the new players in skeletal regeneration. J. Pharm. Pharmacol., 2004, 56(4), 415-427.
[http://dx.doi.org/10.1211/0022357023312] [PMID: 15099436]
[147]
Kofron, M.D.; Laurencin, C.T. Bone tissue engineering by gene delivery. Adv. Drug Deliv. Rev., 2006, 58(4), 555-576.
[http://dx.doi.org/10.1016/j.addr.2006.03.008] [PMID: 16790291]
[148]
Southwood, L.L.; Frisbie, D.D.; Kawcak, C.E.; Ghivizzani, S.C.; Evans, C.H.; McIlwraith, C.W. Evaluation of Ad-BMP-2 for enhancing fracture healing in an infected defect fracture rabbit model. J. Orthop. Res., 2004, 22(1), 66-72.
[http://dx.doi.org/10.1016/S0736-0266(03)00129-3] [PMID: 14656661]
[149]
Yamamoto, M.; Tabata, Y. Tissue engineering by modulated gene delivery. Adv. Drug Deliv. Rev., 2006, 58(4), 535-554.
[http://dx.doi.org/10.1016/j.addr.2006.03.003] [PMID: 16762442]
[150]
Kang, S.W.; Lim, H.W.; Seo, S.W.; Jeon, O.; Lee, M.; Kim, B.S. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials, 2008, 29(8), 1109-1117.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.004] [PMID: 18022227]
[151]
Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci., 2018, 5(5)1700821
[http://dx.doi.org/10.1002/advs.201700821] [PMID: 29876208]
[152]
Lin, C.J.; Kuan, C.H.; Wang, L.W.; Wu, H.C.; Chen, Y.; Chang, C.W.; Huang, R.Y.; Wang, T.W. Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials, 2016, 90, 12-26.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.005] [PMID: 26974704]
[153]
Bogman, K.; Erne-Brand, F.; Alsenz, J.; Drewe, J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J. Pharm. Sci., 2003, 92(6), 1250-1261.
[http://dx.doi.org/10.1002/jps.10395] [PMID: 12761814]
[154]
Zhan, C.; Li, B.; Hu, L.; Wei, X.; Feng, L.; Fu, W.; Lu, W. Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5482-5485.
[http://dx.doi.org/10.1002/anie.201100875] [PMID: 21542074]
[155]
Ning, W.; Shang, P.; Wu, J.; Shi, X.; Liu, S. Novel amphiphilic, biodegradable, biocompatible, thermo-responsive aba triblock copolymers based on pcl and peg analogues via a combination of rop and raft: synthesis, characterization, and sustained drug release from self-assembled micelles. Polymers (Basel), 2018, 10(2), 214.
[http://dx.doi.org/10.3390/polym10020214] [PMID: 30966251]
[156]
Jones, M. Leroux, J. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 1999, 48(2), 101-111.
[http://dx.doi.org/10.1016/S0939-6411(99)00039-9] [PMID: 10469928]
[157]
Torchilin, V.P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell. Mol. Life Sci., 2004, 61(19-20), 2549-2559.
[http://dx.doi.org/10.1007/s00018-004-4153-5] [PMID: 15526161]
[158]
Nishiyama, N.; Kataoka, K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther., 2006, 112(3), 630-648.
[http://dx.doi.org/10.1016/j.pharmthera.2006.05.006] [PMID: 16815554]
[159]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[160]
Kwon, G.S.; Okano, T. Polymeric micelles as new drug carriers. Adv. Drug Deliv. Rev., 1996, 21, 107-116.
[http://dx.doi.org/10.1016/S0169-409X(96)00401-2]
[161]
Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E.S. Nanoparticles in tissue engineering: applications, challenges and prospects. Int. J. Nanomedicine, 2018, 13, 5637-5655.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[162]
Dennis, S.C.; Whitlow, J.; Detamore, M.S.; Kieweg, S.L.; Berkland, C.J. Hyaluronic-acid-hydroxyapatite colloidal gels combined with micronized native ecm as potential bone defect fillers. Langmuir, 2017, 33(1), 206-218.
[http://dx.doi.org/10.1021/acs.langmuir.6b03529] [PMID: 28005380]
[163]
Bramini, M.; Alberini, G.; Colombo, E.; Chiacchiaretta, M.; DiFrancesco, M.L.; Maya-Vetencourt, J.F.; Maragliano, L.; Benfenati, F.; Cesca, F. Interfacing graphene-based materials with neural cells. Front. Syst. Neurosci., 2018, 12, 12.
[http://dx.doi.org/10.3389/fnsys.2018.00012] [PMID: 29695956]
[164]
Hong, S.S.; Oh, K.T.; Choi, H.G.; Lim, S.J. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 11.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[165]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[166]
Oku, N.; Namba, Y. Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst., 1994, 11(4), 231-270.
[PMID: 7664348]
[167]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[168]
Olusanya, T.O.B.; Haj Ahmad, R.R.; Ibegbu, D.M.; Smith, J.R.; Elkordy, A.A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules, 2018, 23(4), 23.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[169]
Chan, V.S.W. Nanomedicine: An unresolved regulatory issue. Regul. Toxicol. Pharmacol., 2006, 46(3), 218-224.
[PMID: 17081666]
[170]
Yu, Y.; Xu, Q.; He, S.; Xiong, H.; Zhang, Q.; Xu, W.; Ricotta, V.; Bai, L.; Zhang, Q.; Yu, Z.; Ding, J.; Xiao, H.; Zhou, D. Recent advances in delivery of photosensitive metal-based drugs. Coord. Chem. Rev., 2019, 387(15), 154-179.
[171]
Calixto, G.M.F.; Bernegossi, J.; de Freitas, L.M.; Fontana, C.R.; Chorilli, M.; Grumezescu, A.M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules, 2016, 21(3), 342.
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[172]
Park, J.W.; Benz, C.C.; Martin, F.J. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol., 2004, 31(6)(Suppl. 13), 196-205.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.009] [PMID: 15717745]
[173]
Sargeant, T.D.; Rao, M.S.; Koh, C.Y.; Stupp, S.I. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials, 2008, 29(8), 1085-1098.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.002] [PMID: 18083225]
[174]
Kim, K.T.; Cha, S. Il; Hong, S.H.; Hong, S.H. Microstructures and tensile behavior of carbon nanotube reinforced cu matrix nanocomposites. Mater. Sci. Eng. A, 2006, 430, 27-33.
[http://dx.doi.org/10.1016/j.msea.2006.04.085]
[175]
Flickinger, M.C.; Schottel, J.L.; Bond, D.R.; Aksan, A.; Scriven, L.E. Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Prog., 2007, 23(1), 2-17.
[http://dx.doi.org/10.1021/bp060347r] [PMID: 17269663]
[176]
Lyngberg, O.K.; Ng, C.P.; Thiagarajan, V.; Scriven, L.E.; Flickinger, M.C. Engineering the microstructure and permeability of thin multilayer latex biocatalytic coatings containing E. coli. Biotechnol. Prog., 2001, 17(6), 1169-1179.
[http://dx.doi.org/10.1021/bp0100979] [PMID: 11735456]
[177]
Fernando Alfaro, J.; Weiss, L.E.; Campbell, P.G.; Miller, M.C.; Heyward, C.; Doctor, J.S.; Fedder, G.K. BioImplantable Bone Stress Sensor. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2005, 7, 518-521.
[178]
Xu, M.; Obodo, D.; Yadavalli, V.K. The design, fabrication, and applications of flexible biosensing devices. Biosens. Bioelectron., 2019, 124-125, 96-114.
[http://dx.doi.org/10.1016/j.bios.2018.10.019] [PMID: 30343162]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 30
Year: 2020
Page: [2801 - 2819]
Pages: 19
DOI: 10.2174/1568026620666201019110459
Price: $65

Article Metrics

PDF: 32
HTML: 4