Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in On-Water Multicomponent Synthesis of Coumarin Derivatives

Author(s): Komal Chandrakar, Jeevan Lal Patel, S. P. Mahapatra and Santhosh Penta*

Volume 24, Issue 22, 2020

Page: [2601 - 2611] Pages: 11

DOI: 10.2174/1385272824999201013164825

Price: $65

Abstract

Coumarin-linked heterocycles represent privileged structural subunits and are welldistributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming a valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last year has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of aqueous medium in organic synthesis is fulfilling some of the goals of ‘green and sustainable chemistry’ as it has some advantages over the traditional synthetic methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Hence, significant progress has been made in recent years. In the present review, we provide an overview of the recent developments of multicomponent synthesis of biologically relevant coumarin linked and fused heterocyclic compounds carried out from 2015 till today in an aqueous medium.

Keywords: Coumarin heterocycle’s, multicomponent reactions, one-pot synthesis, aqueous medium, green chemistry, sustainable chemistry, oxygen heterocycles, ultrasound reactions, nanocatalysis.

Graphical Abstract
[1]
Brahmachari, G. Handbook of Pharmaceutical Natural Products; Wiley-VCH: Weinheim, 2010.
[2]
Brahmachari, G. Green synthetic approaches for biologically relevant heterocycles: an overview. In:Green Synthetic Approaches for Biologically Relevant Heterocycles; Elsevier, 2015, pp. 1-6.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00001-3]
[3]
Wu, J.Y.C.; Fong, W.F.; Zhang, J.X.; Leung, C.H.; Kwong, H.L.; Yang, M.S.; Li, D.; Cheung, H.Y. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol., 2003, 473(1), 9-17.
[http://dx.doi.org/10.1016/S0014-2999(03)01946-0] [PMID: 12877932]
[4]
Raj, T.; Bhatia, R.K.; Kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P. Cytotoxic activity of 3-(5-phenyl-3H-[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4H-chromene-3-carbothioic acid N-phenylamides. Eur. J. Med. Chem., 2010, 45(2), 790-794.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.001] [PMID: 19939522]
[5]
Rueping, M.; Sugiono, E.; Merino, E. Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes. Chemistry, 2008, 14(21), 6329-6332.
[http://dx.doi.org/10.1002/chem.200800836] [PMID: 18576457]
[6]
de Andrade-Neto, V.F.; Goulart, M.O.; da Silva Filho, J.F.; da Silva, M.J. Pinto, Mdo.C.; Pinto, A.V.; Zalis, M.G.; Carvalho, L.H.; Krettli, A.U. Antimalarial activity of phenazines from lapachol, β-lapachone and its derivatives against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2004, 14(5), 1145-1149.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.069] [PMID: 14980653]
[7]
Moon, D.O.; Kim, K.C.; Jin, C.Y.; Han, M.H.; Park, C.; Lee, K.J.; Park, Y.M.; Choi, Y.H.; Kim, G.Y. Inhibitory effects of eicosapentaenoic acid on lipopolysaccharide-induced activation in BV2 microglia. Int. Immunopharmacol., 2007, 7(2), 222-229.
[http://dx.doi.org/10.1016/j.intimp.2006.10.001] [PMID: 17178390]
[8]
Morgan, L.R.; Jursic, B.S.; Hooper, C.L.; Neumann, D.M.; Thangaraj, K.; LeBlanc, B. Anticancer activity for 4,4′-dihydroxybenzophenone-2,4-dinitrophenylhydrazone (A-007) analogues and their abilities to interact with lymphoendothelial cell surface markers. Bioorg. Med. Chem. Lett., 2002, 12(23), 3407-3411.
[http://dx.doi.org/10.1016/S0960-894X(02)00725-4] [PMID: 12419372]
[9]
Kumar, A.; Maurya, R.A.; Sharma, S.; Ahmad, P.; Singh, A.B.; Bhatia, G.; Srivastava, A.K. Pyranocoumarins: a new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg. Med. Chem. Lett., 2009, 19(22), 6447-6451.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.031] [PMID: 19811915]
[10]
Foye, O.W. Chemico Farmaceutica; Piccin: Pandora, 1991.
[11]
Adreani, L.; Lapi, E. On some new esters of coumarin-3-carboxylic acid with balsamic and bronchodilator action. Boll. Chim. Farm., 1960, 99, 583-586.
[PMID: 13759798]
[12]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3, 3-bis (indol-3-yl) indolin- 2-ones and 2, 2-bis (indol-3-yl) acenaphthylen-1 (2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2(12), 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[13]
Chin, Y.W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J., 2006, 8(2), E239-E253.
[http://dx.doi.org/10.1007/BF02854894] [PMID: 16796374]
[14]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[15]
Cordell, G.A.; Quinn‐Beattie, M.L.; Farnsworth, N.R. The potential of alkaloids in drug discovery. Phytother. Res., 2001, 15(3), 183-205.
[16]
Hughes, E.H.; Shanks, J.V. Metabolic engineering of plants for alkaloid production. Metab. Eng., 2002, 4(1), 41-48.
[http://dx.doi.org/10.1006/mben.2001.0205] [PMID: 11800573]
[17]
Sundberg, R.J. Indoles; Academic Press: San Diego, 1996.
[18]
Joule, J.A. Product class 13: indole and its derivatives. In:Fused five-membered hetarenes with one heteroatom; Thieme Verlag: Stuttgart, 2001.
[19]
Grohe, K. Antibiotics-the new generation. Chem. Br., 1992, 28, 34-36.
[20]
Wentland, P.M.; Cornett, B.J. Quinolone antibacterial agents. Ann. Rpt. Med. Chem., 1985, 20, 145-154.
[21]
Aimi, N.; Nishimura, M.; Miwa, A.; Hoshino, H.; Sakai, S.I.; Haginiwa, J. Pumiloside and deoxypumiloside; plausible intermediates of camptothecin biosynthesis. Tetrahedron Lett., 1989, 30(37), 4991-4994.
[http://dx.doi.org/10.1016/S0040-4039(01)80563-3]
[22]
(a)Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
(b)Musa, M.A.; Badisa, V.L.; Latinwo, L.M.; Waryoba, C.; Ugochukwu, N. In vitro cytotoxicity of benzopyranone derivatives with basic side chain against human lung cell lines. Anticancer Res., 2010, 30(11), 4613-4617.
[PMID: 21115914]
[23]
Higuchi, R.I.; Arienti, K.L.; López, F.J.; Mani, N.S.; Mais, D.E.; Caferro, T.R.; Long, Y.O.; Jones, T.K.; Edwards, J.P.; Zhi, L.; Schrader, W.T.; Negro-Vilar, A.; Marschke, K.B. Novel series of potent, nonsteroidal, selective androgen receptor modulators based on 7H-[1,4]oxazino[3,2-g]quinolin-7-ones. J. Med. Chem., 2007, 50(10), 2486-2496.
[http://dx.doi.org/10.1021/jm061329j] [PMID: 17439112]
[24]
Markey, M.D.; Fu, Y.; Kelly, T.R. Synthesis of santiagonamine. Org. Lett., 2007, 9(17), 3255-3257.
[http://dx.doi.org/10.1021/ol0711974] [PMID: 17658834]
[25]
Scherlach, K.; Nützmann, H.W.; Schroeckh, V.; Dahse, H.M.; Brakhage, A.A.; Hertweck, C. Cytotoxic pheofungins from an engineered fungus impaired in posttranslational protein modification. Angew. Chem. Int. Ed. Engl., 2011, 50(42), 9843-9847.
[http://dx.doi.org/10.1002/anie.201104488] [PMID: 21913294]
[26]
Anastas, P.T.; Tundo, P. Green chemistry: Challenging Perspectives; Oxford University Press: Oxford, 2000.
[27]
(a)Balu, A.M.; Baruwati, B.; Serrano, E.; Cot, J.; Garcia-Martinez, J.; Varma, R.S.; Luque, R. Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chem., 2011, 13(10), 2750-2758.
[http://dx.doi.org/10.1039/c1gc15692f]
(b)Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[28]
Akhlaghinia, B.; Asadi, M.; Safaee, E.; Heydarpoor, M. Hexamethyldisilazane in the presence of n, n′, n ″, n‴-tetramethyltetra-2, 3-pyridinoporphyrazinato copper (ii) is a new, mild and highly efficient reagent for silylation of alcohols and phenols. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179(10), 2099-2104.
[http://dx.doi.org/10.1080/10426500490474987]
[29]
Firouzabadi, H.; Iranpoor, N.; Sobhani, S.; Ghassamipour, S. Aluminium Triflate [Al(OTf)3] as a Recyclable Catalyst for the Conversion of α-Hydroxyphosphonates, Alcohols and Phenols to Their Corresponding O-Silylated Products with Hexamethyldisilazane (HMDS). Synthesis, 2005, 595-599.
[http://dx.doi.org/10.1055/s-2005-861789]
[30]
Akhlaghinia, B.; Tavakoli, S. An efficient method for the protection of alcohols and phenols by using hexamethyldisilazane in the presence of cupric sulfate pentahydrate under neutral reaction conditions. Synthesis, 2005, 2005(11), 1775-1778.
[http://dx.doi.org/10.1055/s-2005-865318]
[31]
Azizi, N.; Rahimzadeh-Oskooee, A.; Yadollahy, Z.; Ourimi, A.G. Ultrasound-assisted rapid sustainable synthesis of substituted thiourea. Monatshefte für Chemie-Chemical Monthly, 2014, 145(10), 1675-1680.
[http://dx.doi.org/10.1007/s00706-014-1238-1]
[32]
Yamazaki, N.; Tomioka, T.; Higashi, F. Trisubstituted ureas and thioureas from hexaalkylphosphorous triamides, primary amines, and carbon dioxide or carbon disulfide. Synthesis, 1975, 1975(6), 384-385.
[http://dx.doi.org/10.1055/s-1975-23762]
[33]
Sharma, S. Thiophosgene in organic synthesis. Synthesis, 1978, 1978(11), 803-820.
[http://dx.doi.org/10.1055/s-1978-24896]
[34]
Levallet, C.; Lerpiniere, J.; Ko, S.Y. The HgCl2-promoted guanylation reaction: The scope and limitations. Tetrahedron, 1997, 53(14), 5291-5304.
[http://dx.doi.org/10.1016/S0040-4020(97)00193-2]
[35]
Ballabeni, M.; Ballini, R.; Bigi, F.; Maggi, R.; Parrini, M.; Predieri, G.; Sartori, G. Synthesis of symmetrical N, N ‘-disubstituted thioureas and heterocyclic thiones from amines and CS2 over a ZnO/Al2O3 composite as heterogeneous and reusable catalyst. J. Org. Chem., 1999, 64(3), 1029-1032.
[http://dx.doi.org/10.1021/jo981629b] [PMID: 11674182]
[36]
Mohanta, P.K.; Dhar, S.; Samal, S.K.; Ila, H.; Junjappa, H. 1-(Methyldithiocarbonyl) imidazole: A useful thiocarbonyl transfer reagent for synthesis of substituted thioureas. Tetrahedron, 2000, 56(4), 629-637.
[http://dx.doi.org/10.1016/S0040-4020(99)01026-1]
[37]
Kidwai, M.; Venkataramanan, R.; Dave, B. Solventless synthesis of thiohydantoins over K2CO3. Green Chem., 2001, 3(6), 278-279.
[http://dx.doi.org/10.1039/b106034c]
[38]
Ranu, C.B.; Dey, S.S.; Bag, S. A simple and green procedure for the synthesis of symmetrical N, N′-disubstituted thioureas on the surface of alumina under microwave irradiation. ARKIVOC, 2003, 9, 14-20.
[http://dx.doi.org/10.3998/ark.5550190.0004.903]
[39]
Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182]
[40]
Katritzky, A.R.; Ledoux, S.; Witek, R.M.; Nair, S.K. 1-(Alkyl/arylthiocarbamoyl)benzotriazoles as stable isothiocyanate equivalents: synthesis of Di- and trisubstituted thioureas. J. Org. Chem., 2004, 69(9), 2976-2982.
[http://dx.doi.org/10.1021/jo035680d] [PMID: 15104434]
[41]
Kodomari, M.; Suzuki, M.; Tanigawa, K.; Aoyama, T. A convenient and efficient method for the synthesis of mono-and N, N-disubstituted thioureas. Tetrahedron Lett., 2005, 46(35), 5841-5843.
[http://dx.doi.org/10.1016/j.tetlet.2005.06.135]
[42]
Connon, S.J. Organocatalysis mediated by (thio)urea derivatives. Chemistry, 2006, 12(21), 5418-5427.
[http://dx.doi.org/10.1002/chem.200501076] [PMID: 16514689]
[43]
Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem. Soc. Rev., 2013, 42(12), 5522-5551.
[http://dx.doi.org/10.1039/c3cs60025d] [PMID: 23529409]
[44]
Ghashang, M.; Mansoor, S.S.; Mohammad Shafiee, M.R.; Kargar, M.; Najafi Biregan, M.; Azimi, F.; Taghrir, H. Green chemistry preparation of MgO nanopowders: efficient catalyst for the synthesis of thiochromeno [4, 3-b] pyran and thiopyrano [4, 3-b] pyran derivatives. J. Sulfur Chem., 2016, 37(4), 377-390.
[http://dx.doi.org/10.1080/17415993.2016.1149856]
[45]
(a)Ghashang, M.; Mansoor, S.S.; Shams Solaree, L.; Sharifian-esfahani, A. Multi-component, one-pot, aqueous media preparation of dihydropyrano [3, 2-c] chromene derivatives over MgO nanoplates as an efficient catalyst. Iran. J. Catal., 2016, 6, 237-243.
(b)Paprocki, D.; Madej, A.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Multicomponent reactions accelerated by aqueous micelles. Front Chem., 2018, 6, 502.
[http://dx.doi.org/10.3389/fchem.2018.00502] [PMID: 30406083]
[46]
Manabe, K.; Iimura, S.; Sun, X.M.; Kobayashi, S. Dehydration reactions in water. Brønsted Acid-surfactant-combined catalyst for ester, ether, thioether, and dithioacetal formation in water. J. Am. Chem. Soc., 2002, 124(40), 11971-11978.
[http://dx.doi.org/10.1021/ja026241j] [PMID: 12358542]
[47]
Tsukinoki, T.; Nagashima, S.; Mitoma, Y.; Tashiro, M. Organic reaction in water. Part 4. New synthesis of vicinal diamines using zinc powder-promoted carbon-carbon bond formation. Green Chem., 2000, 2(3), 117-119.
[http://dx.doi.org/10.1039/b001533o]
[48]
Bigi, F.; Conforti, M.L.; Maggi, R.; Piccinno, A.; Sartori, G. Clean synthesis in water: uncatalysed preparation of ylidenemalononitriles. Green Chem., 2000, 2(3), 101-103.
[http://dx.doi.org/10.1039/b001246g]
[49]
Tundo, P.; Anastas, P.; Black, D.S.; Breen, J.; Collins, T.J.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem., 2000, 72(7), 1207-1228.
[http://dx.doi.org/10.1351/pac200072071207]
[50]
(a)Butler, R.N.; Coyne, A.G. Water: nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev., 2010, 110(10), 6302-6337.
[http://dx.doi.org/10.1021/cr100162c] [PMID: 20815348]
(b)Pirrung, M.C.; Sarma, K.D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc., 2004, 126(2), 444-445.
[http://dx.doi.org/10.1021/ja038583a] [PMID: 14719923]
[51]
(a)Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed., 2005, 44, 3275-3279.
[http://dx.doi.org/10.1002/anie.200462883]
(b)Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24(6), 159-164.
[http://dx.doi.org/10.1021/ar00006a001]
(c)Rideout, D.C.; Breslow, R. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc., 1980, 102(26), 7816-7817.
[http://dx.doi.org/10.1021/ja00546a048]
[52]
(a)Taira, K.; Benkovic, S.J. Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase. J. Med. Chem., 1988, 31(1), 129-137.
[http://dx.doi.org/10.1021/jm00396a019] [PMID: 3275776]
(b)Jimeno, C. Water in asymmetric organocatalytic systems: a global perspective. Org. Biomol. Chem., 2016, 14(26), 6147-6164.
[http://dx.doi.org/10.1039/C6OB00783J] [PMID: 27215302]
(c)Xiao, J.; Wen, H.; Wang, L.; Xu, L.; Hao, Z.; Shao, C.L.; Wang, C.Y. Catalyst-free dehydrative SN 1-type reaction of indolyl alcohols with diverse nucleophiles “on water”. Green Chem., 2016, 18(4), 1032-1037.
[http://dx.doi.org/10.1039/C5GC01838B]
[53]
Wang, X.S.; Zhang, M.M.; Zeng, Z.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. A simple and clean procedure for the synthesis of polyhydroacridine and quinoline derivatives: reaction of Schiff base with 1, 3-dicarbonyl compounds in aqueous medium. Tetrahedron Lett., 2005, 46(42), 7169-7173.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.091]
[54]
Wnorowski, A.; Yaylayan, V.A. Influence of pyrolytic and aqueous-phase reactions on the mechanism of formation of Maillard products. J. Agric. Food Chem., 2000, 48(8), 3549-3554.
[http://dx.doi.org/10.1021/jf9913099] [PMID: 10956148]
[55]
Cho, C.S.; Kim, J.H.; Shim, S.C. Ruthenium-catalyzed synthesis of indoles from anilines and trialkanolammonium chlorides in an aqueous medium. Tetrahedron Lett., 2000, 41(11), 1811-1814.
[http://dx.doi.org/10.1016/S0040-4039(00)00035-6]
[56]
Bose, D.S.; Fatima, L.; Mereyala, H.B. Green chemistry approaches to the synthesis of 5-alkoxycarbonyl-4-aryl-3,4- dihydropyrimidin-2(1H)-ones by a three-component coupling of one-pot condensation reaction: comparison of ethanol, water, and solvent-free conditions. J. Org. Chem., 2003, 68(2), 587-590.
[http://dx.doi.org/10.1021/jo0205199] [PMID: 12530887]
[57]
Wang, Y.; Vera, C.I.; Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org. Lett., 2007, 9(21), 4155-4158.
[http://dx.doi.org/10.1021/ol7017328] [PMID: 17867694]
[58]
Simon, M.O.; Li, C.J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[59]
Tietze, L.F.; Beifuss, U. Sequential transformations in organic chemistry: a synthetic strategy with a future. Angew. Chem. Int. Ed. Engl., 1993, 32(2), 131-163.
[http://dx.doi.org/10.1002/anie.199301313]
[60]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[61]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[62]
Nair, V.; Rajesh, C.; Vinod, A.U.; Bindu, S.; Sreekanth, A.R.; Mathen, J.S.; Balagopal, L. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc. Chem. Res., 2003, 36(12), 899-907.
[http://dx.doi.org/10.1021/ar020258p] [PMID: 14674781]
[63]
Tejedor, D.; García-Tellado, F.; Chemo-differentiating, A.B.B. Chemo-differentiating ABB’ multicomponent reactions. Privileged building blocks. Chem. Soc. Rev., 2007, 36(3), 484-491.
[http://dx.doi.org/10.1039/B608164A] [PMID: 17325787]
[64]
(a)Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
(b)Massarano, T.; Mazir, A.; Lavi, R.; Byk, G. Solid-phase multicomponent synthesis of 3-substituted isoindolinones generates new cell-penetrating probes as drug carriers. ChemMedChem, 2020, 15(10), 833-838.
[http://dx.doi.org/10.1002/cmdc.201900656] [PMID: 32147941]
(c)Gelman, M.; Massarano, T.; Lavi, R.; Byk, G. A new multicomponent reaction MCR4 for the synthesis of analogs of staurosporine. Curr. Org. Chem., 2018, 21, 505-517.
[http://dx.doi.org/10.2174/1385272821666170817110101]
[65]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[66]
de Graaff, C.; Ruijter, E.; Orru, R.V. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[67]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[68]
Peng, X-M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[69]
Ostrov, D.A.; Hernández Prada, J.A.; Corsino, P.E.; Finton, K.A.; Le, N.; Rowe, T.C. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob. Agents Chemother., 2007, 51(10), 3688-3698.
[http://dx.doi.org/10.1128/AAC.00392-07] [PMID: 17682095]
[70]
Chimenti, F.; Bizzarri, B.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese, A.; Carradori, S.; Rivanera, D.; Zicari, A.; Scaltrito, M.M.; Sisto, F. Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg. Med. Chem. Lett., 2010, 20(16), 4922-4926.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.048] [PMID: 20630755]
[71]
Salinas-Jazmín, N.; de la Fuente, M.; Jaimez, R.; Pérez-Tapia, M.; Pérez-Torres, A.; Velasco-Velázquez, M.A. Antimetastatic, antineoplastic, and toxic effects of 4-hydroxycoumarin in a preclinical mouse melanoma model. Cancer Chemother. Pharmacol., 2010, 65(5), 931-940.
[http://dx.doi.org/10.1007/s00280-009-1100-z] [PMID: 19690859]
[72]
Weigt, S.; Huebler, N.; Strecker, R.; Braunbeck, T.; Broschard, T.H. Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod. Toxicol., 2012, 33(2), 133-141.
[http://dx.doi.org/10.1016/j.reprotox.2011.07.001] [PMID: 21798343]
[73]
Luz, D.A.; Pinheiro, A.M.; Silva, M.L.; Monteiro, M.C.; Prediger, R.D.; Maia, C.S.F.; Fontes-Júnior, E.A. Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): a review. J. Ethnopharmacol., 2016, 185, 182-201.
[http://dx.doi.org/10.1016/j.jep.2016.02.053] [PMID: 26944236]
[74]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[75]
Šarkanj, B.; Molnar, M.; Čačić, M.; Gille, L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem., 2013, 139(1-4), 488-495.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.027] [PMID: 23561135]
[76]
Malhotra, S.; Bailey, D.G.; Paine, M.F.; Watkins, P.B. Seville orange juice-felodipine interaction: comparison with dilute grapefruit juice and involvement of furocoumarins. Clin. Pharmacol. Ther., 2001, 69(1), 14-23.
[http://dx.doi.org/10.1067/mcp.2001.113185] [PMID: 11180034]
[77]
Li, G.; Wang, D.; Sun, M.; Li, G.; Hu, J.; Zhang, Y.; Yuan, Y.; Ji, H.; Chen, N.; Liu, G. Discovery and optimization of novel 3-piperazinylcoumarin antagonist of chemokine-like factor 1 with oral antiasthma activity in mice. J. Med. Chem., 2010, 53(4), 1741-1754.
[http://dx.doi.org/10.1021/jm901652p] [PMID: 20099827]
[78]
(a)Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
(b)Xi, G.L.; Liu, Z.Q. Coumarin-fused coumarin: antioxidant story from N,N-dimethylamino and hydroxyl groups. J. Agric. Food Chem., 2015, 63(13), 3516-3523.
[http://dx.doi.org/10.1021/acs.jafc.5b00399] [PMID: 25826201]
[79]
Barros, T.A.; de Freitas, L.A.R.; Filho, J.M.B.; Nunes, X.P.; Giulietti, A.M.; de Souza, G.E.; dos Santos, R.R.; Soares, M.B.P.; Villarreal, C.F. Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J. Pharm. Pharmacol., 2010, 62(2), 205-213.
[http://dx.doi.org/10.1211/jpp.62.02.0008] [PMID: 20487200]
[80]
(a)Hwu, J.R.; Lin, S.Y.; Tsay, S.C.; De Clercq, E.; Leyssen, P.; Neyts, J. Coumarin-purine ribofuranoside conjugates as new agents against hepatitis C virus. J. Med. Chem., 2011, 54(7), 2114-2126.
[http://dx.doi.org/10.1021/jm101337v] [PMID: 21375337]
(b)Ong, E.B.B.; Watanabe, N.; Saito, A.; Futamura, Y.; Abd El Galil, K.H.; Koito, A.; Najimudin, N.; Osada, H. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J. Biol. Chem., 2011, 286(16), 14049-14056.
[http://dx.doi.org/10.1074/jbc.M110.185397] [PMID: 21357691]
[81]
Riveiro, M.E.; De Kimpe, N.; Moglioni, A.; Vázquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17(13), 1325-1338.
[http://dx.doi.org/10.2174/092986710790936284] [PMID: 20166938]
[82]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[83]
Musa, M.A.; Cooperwood, J.S.; Khan, M.O.F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[84]
Trykowska Konc, J.; Hejchman, E.; Kruszewska, H.; Wolska, I.; Maciejewska, D. Synthesis and pharmacological activity of O-aminoalkyl derivatives of 7-hydroxycoumarin. Eur. J. Med. Chem., 2011, 46(6), 2252-2263.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.006] [PMID: 21439691]
[85]
Montagner, C.; de Souza, S.M.; Groposoa, C.; Delle Monache, F.; Smânia, E.F.; Smânia, A., Jr Antifungal activity of coumarins. Z. Natforsch. C J. Biosci., 2008, 63(1-2), 21-28.
[http://dx.doi.org/10.1515/znc-2008-1-205] [PMID: 18386483]
[86]
Wang, X.; Bastow, K.F.; Sun, C.M.; Lin, Y.L.; Yu, H.J.; Don, M.J.; Wu, T.S.; Nakamura, S.; Lee, K.H. Antitumor Agents. 239. Isolation, structure elucidation, total synthesis, and anti-breast cancer activity of neo-tanshinlactone from Salvia miltiorrhiza. J. Med. Chem., 2004, 47(23), 5816-5819.
[http://dx.doi.org/10.1021/jm040112r] [PMID: 15509181]
[87]
Hoerr, R.; Noeldner, M. Ensaculin (KA-672 HCl): a multitransmitter approach to dementia treatment. CNS Drug Rev., 2002, 8(2), 143-158.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00220.x] [PMID: 12177685]
[88]
Zacharski, L.R.; Henderson, W.G.; Rickles, F.R.; Forman, W.B.; Cornell, C.J., Jr; Forcier, R.J.; Edwards, R.L.; Headley, E.; Kim, S.H.; O’Donnell, J.F.; O’Dell, R. Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate: final report of VA Cooperative Study #75. Cancer, 1984, 53(10), 2046-2052.
[http://dx.doi.org/10.1002/1097-0142(19840515)53:10<2046:AID-CNCR2820531007>3.0.CO;2-F] [PMID: 6322957]
[89]
Brady, H.; Desai, S.; Gayo-Fung, L.M.; Khammungkhune, S.; McKie, J.A.; O’Leary, E.; Pascasio, L.; Sutherland, M.K.; Anderson, D.W.; Bhagwat, S.S.; Stein, B. Effects of SP500263, a novel, potent antiestrogen, on breast cancer cells and in xenograft models. Cancer Res., 2002, 62(5), 1439-1442.
[PMID: 11888917]
[90]
Lindström, U.M. Stereoselective organic reactions in water. Chem. Rev., 2002, 102(8), 2751-2772.
[http://dx.doi.org/10.1021/cr010122p] [PMID: 12175267]
[91]
(a) Li, C.J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35(1), 68-82.
[http://dx.doi.org/10.1039/B507207G] [PMID: 16365643]
(b)Ranu, B.C.; Chatterjee, T.; Mukherjee, N.; Maity, P.; Majhi, B. Synthesis of bioactive five- and six-membered heterocycles catalyzed by heterogeneous supported metals In: In: Green Synthetic Approaches for Biologically Relevant Heterocycles;; Elsevier, 2015; pp. 7-43.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00002-5]
[92]
Chen, L.; Li, C.J. Domino reaction of anilines with 3, 4-dihydro-2H-pyran catalyzed by cation-exchange resin in water: an efficient synthesis of 1, 2, 3, 4-tetrahydroquinoline derivatives. Green Chem., 2003, 5(5), 627-629.
[http://dx.doi.org/10.1039/b304431a]
[93]
Kumarayel, K.; Vasuki, G. Multi-component reactions in water. Curr. Org. Chem., 2009, 13, 1820-1841.
[http://dx.doi.org/10.2174/138527209789630514]
[94]
Giorgi, G.; Miranda, S.; López-Alvarado, P.; Avendaño, C.; Rodriguez, J.; Menéndez, J.C. Unique Michael addition-initiated domino reaction for the stereoselective synthesis of functionalized macrolactones from α-nitroketones in water. Org. Lett., 2005, 7(11), 2197-2200.
[http://dx.doi.org/10.1021/ol0505860] [PMID: 15901168]
[95]
Tu, S.J.; Zhang, Y.; Jiang, H.; Jiang, B.; Zhang, J.Y.; Jia, R.H.; Shi, F. A simple synthesis of furo [3′, 4′: 5, 6] pyrido [2, 3‐d] pyrimidine derivatives through multicomponent reactions in water. Eur. J. Org. Chem., 2007, 2007(9), 1522-1528.
[http://dx.doi.org/10.1002/ejoc.200600913]
[96]
Kumaravel, K.; Vasuki, G. Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1 H-pyrazol-4-yl)-4 H-chromene-3-carbonitrile derivatives. Green Chem., 2009, 11(12), 1945-1947.
[http://dx.doi.org/10.1039/b913838b]
[97]
Lu, Z.; Hu, C.; Guo, J.; Li, J.; Cui, Y.; Jia, Y. Water-controlled regioselectivity of Pd-catalyzed domino reaction involving a C-H activation process: rapid synthesis of diverse carbo- and heterocyclic skeletons. Org. Lett., 2010, 12(3), 480-483.
[http://dx.doi.org/10.1021/ol902672a] [PMID: 20030345]
[98]
Gunasekaran, P.; Menéndez, J.C.; Perumal, S. Synthesis of heterocycles through Multicomponent Reactions in Water. In:Green Chemistry: Synthesis of Bioactive Heterocycles; Springer: New Delhi, 2014, pp. 1-35.
[http://dx.doi.org/10.1007/978-81-322-1850-0_1]
[99]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(5), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[100]
Kulkarni, R.C.; Samundeeswari, S.; Chougala, B.M.; Holiyachi, M.; Kulkarni, M.V.; Shastri, L.A. One-pot, green synthetic route for construction of coumarin C-4 bridged 2, 6-dicyanoanilines and their photophysical study. Synth. Commun., 2016, 46(24), 2063-2072.
[http://dx.doi.org/10.1080/00397911.2016.1245751]
[101]
Ghashang, M.; Shafiee, M.R.M.; Delzendeh, S.; Fazlinia, A.; Esfandiari, H.; Biregan, M.N.; Heydari, N. Preparation of α-benzylamino coumarin derivatives using oxalic acid in aqueous media. Izv. Him., 2016, 48(4), 694-697.
[102]
Saha, M.; Pradhan, K.; Das, A.R. Facile and eco-friendly synthesis of chromeno [4, 3-b] pyrrol-4 (1 H)-one derivatives applying magnetically recoverable nano crystalline CuFe2O4 involving a domino three-component reaction in aqueous media. RSC Advances, 2016, 6(60), 55033-55038.
[http://dx.doi.org/10.1039/C6RA06979G]
[103]
Sharma, H.; Srivastava, S. Anion–cation co-operative catalysis by artificial sweetener saccharine-based ionic liquid for sustainable synthesis of 3, 4-dihydropyrano[c] chromenes, 4, 5-dihydropyrano [4, 3-b] pyran and tetrahydrobenzo [b] pyrans in aqueous medium. RSC Advances, 2018, 8(68), 38974-38979.
[http://dx.doi.org/10.1039/C8RA06889E]
[104]
Bhosle, M.R.; Wahul, D.B.; Bondle, G.M.; Sarkate, A.; Tiwari, S.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2, 5-diones. Synth. Commun., 2018, 48(16), 2046-2060.
[http://dx.doi.org/10.1080/00397911.2018.1480042]
[105]
Nasirmahale, L.N. GoliJolodar, O.; Shirini, F. and Tajik, H. Poly(4- Vinylpyridine) (P4VPy): a basic catalyst for facile synthesis of biscoumarin and dihydropyrano; chromene derivatives in aqueous media. In: Polycycl. Aromat. Compd; , 2019; pp. 1-12.
[106]
Roudbaraki, S.J.; Mansoor, S.S.; Ghashang, M. Aqueous media synthesis of pyrano [3, 2-c] chromen derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Polycycl. Aromat. Compd., 2019, 2019, 1-12.
[http://dx.doi.org/10.1080/10406638.2019.1576746]
[107]
Ghorbani-Vaghei, R.; Mahmoodi, J.; Maghbooli, Y.; Shahriari, A. A suitable one-pot synthesis of 3, 4-dihydropyrano [3, 2-c] chromenes using magnetic nanoparticles tag: piperidinium benzene-1, 3-disulfonate ionic liquid as a novel, green, efficient and reusable catalyst in aqueous medium. Curr. Org. Synth., 2017, 14(6), 904-911.
[http://dx.doi.org/10.2174/1570179414666170203150629]
[108]
Omar, A.; Ablajan, K.; Hamdulla, M. Cetyltrimethylammonium Chloride (CTAC) catalyzed one-pot synthesis of novel coumarin-4H-pyran conjugates in aqueous media. Chin. Chem. Lett., 2017, 28(5), 976-980.
[http://dx.doi.org/10.1016/j.cclet.2016.12.016]
[109]
Wadhwa, P.; Kharbanda, A.; Bagchi, S.; Sharma, A. Water‐mediated one‐pot three‐component reaction to bifunctionalized thiadiazoloquinazolinone‐coumarin hybrids: a green approach. ChemistrySelect, 2018, 3(10), 2837-2841.
[http://dx.doi.org/10.1002/slct.201702908]
[110]
Brahmachari, G.; Karmakar, I.; Nurjamal, K. Ultrasound-assisted expedient and green synthesis of a new series of diversely functionalized 7-aryl/heteroarylchromeno[4,3-d]pyrido[1,2-a]pyrimidin-6(7H)-ones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem.& Eng., 2018, 6(8), 11018-11028.
[http://dx.doi.org/10.1021/acssuschemeng.8b02448]
[111]
Saha, A.; Jana, A.; Choudhury, L.H. Lemon juice mediated multicomponent reactions for the synthesis of fused imidazoles. New J. Chem., 2018, 42, 17909-17922.
[http://dx.doi.org/10.1039/C8NJ03480J]
[112]
Yadav, V.B.; Yadav, N.; Rai, P.; Ansari, M.D.; Kumar, A.; Verma, A.; Siddiqui, I.R. Meglumine promoted strategy: environmentally benign protocol towards the synthesis of polysubstituted 2‐aminopyrroles in aqueous condition. ChemistrySelect, 2019, 4(19), 5376-5380.
[http://dx.doi.org/10.1002/slct.201900490]
[113]
Brahmachari, G.; Mandal, M.; Karmakar, I.; Nurjamal, K.; Mandal, B. Ultrasound-promoted expedient and green synthesis of diversely functionalized 6-amino-5-((4-hydroxy-2-oxo-2H-chromen-3-yl)(aryl)methyl)pyrimidine-2,4(1H,3H)-diones via one-pot multicomponent reaction under sulfamic acid catalysis at ambient conditions. ACS Sustain. Chem.& Eng., 2019, 7, 6369-6380.
[http://dx.doi.org/10.1021/acssuschemeng.9b00133]
[114]
Omar, A.; Ablajan, K. Efficient one-pot catalyst-free synthesis of novel coumarin- spiro[indoline-3,4′-pyran] conjugates via three-component domino reaction in aqueous medium. Green Chem. Lett. Rev., 2019, 12(1), 1-8.
[http://dx.doi.org/10.1080/17518253.2018.1556744]
[115]
Heravi, M.M.; Hosseinnejad, T.; Tamimi, M.; Zadsirjan, V.; Mirzaei, M. 12-Tungstoboric acid (H5BW12O40) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2, 5-diones and thioxochromenopyrimidin-5-ones: Joint experimental and computational study. J. Mol. Struct., 2020, 1205127598
[http://dx.doi.org/10.1016/j.molstruc.2019.127598]
[116]
Bhosle, M.R.; Joshi, S.A.; Bondle, G.M. An efficient contemporary multicomponent synthesis for the facile access to coumarin‐fused new thiazolyl chromeno [4,3‐b]quinolones in aqueous micellar medium. J. Heterocycl. Chem., 2020, 57, 456-468.
[http://dx.doi.org/10.1002/jhet.3802]
[117]
Farahani, F.C.; Abdolmohammadi, S.; Kojoor, R.K.A PANI-Fe3O4@ZnO nanocomposite: a magnetically separable and applicable catalyst for the synthesis of chromeno-pyrido[d]pyrimidine derivatives. RSC Adv., 2020, 10, 15614-15621.
[http://dx.doi.org/10.1039/D0RA01978J]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy