Molecular Processes Involved in Pancreatic Cancer and Therapeutics

Author(s): Subhajit Makar, Abhrajyoti Ghosh, Divya, Shalini Shivhare, Ashok Kumar, Sushil K. Singh*

Journal Name: Current Chemical Biology

Volume 15 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Despite advances in the development of cytotoxic and targeted therapies, pancreatic adenocarcinoma (PAC) remains a significant cause of cancer mortality worldwide. It is also difficult to detect it at an early stage due to a number of factors. Most of the patients are present with locally advanced or metastatic disease, which precludes curative resection. In the absence of effective screening methods, considerable efforts have been made to identify better systemic treatments during the past decade. This review describes the recent advances in molecular mechanisms involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signaling pathways and various cellular proteins as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions associated with growth factors and their receptors viz. c-MET/HGF, CTHRC1, TGF-β, JAK-STAT, cyclooxygenase pathway, WNT, CCK, MAPK-RAS-RAF, PI3K-AKT, Notch, src, IGF-1R, CDK2NA and chromatin regulation for the sustained growth, survival, and metastasis of pancreatic cancer cells. It also includes various therapeutic strategies viz. immunotherapy, surgical therapy, radiation therapy and chemotherapy.

Keywords: Pancreatic cancer, WNT, CCK, MAPK-RAS-RAF, PI3K-AKT, Notch, CTHRC1, TGF-β, JAK-STAT.

[1]
Dimastromatteo J, Poisonnier A, Perez S, Coussens L, Kelly K. Therapeutic targeting of cell surface plectin induces anti-cancer immune response and pancreatic cancer regression. AACR 2019; 79: 1558.
[http://dx.doi.org/10.1158/1538-7445.AM2019-1558]
[2]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Eckel F, Schneider G, Schmid RM. Pancreatic cancer: a review of recent advances. Expert Opin Investig Drugs 2006; 15(11): 1395-410.
[http://dx.doi.org/10.1517/13543784.15.11.1395] [PMID: 17040199]
[4]
Cascinu S, Graziano F, Catalano G. Chemotherapy for advanced pancreatic cancer: it may no longer be ignored. Ann Oncol 1999; 10(1): 105-9.
[http://dx.doi.org/10.1023/A:1008205515591] [PMID: 10076729]
[5]
Shi X, Liu S, Kleeff J, Friess H, Büchler MW. Acquired resistance of pancreatic cancer cells towards 5-Fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology 2002; 62(4): 354-62.
[http://dx.doi.org/10.1159/000065068] [PMID: 12138244]
[6]
McKenna S, Eatock M. The medical management of pancreatic cancer: a review. Oncologist 2003; 8(2): 149-60.
[http://dx.doi.org/10.1634/theoncologist.8-2-149] [PMID: 12697940]
[7]
Scott E, Jewell A. Supportive care needs of people with pancreatic cancer: a literature review Cancer. Nursing Practice 2019; 18(3)e1566
[http://dx.doi.org/10.7748/cnp.2019.e1566]
[8]
Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004; 363(9414): 1049-57.
[http://dx.doi.org/10.1016/S0140-6736(04)15841-8] [PMID: 15051286]
[9]
Gualberto A, Scholz C, Mishra V, et al. Mechanism of action of the farnesyltransferase inhibitor, tipifarnib, and its clinical applications. AACR 2019; 79(13)(Suppl.): CT191.
[http://dx.doi.org/10.1158/1538-7445.AM2019-CT191]
[10]
Kleeff J, Korc M, Apte M, et al. Pancreatic cancer. Nat Rev Dis Prim 2016; 2(1): 1-22.
[http://dx.doi.org/10.1038/nrdp.2016.22]
[11]
Rizzato C, Campa D, Pezzilli R, et al. ABO blood groups and pancreatic cancer risk and survival: results from the pancreatic disease research (PANDoRA) consortium. Oncol Rep 2013; 29(4): 1637-44.
[http://dx.doi.org/10.3892/or.2013.2285] [PMID: 23403949]
[12]
Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006; 20(10): 1218-49.
[http://dx.doi.org/10.1101/gad.1415606] [PMID: 16702400]
[13]
Korc M, Preis M. Signaling pathways in pancreatic cancer. Crit Rev Eukaryot Gene Expr 2011; 21(2): 115-29.
[http://dx.doi.org/10.1615/critreveukargeneexpr.v21.i2.20]
[14]
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321(5897): 1801-6.
[http://dx.doi.org/10.1126/science.1164368] [PMID: 18772397]
[15]
Wang L, Tsutsumi S, Kawaguchi T, et al. Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res 2012; 22(2): 208-19.
[http://dx.doi.org/10.1101/gr.123109.111] [PMID: 22156295]
[16]
Seymour AB, Hruban RH, Redston M, et al. Allelotype of pancreatic adenocarcinoma. Cancer Res 1994; 54(10): 2761-4.
[PMID: 8168108]
[17]
Erkan M, Reiser-Erkan C, Michalski CW, et al. Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 2009; 11(5): 497-508.
[http://dx.doi.org/10.1593/neo.81618] [PMID: 19412434]
[18]
Kong B, Cheng T, Wu W, et al. Hypoxia-induced endoplasmic reticulum stress characterizes a necrotic phenotype of pancreatic cancer. Oncotarget 2015; 6(31): 32154-60.
[http://dx.doi.org/10.18632/oncotarget.5168] [PMID: 26452217]
[19]
Organ SL. Tsao M-SJTaimo. An overview of the c-MET signaling pathway. Ther Adv Med Oncol 2011; 3(1): S7-S19.
[http://dx.doi.org/10.1177/1758834011422556]
[20]
Rodrigues GA, Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene 1994; 9(7): 2019-27.
[PMID: 8208547]
[21]
Ponzetto C, Bardelli A, Zhen Z, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 1994; 77(2): 261-71.
[http://dx.doi.org/10.1016/0092-8674(94)90318-2] [PMID: 7513258]
[22]
Gholamin S, Fiuji H, Maftouh M, Mirhafez R, Homaei Shandiz F, Avan A. Targeting c-MET/HGF signaling pathway in upper gastrointestinal cancers: rationale and progress. Curr Drug Targets 2014; 15(14): 1302-11.
[http://dx.doi.org/10.2174/1389450115666141107105456]
[23]
Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: a conspiracy theory. World J Gastroenterol 2014; 20(32): 11216-29.
[http://dx.doi.org/10.3748/wjg.v20.i32.11216] [PMID: 25170206]
[24]
Pothula SP, Xu Z, Goldstein D, et al. Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. Br J Cancer 2016; 114(3): 269-80.
[http://dx.doi.org/10.1038/bjc.2015.478] [PMID: 26766740]
[25]
Ide T, Kitajima Y, Miyoshi A, et al. Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 2006; 119(12): 2750-9.
[http://dx.doi.org/10.1002/ijc.22178] [PMID: 16998831]
[26]
Tang S-C, Chen YC. Novel therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20(31): 10825-44.
[http://dx.doi.org/10.3748/wjg.v20.i31.10825] [PMID: 25152585]
[27]
Tang L, Dai DL, Su M, Martinka M, Li G, Zhou Y. Aberrant expression of collagen triple helix repeat containing 1 in human solid cancers. Clin Cancer Res 2006; 12(12): 3716-22.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0030] [PMID: 16778098]
[28]
Pyagay P, Heroult M, Wang Q, et al. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res 2005; 96(2): 261-8.
[http://dx.doi.org/10.1161/01.RES.0000154262.07264.12] [PMID: 15618538]
[29]
Park EH, Kim S, Jo JY, et al. Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis 2013; 34(3): 694-702.
[http://dx.doi.org/10.1093/carcin/bgs378] [PMID: 23222813]
[30]
Wang Y. Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol Cancer Ther 2009; 8(8): 2103-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0282] [PMID: 19671746]
[31]
Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol 2005; 17(5): 542-7.
[http://dx.doi.org/10.1016/j.ceb.2005.08.007] [PMID: 16099634]
[32]
Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390(6659): 465-71.
[http://dx.doi.org/10.1038/37284] [PMID: 9393997]
[33]
Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 2010; 10(6): 415-24.
[http://dx.doi.org/10.1038/nrc2853] [PMID: 20495575]
[34]
Melzer C, Hass R, von der Ohe J, Lehnert H, Ungefroren H. Signaling, The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun Signal 2017; 15(1): 19.
[http://dx.doi.org/10.1186/s12964-017-0175-0]
[35]
Schutte M, Rozenblum E, Moskaluk CA, et al. An integrated high-resolution physical map of the DPC/BRCA2 region at chromosome 13q12. Cancer Res 1995; 55(20): 4570-4.
[PMID: 7553631]
[36]
Izeradjene K, Combs C, Best M, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 2007; 11(3): 229-43.
[http://dx.doi.org/10.1016/j.ccr.2007.01.017] [PMID: 17349581]
[37]
Friess H, Yamanaka Y, Büchler M, et al. Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993; 105(6): 1846-56.
[http://dx.doi.org/10.1016/0016-5085(93)91084-U] [PMID: 8253361]
[38]
Nicolás FJ, Hill CSJO. Attenuation of the TGF-β-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-β-induced growth arrest. Oncogene 2003; 22(24): 3698-711.
[http://dx.doi.org/10.1038/sj.onc.1206420] [PMID: 12802277]
[39]
Aaronson. Horvath CM. A road map for those who don’t know JAK-. STAT Science 2002; 296: 1653-5.
[http://dx.doi.org/10.1126/science.1071545]
[40]
Vera J, Rateitschak K, Lange F, Kossow C, Wolkenhauer O, Jaster R. Systems biology of JAK-STAT signalling in human malignancies. Prog Biophys Mol Biol 2011; 106(2): 426-34.
[http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.013]
[41]
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66: 311-28.
[http://dx.doi.org/10.1146/annurev-med-051113-024537] [PMID: 25587654]
[42]
Thomas SJ, Snowden JA, Zeidler MP, Danson SJ. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer 2015; 113(3): 365-71.
[http://dx.doi.org/10.1038/bjc.2015.233] [PMID: 26151455]
[43]
Buettner R, Mora LB, Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8(4): 945-54.
[PMID: 11948098]
[44]
Yu JH, Kim H. Role of janus kinase/signal transducers and activators of transcription in the pathogenesis of pancreatitis and pancreatic cancer. Gut Liver 2012; 6(4): 417-22.
[http://dx.doi.org/10.5009/gnl.2012.6.4.417] [PMID: 23170143]
[45]
Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Res 1999; 59(5): 987-90.
[PMID: 10070951]
[46]
Hill R, Li Y, Tran LM, et al. Cell intrinsic role of COX-2 in pancreatic cancer development. Mol Cancer Ther 2012; 11(10): 2127-37.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0342] [PMID: 22784710]
[47]
Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13(1): 11-26.
[http://dx.doi.org/10.1038/nrc3419] [PMID: 23258168]
[48]
Biankin AV, Kench JG, Dijkman FP, Biankin SA, Henshall SM. Molecular pathogenesis of precursor lesions of pancreatic ductal adenocarcinoma. Pathology 2003; 35(1): 14-24.
[PMID: 12701679]
[49]
Al-Aynati MM, Radulovich N, Riddell RH, Tsao M-SJCCR. Epithelial-cadherin and β-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res 2004; 10(4): 1235-40.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0087] [PMID: 14977820]
[50]
Zavoral M, Minarikova P, Zavada F, Salek C, Minarik M. Molecular biology of pancreatic cancer. World J Gastroenterol 2011; 17(24): 2897-908.
[http://dx.doi.org/10.3748/wjg.v17.i24.2897] [PMID: 21734801]
[51]
Cui J, Jiang W, Wang S, Wang L, Xie K. Role of Wnt/β-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des 2012; 18(17): 2464-71.
[http://dx.doi.org/10.2174/13816128112092464] [PMID: 22372504]
[52]
Freese JL, Pino D, Pleasure SJ. Wnt signaling in development and disease. Neurobiol Dis 2010; 38(2): 148-53.
[http://dx.doi.org/10.1016/j.nbd.2009.09.003] [PMID: 19765659]
[53]
Smith JP, Solomon TE, Bagheri S, Kramer S. Cholecystokinin stimulates growth of human pancreatic adenocarcinoma SW-1990. Dig Dis Sci 1990; 35(11): 1377-84.
[http://dx.doi.org/10.1007/BF01536744] [PMID: 2226098]
[54]
Smith JP, Kramer ST, Solomon TE. CCK stimulates growth of six human pancreatic cancer cell lines inserum-free medium. Reguletory peptides 1991; 32(3): 341-9..
[55]
Ding WQ, Kuntz SM, Miller LJ. A misspliced form of the cholecystokinin-B/gastrin receptor in pancreatic carcinoma: role of reduced sellular U2AF35 and a suboptimal 3′-splicing site leading to retention of the fourth intron. Cancer Res 2002; 62(3): 947-52.
[PMID: 11830556]
[56]
Watson S, Durrant L, Morris D. Gastrin: growth enhancing effects on human gastric and colonic tumour cells. Br J Cancer 1989; 59(4): 554-8.
[http://dx.doi.org/10.1038/bjc.1989.112] [PMID: 2713241]
[57]
Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 2012; 16(1): 103-19.
[http://dx.doi.org/10.1517/14728222.2011.645805] [PMID: 22239440]
[58]
Furukawa T. Impacts of activation of the mitogen-activated protein kinase pathway in pancreatic cancer. Front Oncol 2015; 5: 23.
[http://dx.doi.org/10.3389/fonc.2015.00023] [PMID: 25699241]
[59]
Murugan AK, Grieco M, Tsuchida N. Seminars in cancer biology. UK: Elsevier 2019.
[60]
Giehl K, Skripczynski B, Mansard A, Menke A, Gierschik P. Growth factor-dependent activation of the Ras-Raf-MEK-MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 2000; 19(25): 2930-42.
[http://dx.doi.org/10.1038/sj.onc.1203612] [PMID: 10871844]
[61]
Margolis B, Skolnik EY. Activation of Ras by receptor tyrosine kinases. J Am Soc Nephrol 1994; 5(6): 1288-99.
[PMID: 7893993]
[62]
Yaeger R, Corcoran RB. Targeting alterations in the RAF-MEK pathway. Cancer Discov 2019; 9(3): 329-41.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1321] [PMID: 30770389]
[63]
Awasthi N, Kronenberger D, Stefaniak A, et al. Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett 2019; 459: 41-9.
[http://dx.doi.org/10.1016/j.canlet.2019.05.037] [PMID: 31153980]
[64]
Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008; 8(3): 187-98.
[http://dx.doi.org/10.2174/156800908784293659] [PMID: 18473732]
[65]
Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273(22): 13375-8.
[http://dx.doi.org/10.1074/jbc.273.22.13375] [PMID: 9593664]
[66]
Gao C, Yuan X, Jiang Z, et al. Regulation of AKT phosphorylation by GSK3β and PTEN to control chemoresistance in breast cancer. Breast Cancer Res Treat 2019; 176(2): 291-301.
[http://dx.doi.org/10.1007/s10549-019-05239-3] [PMID: 31006103]
[67]
Wang H, Zhao Y, Cao L, Zhang J, Wang Y, Xu M. Metastasis suppressor protein 1 regulated by PTEN suppresses invasion, migration, and EMT of gastric carcinoma by inactivating PI3K/AKT signaling. J Cell Biochem 2019; 120(3): 3447-54.
[http://dx.doi.org/10.1002/jcb.27618] [PMID: 30246429]
[68]
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004; 30(2): 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[69]
Kalli M, Minia A, Pliaka V, Fotis C, Alexopoulos LG, Stylianopoulos T. Solid stress-induced migration is mediated by GDF15 through Akt pathway activation in pancreatic cancer cells. Sci Rep 2019; 9(1): 978.
[http://dx.doi.org/10.1038/s41598-018-37425-6] [PMID: 30700740]
[70]
Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2014; 142(2): 164-75.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.004] [PMID: 24333502]
[71]
Song HY, Wang Y, Lan H, Zhang YX. Expression of notch receptors and their ligands in pancreatic ductal adenocarcinoma. Exp Ther Med 2018; 16(1): 53-60.
[http://dx.doi.org/10.3892/etm.2018.6172] [PMID: 29896227]
[72]
Miele L. Notch signaling. Clin Cancer Res 2006; 12(4): 1074-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2570] [PMID: 16489059]
[73]
Yan D, Hao C, Xiao-Feng L, Yu-Chen L, Yu-Bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol 2018; 234(1): 158-70.
[http://dx.doi.org/10.1002/jcp.26775] [PMID: 30076599]
[74]
Avila JL, Kissil JL. Notch signaling in pancreatic cancer: oncogene or tumor suppressor? Trends Mol Med 2013; 19(5): 320-7.
[http://dx.doi.org/10.1016/j.molmed.2013.03.003] [PMID: 23545339]
[75]
Miyamoto Y, Maitra A, Ghosh B, et al. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003; 3(6): 565-76.
[http://dx.doi.org/10.1016/S1535-6108(03)00140-5] [PMID: 12842085]
[76]
Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 2002; 8(9): 979-86.
[http://dx.doi.org/10.1038/nm754] [PMID: 12185362]
[77]
Gurdon JB, Harger P, Mitchell A, Lemaire P. Activin signalling and response to a morphogen gradient. Nature 1994; 371(6497): 487-92.
[http://dx.doi.org/10.1038/371487a0] [PMID: 7935761]
[78]
Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev 2003; 22(4): 337-58.
[http://dx.doi.org/10.1023/A:1023772912750] [PMID: 12884910]
[79]
Abram CL, Courtneidge SA. Src family tyrosine kinases and growth factor signaling. Exp Cell Res 2000; 254(1): 1-13.
[http://dx.doi.org/10.1006/excr.1999.4732] [PMID: 10623460]
[80]
Lutz MP, Esser IB, Flossmann-Kast BB, et al. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 1998; 243(2): 503-8.
[http://dx.doi.org/10.1006/bbrc.1997.8043] [PMID: 9480838]
[81]
Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta 1996; 1287(2-3): 121-49.
[82]
Subramani R, Lopez-Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS One 2014; 9(5)e97016
[http://dx.doi.org/10.1371/journal.pone.0097016] [PMID: 24809702]
[83]
Kamrava M, Gius D, Casagrande G, Kohn E. Will targeting insulin growth factor help us or hurt us?: An oncologist’s perspective. Ageing Res Rev 2011; 10(1): 62-70.
[http://dx.doi.org/10.1016/j.arr.2009.10.007] [PMID: 19896561]
[84]
Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Møller MB, Rosenberg AE, Louis DN. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol 1999; 155(6): 1879-84.
[http://dx.doi.org/10.1016/S0002-9440(10)65507-1] [PMID: 10595918]
[85]
Sasaki S, Yamamoto H, Kaneto H, et al. Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 2003; 10(1): 21-5.
[http://dx.doi.org/10.3892/or.10.1.21] [PMID: 12469138]
[86]
Cheng J, Okolotowicz KJ, Ryan D, Mose E, Lowy AM, Cashman JR. Inhibition of invasive pancreatic cancer: restoring cell apoptosis by activating mitochondrial p53. Am J Cancer Res 2019; 9(2): 390-405.
[PMID: 30906636]
[87]
Larsson L-G. In Seminars in cancer biology. UK: Elsevier 2011; Vol. 21: pp. 367-76.
[88]
Rozenblum E, Schutte M, Goggins M, et al. Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 1997; 57(9): 1731-4.
[PMID: 9135016]
[89]
Jones S, Li M, Parsons DW, et al. Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 2012; 33(1): 100-3.
[http://dx.doi.org/10.1002/humu.21633] [PMID: 22009941]
[90]
Wang X, Nagl NG, Wilsker D, et al. Two related ARID family proteins are alternative subunits of human SWI/SNF complexes. Biochem J 2004; 383(Pt 2): 319-25.
[http://dx.doi.org/10.1042/BJ20040524] [PMID: 15170388]
[91]
Shain AH, Giacomini CP, Matsukuma K, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA 2012; 109(5): E252-9.
[http://dx.doi.org/10.1073/pnas.1114817109] [PMID: 22233809]
[92]
Lee KL, Lim SK, Orlov YL, et al. Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet 2011; 7(6)e1002130
[http://dx.doi.org/10.1371/journal.pgen.1002130] [PMID: 21731500]
[93]
Sjöblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314(5797): 268-74.
[http://dx.doi.org/10.1126/science.1133427] [PMID: 16959974]
[94]
Balakrishnan A, Bleeker FE, Lamba S, et al. Novel somatic and germline mutations in cancer candidate genes in glioblastoma, melanoma, and pancreatic carcinoma. Cancer Res 2007; 67(8): 3545-50.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0065] [PMID: 17440062]
[95]
Mann KM, Ward JM, Yew CCK, et al. Australian pancreatic cancer genome initiative. sleeping beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 2012; 109(16): 5934-41.
[http://dx.doi.org/10.1073/pnas.1202490109] [PMID: 22421440]
[96]
Zhang Y, Choi M. Immune therapy in pancreatic cancer: now and the future? Rev Recent Clin Trials 2015; 10(4): 317-25.
[http://dx.doi.org/10.2174/1574887110666150916142537] [PMID: 26374557]
[97]
Strønen E, Toebes M, Kelderman S, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 2016; 352(6291): 1337-41.
[http://dx.doi.org/10.1126/science.aaf2288] [PMID: 27198675]
[98]
Brunet LR, Hagemann T, Andrew G, Mudan S, Marabelle A. Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? OncoImmunology 2015; 5(4)e1112942
[http://dx.doi.org/10.1080/2162402X.2015.1112942] [PMID: 27141395]
[99]
Lach R, Schön J, Krolopp T, Arndt S, Langer B, Grellmann W. Depth‐sensing macroindentation test and stepped iso¬thermal method – accelerated assessment of the local retardation behaviour of thermoplastic polymers. Nanostruc Biorel Mater 2016; 366: 60-5.
[100]
Adamska A, Domenichini A, Falasca M. Pancreatic ductal adenocarcinoma: current and evolving therapies. Int J Mol Sci 2017; 18(7): 1338.
[http://dx.doi.org/10.3390/ijms18071338] [PMID: 28640192]
[101]
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular targeted intervention for pancreatic cancer. Cancers (Basel) 2015; 7(3): 1499-542.
[http://dx.doi.org/10.3390/cancers7030850] [PMID: 26266422]
[102]
Ramanathan RK, Lee KM, McKolanis J, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 2005; 54(3): 254-64.
[http://dx.doi.org/10.1007/s00262-004-0581-1] [PMID: 15372205]
[103]
Yamamoto K, Ueno T, Kawaoka T, et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res 2005; 25(5): 3575-9.
[PMID: 16101182]
[104]
Cheung PF, Lutz M, Siveke JT. Immunotherapy and combination strategies in pancreatic cancer: current status and emerging trends. Oncol Res Treat 2018; 41(5): 286-90.
[http://dx.doi.org/10.1159/000488917] [PMID: 29705789]
[105]
Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers (Basel) 2018; 10(1): 6.
[http://dx.doi.org/10.3390/cancers10010006] [PMID: 29301364]
[106]
Wu AA, Jaffee E, Lee V. Current status of immunotherapies for treating pancreatic cancer. Curr Oncol Rep 2019; 21(7): 60.
[http://dx.doi.org/10.1007/s11912-019-0811-5] [PMID: 31101991]
[107]
Johansson H, Andersson R, Bauden M, Hammes S, Holdenrieder S, Ansari D. Immune checkpoint therapy for pancreatic cancer. World J Gastroenterol 2016; 22(43): 9457-76.
[http://dx.doi.org/10.3748/wjg.v22.i43.9457] [PMID: 27920468]
[108]
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366(26): 2455-65.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[109]
O’Reilly EM, Oh D-Y, Dhani N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol 2019; 5(10): 1431-8.
[http://dx.doi.org/10.1001/jamaoncol.2019.1588] [PMID: 31318392]
[110]
Lopez NE, Prendergast C, Lowy AM. Borderline resectable pancreatic cancer: definitions and management. World J Gastroenterol 2014; 20(31): 10740-51.
[http://dx.doi.org/10.3748/wjg.v20.i31.10740] [PMID: 25152577]
[111]
Shaib WL, Ip A, Cardona K, et al. Contemporary management of borderline resectable and locally advanced unresectable pancreatic cancer. Oncologist 2016; 21(2): 178-87.
[http://dx.doi.org/10.1634/theoncologist.2015-0316] [PMID: 26834159]
[112]
Pereira NP, Corrêa JR. Pancreatic cancer: treatment approaches and trends. J Cancer Metastasis Treat 2018; 4: 30.
[http://dx.doi.org/10.20517/2394-4722.2018.13]
[113]
Donahue TR, Reber HA. Seminars in oncology. UK: Elsevier 2015; Vol. 42: pp. 98-109.
[114]
Kleeff J, Diener MK, Z’graggen K, et al. Distal pancreatectomy: risk factors for surgical failure in 302 consecutive cases. Ann Surg 2007; 245(4): 573-82.
[http://dx.doi.org/10.1097/01.sla.0000251438.43135.fb] [PMID: 17414606]
[115]
Kircher SM, Krantz SB, Nimeiri HS, Mulcahy MF, Munshi HG, Benson AB III. Therapy of locally advanced pancreatic adenocarcinoma: unresectable and borderline patients. Expert Rev Anticancer Ther 2011; 11(10): 1555-65.
[http://dx.doi.org/10.1586/era.11.125] [PMID: 21999129]
[116]
Rich TA. Radiation therapy for pancreatic cancer: eleven year experience at the JCRT. Int J Radiat Oncol Biol Phys 1985; 11(4): 759-63.
[http://dx.doi.org/10.1016/0360-3016(85)90308-6] [PMID: 2984152]
[117]
Abrams RA, Lowy AM, O’Reilly EM, Wolff RA, Picozzi VJ, Pisters PW. Combined modality treatment of resectable and borderline resectable pancreas cancer: expert consensus statement. Ann Surg Oncol 2009; 16(7): 1751-6.
[http://dx.doi.org/10.1245/s10434-009-0413-9] [PMID: 19390900]
[118]
Gemenetzis G, Groot VP, Blair AB, et al. Survival in locally advanced pancreatic cancer after neoadjuvant therapy and surgical resection. Ann Surg 2019; 270(2): 340-7.
[http://dx.doi.org/10.1097/SLA.0000000000002753] [PMID: 29596120]
[119]
Park WG, Yan BM, Schellenberg D, et al. EUS-guided gold fiducial insertion for image-guided radiation therapy of pancreatic cancer: 50 successful cases without fluoroscopy. Gastrointest Endosc 2010; 71(3): 513-8.
[http://dx.doi.org/10.1016/j.gie.2009.10.030] [PMID: 20189509]
[120]
Dobelbower RR, Merrick HW, Khuder S, Battle JA, Herron LM, Pawlicki T. Adjuvant radiation therapy for pancreatic cancer: a 15-year experience. Int J Radiat Oncol Biol Phys 1997; 39(1): 31-7.
[http://dx.doi.org/10.1016/S0360-3016(97)00125-9] [PMID: 9300737]
[121]
Moningi S, Dholakia AS, Raman SP, et al. The role of stereotactic body radiation therapy for pancreatic cancer: a single-institution experience. Ann Surg Oncol 2015; 22(7): 2352-8.
[http://dx.doi.org/10.1245/s10434-014-4274-5] [PMID: 25564157]
[122]
Farrell TJ, Barbot DJ, Rosato FE. Pancreatic resection combined with intraoperative radiation therapy for pancreatic cancer Annals of surgary 1997; 226(1): 66.
[http://dx.doi.org/10.1097/00000658-199707000-00009]
[123]
Hazard L. The role of radiation therapy in pancreas cancer. Gastrointest Cancer Res 2009; 3(1): 20-8.
[PMID: 19343134]
[124]
Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L. Adjuvant and neoadjuvant treatment in pancreatic cancer. World J Gastroenterol 2012; 18(14): 1565-72.
[http://dx.doi.org/10.3748/wjg.v18.i14.1565] [PMID: 22529684]
[125]
de Sousa Cavalcante L, Monteiro G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 2014; 741: 8-16.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.041] [PMID: 25084222]
[126]
Gandhi V, Legha J, Chen F, Hertel LW, Plunkett W. Excision of 2′,2′-difluorodeoxycytidine (gemcitabine) monophosphate residues from DNA. Cancer Res 1996; 56(19): 4453-9.
[PMID: 8813140]
[127]
Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991; 51(22): 6110-7.
[PMID: 1718594]
[128]
de Bono JS, Stephenson J Jr, Baker SD, et al. Troxacitabine, an L-stereoisomeric nucleoside analog, on a five-times-daily schedule: a phase I and pharmacokinetic study in patients with advanced solid malignancies. J Clin Oncol 2002; 20(1): 96-109.
[http://dx.doi.org/10.1200/JCO.2002.20.1.96] [PMID: 11773159]
[129]
Weitman S, Marty J, Jolivet J, Locas C, Von Hoff DD. The new dioxolane, (-)-2′-deoxy-3′-oxacytidine (BCH-4556, troxacitabine), has activity against pancreatic human tumor xenografts. Clin Cancer Res 2000; 6(4): 1574-8.
[PMID: 10778991]
[130]
Harris PA, Marinis JM, Lich JD, et al. Identification of a RIP1 kinase inhibitor clinical candidate (GSK3145095) for the treatment of pancreatic cancer. ACS Med Chem Lett 2019; 10(6): 857-62.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00108] [PMID: 31223438]
[131]
Beg MS, Lowy AM, O’Dwyer PJ, et al. A randomized clinical trial of chemotherapy with gemcitabine/ cisplatin/nabpaclitaxel with or without the AXL inhibitor bemcentinib (BGB324) for patients with advanced pancreatic cancer. Am Soc Clin Oncol 2019; 37(4): suppl TPS473..
[132]
Abulwerdi F, Liao C, Liu M, et al. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 2014; 13(3): 565-75.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0767] [PMID: 24019208]
[133]
Zhang T, Hamza A, Cao X, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 2008; 7(1): 162-70.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0484] [PMID: 18202019]
[134]
Song D, Chaerkady R, Tan AC, et al. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol Cancer Ther 2008; 7(10): 3275-84.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0508] [PMID: 18852131]
[135]
Harikumar KB, Kunnumakkara AB, Ochi N, et al. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 2010; 9(5): 1136-46.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-1145] [PMID: 20442301]
[136]
Jeay S, Munshi N, Hill J, et al. ARQ 197, a highly selective small molecule inhibitor of c-Met, with selective antitumor properties in a broad spectrum of human cancer cells. AACR 2007; 67: 2369.
[137]
Cui JJ, Tran-Dubé M, Shen H, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 2011; 54(18): 6342-63.
[http://dx.doi.org/10.1021/jm2007613] [PMID: 21812414]
[138]
Christensen JG, Zou HY, Arango ME, et al. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 2007; 6(12 Pt 1): 3314-22.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0365] [PMID: 18089725]
[139]
Zillhardt M, Park S-M, Romero IL, et al. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin Cancer Res 2011; 17(12): 4042-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-3387] [PMID: 21551255]
[140]
Janne P, Wax M, Leach J, Engelman J. Targeting MET with XL184 to reverse EGFR tyrosine kinase inhibitor (TKI) resistance in NSCLC: impact of preclinical studies on clinical trial design. EJC Suplements 2008; 12(6): 174.
[http://dx.doi.org/10.1016/S1359-6349(08)72486-8]
[141]
Tolcher A, Berk G, Fine G, et al. MP-470, a dual inhibitor of mutant kinases (c-KIT and PDGFRa) and DNA repair protein Rad 51—final results from a first-in-man single agent study. AACR 2008; 70: 2749.
[142]
Thoennissen NH, Iwanski GB, Doan NB, et al. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Res 2009; 69(14): 5876-84.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0536] [PMID: 19605406]
[143]
Palagani V, Bozko P, El Khatib M, et al. Combined inhibition of Notch and JAK/STAT is superior to monotherapies and impairs pancreatic cancer progression. Carcinogenesis 2014; 35(4): 859-66.
[http://dx.doi.org/10.1093/carcin/bgt394] [PMID: 24293409]
[144]
Ding XZ, Tong W-G, Adrian TE. Blockade of cyclooxygenase-2 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Anticancer Res 2000; 20(4): 2625-31.
[PMID: 10953335]
[145]
Ninomiya-Tsuji J, Kajino T, Ono K, et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J Biol Chem 2003; 278(20): 18485-90.
[http://dx.doi.org/10.1074/jbc.M207453200] [PMID: 12624112]
[146]
Yu M, Ting DT, Stott SL, et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 2012; 487(7408): 510-3.
[http://dx.doi.org/10.1038/nature11217] [PMID: 22763454]
[147]
Mu GG, Zhang LL, Li HY, Liao Y, Yu HG. Thymoquinone pretreatment overcomes the insensitivity and potentiates the antitumor effect of gemcitabine through abrogation of Notch1, PI3K/Akt/mTOR regulated signaling pathways in pancreatic cancer. Dig Dis Sci 2015; 60(4): 1067-80.
[http://dx.doi.org/10.1007/s10620-014-3394-x] [PMID: 25344906]
[148]
Yezhelyev MV, Koehl G, Guba M, et al. Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 2004; 10(23): 8028-36.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0621] [PMID: 15585638]
[149]
Blum G, Gazit A, Levitzki A. Substrate competitive inhibitors of IGF-1 receptor kinase. Biochemistry 2000; 39(51): 15705-12.
[http://dx.doi.org/10.1021/bi001516y] [PMID: 11123895]
[150]
Moser C, Schachtschneider P, Lang SA, et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) using NVP-AEW541, a small molecule kinase inhibitor, reduces orthotopic pancreatic cancer growth and angiogenesis. Eur J Cancer 2008; 44(11): 1577-86.
[http://dx.doi.org/10.1016/j.ejca.2008.04.003] [PMID: 18445520]
[151]
Biankin AV, Piantadosi S, Hollingsworth SJ. Patient-centric trials for therapeutic development in precision oncology. Nature 2015; 526(7573): 361-70.
[http://dx.doi.org/10.1038/nature15819] [PMID: 26469047]
[152]
Chang DK, Grimmond SM, Evans TR, Biankin AV. Mining the genomes of exceptional responders. Nat Rev Cancer 2014; 14(5): 291-2.
[http://dx.doi.org/10.1038/nrc3723] [PMID: 25688402]
[153]
Tripathy D, Chien AJ, Hylton N, et al. Adaptively randomized trial of neoadjuvant chemotherapy with or without the Akt inhibitor MK-2206: Graduation results from the I-SPY 2. Trial J Clin Oncol 2015; 33: 524.
[154]
Wheler JJ, Janku F, Naing A, et al. Cancer therapy directed by comprehensive genomic profiling: a single center study. Cancer Res 2016; 76(13): 3690-701.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-3043] [PMID: 27197177]
[155]
Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol 2010; 7(3): 163-72.
[http://dx.doi.org/10.1038/nrclinonc.2009.236] [PMID: 20101258]
[156]
Maitra A, Hruban RH. Pancreatic cancer. Annual Rev Pathol: Mech Dis 2008; 3: 157-88.
[http://dx.doi.org/10.1146/annurev.pathmechdis.3.121806.154305]
[157]
Lowery MA, Kelsen DP, Stadler ZK, et al. An emerging entity: pancreatic adenocarcinoma associated with a known BRCA mutation: clinical descriptors, treatment implications, and future directions. Oncologist 2011; 16(10): 1397-402.
[http://dx.doi.org/10.1634/theoncologist.2011-0185] [PMID: 21934105]
[158]
Goggins M, Shekher M, Turnacioglu K, Yeo CJ, Hruban RH, Kern SE. Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 1998; 58(23): 5329-32.
[PMID: 9850059]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2021
Published on: 08 October, 2020
Page: [85 - 108]
Pages: 24
DOI: 10.2174/2212796814999201008130819
Price: $25

Article Metrics

PDF: 100
HTML: 1