Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Review Article

Recent Developments in the Electrochemical Determination of Sulfonamides

Author(s): Li Fu*, Xinyi Zhang, Su Ding, Fei Chen, Yanfei Lv, Huaiwei Zhang and Shichao Zhao

Volume 18, Issue 1, 2022

Published on: 06 October, 2020

Page: [4 - 13] Pages: 10

DOI: 10.2174/1573412917999201006195229

Price: $65

Abstract

Background: Sulfonamides are the anti-bacterial and anti-inflammatory drugs synthesized, which are widely used as medical and veterinary antibiotics. However, the excess dosage of sulfonamides can harm human health. Drug residues in animal products also can harm human health through the food chain. The long-term consumption of animal food containing drug residues will cause some toxicity and side effects on human body functions, which will seriously threaten human health.

Methods: Electroanalytical methods are attracting much attention because of their advantage over conventional methods, as they are quick, low-cost, high sensitivity, and portable. This review examines the progress made in the selective electrochemical determination of sulfonamides in the last 20 years.

Results: In this review, we describe the development of electrochemical methods for sulfonamides determination. Then, we pay special attention to the detection of sulfonamides using molecular imprinting technology. The linear detection range with the limit of detection has been listed for comparison.

Conclusion: Electrochemical determination of sulfonamides is a fast, simple, sensitive, and cost-effective approach. The surface modification of commercial electrodes can significantly improve the sensing performance.

Keywords: Electrochemical sensors, sulfonamides, drug detection, electrode modification, molecular imprinting, chromatography.

Graphical Abstract
[1]
Khanfar, M.F.; Abu-Nameh, E.S.; Saket, M.M.; Al Khateeb, L.T.; Al Ahmad, A.; Asaad, Z.; Salem, Z.; Alnuman, N. Detection of hydrochlorothiazide, sulfamethoxazole, and trimethoprim at metal oxide modified glassy carbon electrodes. Int. J. Electrochem. Sci., 2020, 15, 1771-1787.
[http://dx.doi.org/10.20964/2020.02.35]
[2]
Zhang, H.; Gui, Y.; Wang, M. Molecularly imprinted sensor based on O-Phenylenediamine for electrochemical detection of sulfamethoxazole. Int. J. Electrochem. Sci., 2019, 14, 11630-11640.
[http://dx.doi.org/10.20964/2019.12.57]
[3]
Zhao, X.; Wang, P.; Ye, C.; Wang, H.; Cao, W. Preconcentration of sulfamethoxazole using a molecularly imprinted polymer (MIP) prepared by zeolitic imidazolate framework-8-hemoglobin catalyzed by electrochemically mediated atom transfer radical polymerization with electrochemical determination on a screen-printed electrode. Anal. Lett., 2020, 53(3), 459-468.
[http://dx.doi.org/10.1080/00032719.2019.1656223]
[4]
Fabunmi, I.; Sims, N.; Proctor, K.; Oyeyiola, A.; Oluseyi, T.; Olayinka, K.; Kasprzyk-Hordern, B. Multi-Residue determination of micropollutants in nigerian fish from Lagos Lagoon using ultrasound assisted extraction, solid phase extraction and Ultra-high-performance liquid chromatography tandem mass spectrometry. Anal. Methods, 2020, 12(16), 2114-2122.
[http://dx.doi.org/10.1039/D0AY00411A]
[5]
Krakkó, D.; Licul-Kucera, V.; Záray, G.; Mihucz, V.G. Single-run ultra-high performance liquid chromatography for quantitative determination of ultra-traces of ten popular active pharmaceutical ingredients by quadrupole time-of-flight mass spectrometry after offline preconcentration by solid phase extraction from drinking and river waters as well as treated wastewater. Microchem. J., 2019, 148, 108-119.
[http://dx.doi.org/10.1016/j.microc.2019.04.047]
[6]
Li, L.; Zhu, Y.; Zhang, F.; Li, H.; Iqbal, J.; Wu, T.; Du, Y. Rapid detection of sulfamethoxazole in plasma and food samples with in-syringe membrane SPE coupled with solid-phase fluorescence spectrometry. Food Chem., 2020, 320, 126612.
[http://dx.doi.org/10.1016/j.foodchem.2020.126612] [PMID: 32197124]
[7]
Mogolodi Dimpe, K.; Mpupa, A.; Nomngongo, P.N. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 188, 341-348.
[http://dx.doi.org/10.1016/j.saa.2017.07.039] [PMID: 28756255]
[8]
Burkin, M.A.; Nuriev, R.I.; Wang, Z.; Galvidis, I.A. Development of sandwich double-competitive ELISA for sulfonamides. comparative analytical characteristics and matrix effect resistance. Food Anal. Methods, 2018, 11(3), 663-674.
[http://dx.doi.org/10.1007/s12161-017-1036-6]
[9]
Rana, N.K.; Singh, V.K. Enantioselective enolate protonation in sulfa-Michael addition to α-substituted N-acryloyloxazolidin-2-ones with bifunctional organocatalyst. Org. Lett., 2011, 13(24), 6520-6523.
[http://dx.doi.org/10.1021/ol202808n] [PMID: 22097882]
[10]
Thompson, T.S.; Noot, D.K. Determination of sulfonamides in honey by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta, 2005, 551(1), 168-176.
[http://dx.doi.org/10.1016/j.aca.2005.03.077]
[11]
Heller, D.N.; Ngoh, M.A.; Donoghue, D.; Podhorniak, L.; Righter, H.; Thomas, M.H. Identification of incurred sulfonamide residues in eggs: methods for confirmation by liquid chromatography-tandem mass spectrometry and quantitation by liquid chromatography with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 774(1), 39-52.
[http://dx.doi.org/10.1016/S1570-0232(02)00187-3] [PMID: 12052721]
[12]
Li, Y.; Zhu, N.; Chen, T.; Ma, Y.; Li, Q. A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination. Microchem. J., 2018, 138, 401-407.
[http://dx.doi.org/10.1016/j.microc.2018.01.038]
[13]
Lahcen, A.A.; Amine, A. Mini-review: recent advances in electrochemical determination of sulfonamides. Anal. Lett., 2018, 51(3), 424-441.
[http://dx.doi.org/10.1080/00032719.2017.1295977]
[14]
Premarathne, J.M.K.J.K.; Satharasinghe, D.A.; Gunasena, A.R.C.; Munasinghe, D.M.S.; Abeynayake, P. Establishment of a method to detect sulfonamide residues in chicken meat and eggs by high-performance liquid chromatography. FAOIAEA Int. Symp. Food Saf. Qual. Appl. Nucl. Relat. Tech. Vienna Austria 10-13 Novemb. 2014, 2017, pp. 276-282.
[http://dx.doi.org/10.1016/j.foodcont.2015.12.012]
[15]
He, B.; Yan, S. Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene. Int. J. Electrochem., 2017, 12, 3001-3011.
[http://dx.doi.org/10.20964/2017.04.56]
[16]
Pastor-Navarro, N.; Gallego-Iglesias, E.; Maquieira, A.; Puchades, R. Development of a group-specific immunoassay for sulfonamides. Application to bee honey analysis. Talanta, 2007, 71(2), 923-933.
[http://dx.doi.org/10.1016/j.talanta.2006.05.073] [PMID: 19071396]
[17]
Haasnoot, W.; Bienenmann-Ploum, M.; Kohen, F. Biosensor immunoassay for the detection of eight sulfonamides in chicken serum. 4th Int. Symp. Horm. Vet. Residue Anal., 2003, pp. 171-180.
[http://dx.doi.org/10.1016/S0003-2670(02)01545-3]
[18]
Fu, L.; Liu, Z.; Ge, J.; Guo, M.; Zhang, H.; Chen, F.; Su, W.; Yu, A. (001) Plan manipulation of α-Fe2O3 nanostructures for enhanced electrochemical Cr(VI) sensing. J. Electroanal. Chem. (Lausanne Switz.), 2019, 841, 142-147.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.046]
[19]
Fu, L.; Zhang, H.; Zheng, Y.; Zhang, H.; Liu, Q. An electroanalytical method for brewing vinegar authentic identification. Rev. Mex. Ing. Quim., 2020, 19(2), 803-812.
[20]
Zhou, J.; Wu, M.; Xu, Y.; Li, Z.; Yao, Y.; Fu, L. 2D pattern recognition of white spirit based on the electrochemical profile recorded by screen-printed electrode. Int. J. Electrochem. Sci., 2020, 15, 5793-5802.
[http://dx.doi.org/10.20964/2020.06.27]
[21]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C-T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]
[22]
Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C-T.; Yu, A. Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. Bioelectrochemistry, 2020, 133, 107455.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107455] [PMID: 31978859]
[23]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[24]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A New Epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[25]
Jahandari, S.; Taher, M.A.; Karimi-Maleh, H.; Khodadadi, A.; Faghih-Mirzaei, E. A powerful DNA-based voltammetric biosensor modified with Au nanoparticles, for the determination of temodal; an electrochemical and docking investigation. J. Electroanal. Chem. (Lausanne Switz.), 2019, 840, 313-318.
[http://dx.doi.org/10.1016/j.jelechem.2019.03.049]
[26]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movaghgharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310, 113185.
[http://dx.doi.org/10.1016/j.molliq.2020.113185]
[27]
Karimi-Maleh, H.; Karimi, F.; Rezapour, M.; Bijad, M.; Farsi, M.; Beheshti, A.; Shahidi, S-A. Carbon paste modified electrode as powerful sensor approach determination of food contaminants, drug ingredients, and environmental pollutants: a review. Curr. Anal. Chem., 2019, 15(4), 410-422.
[http://dx.doi.org/10.2174/1573411014666181026100037]
[28]
Karimi-Maleh, H.; Farahmandfar, R.; Hosseinpour, R.; Alizadeh, J.; Abbaspourrad, A. Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. Chem. Pap., 2019, 73(10), 2441-2447.
[http://dx.doi.org/10.1007/s11696-019-00793-y]
[29]
Hosseini, F.; Ebrahimi, M.; Karimi-Maleh, H. Electrochemical determination of mycophenolate mofetil in drug samples using carbon paste electrode modified with 1-methyl-3-butylimidazolium bromide and NiO/SWCNTs nanocomposite. Curr. Anal. Chem., 2019, 15(2), 177-182.
[http://dx.doi.org/10.2174/1573411014666180326114345]
[30]
Karimi-Maleh, H.; Karimi, F. FallahShojaei, A.; Tabatabaeian, K.; Arshadi, M.; Rezapour, M. Metal-based nanoparticles as conductive mediators in electrochemical sensors: a mini review. Curr. Anal. Chem., 2019, 15(2), 136-142.
[http://dx.doi.org/10.2174/1573411014666180319152126]
[31]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[32]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[33]
Jahandari, S.; Taher, M.A.; Karimi-Maleh, H.; Mansouri, G. Simultaneous voltammetric determination of glutathione, doxorubicin and tyrosine based on the electrocatalytic effect of a nickel(II) complex and of Pt:Co nanoparticles as a conductive mediator. Mikrochim. Acta, 2019, 186(8), 493.
[http://dx.doi.org/10.1007/s00604-019-3598-z] [PMID: 31267341]
[34]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298, 112040.
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[35]
Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 314, 113588.
[http://dx.doi.org/10.1016/j.molliq.2020.113588]
[36]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; Su, W.; Yu, J.; Lin, C-T. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens. Bioelectron., 2020, 159, 112212.
[http://dx.doi.org/10.1016/j.bios.2020.112212] [PMID: 32364933]
[37]
Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens. Actuators B Chem., 2020, 304, 127390.
[http://dx.doi.org/10.1016/j.snb.2019.127390]
[38]
Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; Yu, J.; Lin, C.T. Electrochemical sex determination of dioecious plants using polydopamine-functionalized graphene sheets. Front Chem., 2020, 8, 92.
[http://dx.doi.org/10.3389/fchem.2020.00092] [PMID: 32211371]
[39]
Fu, L.; Xie, K.; Wang, A.; Lyu, F.; Ge, J.; Zhang, L.; Zhang, H.; Su, W.; Hou, Y-L.; Zhou, C.; Wang, C.; Ruan, S. High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Anal. Chim. Acta, 2019, 1081, 51-58.
[http://dx.doi.org/10.1016/j.aca.2019.06.055] [PMID: 31446963]
[40]
Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the electrochemical profile of pueraria leaves for polyphyly analysis. ChemistrySelect, 2020, 5(17), 5035-5040.
[http://dx.doi.org/10.1002/slct.202001100]
[41]
Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; Yu, A.; Cai, W.; Lin, C-T. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem., 2019, 298, 126836.
[http://dx.doi.org/10.1016/j.snb.2019.126836]
[42]
Ying, J.; Zheng, Y.; Zhang, H.; Fu, L. Room temperature biosynthesis of gold nanoparticles with lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2020, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[43]
Liu, G.; Yang, X.; Zhang, H.; Fu, L. Using voltammetry and EIS for analysis of pottery materials. Int. J. Electrochem. Sci., 2020, 15, 5395-5403.
[http://dx.doi.org/10.20964/2020.06.31]
[44]
Quartieri, S.; Benedetti, L.; Andreoli, R.; Rastelli, A. A theoretical study of the polarographic reduction of sulfanilamide derivatives. J. Electroanal. Chem. Interfacial Electrochem., 1981, 122, 247-253.
[http://dx.doi.org/10.1016/S0022-0728(81)80154-4]
[45]
Levitan, N.I.; Kolthoff, I.; Clark, W.G.; Tenenberg, D.J. Polarographic studies of sulfonamides. I. the oxidation products of sulfanilamide. J. Am. Chem. Soc., 1943, 65(12), 2265-2268.
[http://dx.doi.org/10.1021/ja01252a001]
[46]
Goyal, R.; Srivastava, A.K. Electrochemical behavior of azobenzene-4, 4′-disulfonamide at pyrolytic graphite electrode. Bull. Chem. Soc. Jpn., 1993, 66(1), 205-211.
[http://dx.doi.org/10.1246/bcsj.66.205]
[47]
Goyal, R.N.; Mathur, N.C.; Bhargava, S. Mechanism of electrochemical oxidation of sulfamerazine at a pyrolytic graphite electrode. Electroanalysis, 1990, 2(1), 57-62.
[http://dx.doi.org/10.1002/elan.1140020111]
[48]
Carrazon, J.M.; Recio, A.D.; Diez, L.M. Electroanalytical study of sulphamerazine at a glassy-carbon electrode and its determination in pharmaceutical preparations by HPLC with amperometric detection. Talanta, 1992, 39(6), 631-635.
[http://dx.doi.org/10.1016/0039-9140(92)80072-L] [PMID: 18965428]
[49]
Ferraz, B.R.L.; Profeti, D.; Profeti, L.P.R. Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode. J. Solid State Electrochem., 2018, 22(2), 339-346.
[http://dx.doi.org/10.1007/s10008-017-3764-3]
[50]
Rao, T.N.; Sarada, B.; Tryk, D.; Fujishima, A. Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. J. Electroanal. Chem. (Lausanne Switz.), 2000, 491(1–2), 175-181.
[http://dx.doi.org/10.1016/S0022-0728(00)00208-4]
[51]
Lahcen, A.A.; Errayess, S.A.; Amine, A. Voltammetric determination of sulfonamides using paste electrodes based on various carbon nanomaterials. Mikrochim. Acta, 2016, 183(7), 2169-2176.
[http://dx.doi.org/10.1007/s00604-016-1850-3]
[52]
Iijima, S. Helical Microtubules of graphitic carbon nature, 1991, 354(6348), 56-58.
[53]
Sadeghi, S.; Garmroodi, A. Sensitive detection of sulfasalazine at screen printed carbon electrode modified with functionalized multiwalled carbon nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2014, 727, 171-178.
[http://dx.doi.org/10.1016/j.jelechem.2014.05.034]
[54]
Arvand, M.; Ansari, R.; Heydari, L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mater. Sci. Eng. C, 2011, 31(8), 1819-1825.
[http://dx.doi.org/10.1016/j.msec.2011.08.014]
[55]
Bueno, A.M.; Contento, A.M.; Ríos, A. Determination of sulfonamides in milk samples by HPLC with amperometric detection using a glassy carbon electrode modified with multiwalled carbon nanotubes. J. Sep. Sci., 2014, 37(4), 382-389.
[http://dx.doi.org/10.1002/jssc.201301011] [PMID: 24339370]
[56]
Yadav, S.K.; Choubey, P.K.; Agrawal, B.; Goyal, R.N. Carbon nanotube embedded poly 1,5-diaminonapthalene modified pyrolytic graphite sensor for the determination of sulfacetamide in pharmaceutical formulations. Talanta, 2014, 118, 96-103.
[http://dx.doi.org/10.1016/j.talanta.2013.09.061] [PMID: 24274275]
[57]
Chen, C.; Chen, Y-C.; Hong, Y-T.; Lee, T-W.; Huang, J-F. Facile fabrication of ascorbic acid reduced graphene oxide-modified electrodes toward electroanalytical determination of sulfamethoxazole in aqueous environments. Chem. Eng. J., 2018, 352, 188-197.
[http://dx.doi.org/10.1016/j.cej.2018.06.110]
[58]
Chasta, H.; Goyal, R.N. A Simple and sensitive poly-1,5-diaminonaphthalene modified sensor for the determination of sulfamethoxazole in biological samples. Electroanalysis, 2015, 27(5), 1229-1237.
[http://dx.doi.org/10.1002/elan.201400688]
[59]
He, B-S.; Yan, X-H. Modifications of Au nanoparticle-functionalized graphene for sensitive detection of sulfanilamide. Sensors (Basel), 2018, 18(3), 846.
[http://dx.doi.org/10.3390/s18030846] [PMID: 29533996]
[60]
Chen, S.; Wang, C.; Zhang, M.; Zhang, W.; Qi, J.; Sun, X.; Wang, L.; Li, J. N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide. J. Hazard. Mater., 2020, 390, 122157.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122157] [PMID: 31999959]
[61]
Balasubramanian, P.; Settu, R.; Chen, S-M.; Chen, T-W. Voltammetric sensing of sulfamethoxazole using a glassy carbon electrode modified with a graphitic carbon nitride and zinc oxide nanocomposite. Mikrochim. Acta, 2018, 185(8), 396.
[http://dx.doi.org/10.1007/s00604-018-2934-z] [PMID: 30066186]
[62]
Ghoreishi, S.M.; Behpour, M.; Khoobi, A.; Moghadam, Z. Determination of trace amounts of sulfamethizole using a multi-walled carbon nanotube modified electrode: application of experimental design in voltammetric studies. Anal. Lett., 2013, 46(2), 323-339.
[http://dx.doi.org/10.1080/00032719.2012.718831]
[63]
Fotouhi, L.; Hashkavayi, A.B.; Heravi, M.M. Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-Glassy carbon electrode. J. Exp. Nanosci., 2013, 8(7–8), 947-956.
[http://dx.doi.org/10.1080/17458080.2011.624554]
[64]
Fotouhi, L.; Zabeti, M. Electrochemical oxidation of sulfamethazine on multi-walled nanotube film coated glassy carbon electrode. J. Nanostructures, 2014, 4(2), 161-166.
[65]
Sun, Y.Q.; You, W.; Gao, Z.N. Electrocatalytic oxidation of SMZ at multi-wall carbon nanotubes-Nafion modified glassy carbon electrode and its electrochemical determination application. Yao Xue Xue Bao, 2008, 43(4), 396-401.
[PMID: 18664203]
[66]
Yari, A.; Shams, A. Silver-filled MWCNT nanocomposite as a sensing element for voltammetric determination of sulfamethoxazole. Anal. Chim. Acta, 2018, 1039, 51-58.
[http://dx.doi.org/10.1016/j.aca.2018.07.061] [PMID: 30322552]
[67]
Hong, X.P.; Zhu, Y.; Zhang, Y.Z. Electrocatalytic response of poly(cobalt tetraaminophthalocyanine)/multi-walled carbon nanotubes-Nafion modified electrode toward sulfadiazine in urine. J. Zhejiang Univ. Sci. B, 2012, 13(6), 503-510.
[http://dx.doi.org/10.1631/jzus.B1100337] [PMID: 22661213]
[68]
He, B.; Chen, W. Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide. Int. J. Electrochem. Sci., 2015, 10, 4335-4345.
[69]
Vanoni, C.R.; Winiarski, J.P.; Nagurniak, G.R.; Magosso, H.A.; Jost, C.L. A novel electrochemical sensor based on silsesquioxane/nickel (II) phthalocyanine for the determination of sulfanilamide in clinical and drug samples. Electroanalysis, 2019, 31(5), 867-875.
[http://dx.doi.org/10.1002/elan.201800832]
[70]
Li, H.; Kuang, X.; Shen, X.; Zhu, J.; Zhang, B.; Li, H. Improvement of voltammetric detection of sulfanilamide with a nanodiamond− modified glassy carbon electrode. Int. J. Electrochem. Sci., 2019, 14, 7858-7870.
[http://dx.doi.org/10.20964/2019.08.47]
[71]
He, B.; Yan, S. Electrochemical determination of sulfonamide based on glassy carbon electrode modified by Fe3O4/functionalized graphene. Int. J. Electrochem. Sci., 2017, 12, 3001-3011.
[http://dx.doi.org/10.20964/2017.04.56]
[72]
Ozkorucuklu, S.P.; Ozcan, L.; Sahin, Y.; Alsancak, G. Electroanalytical determination of some sulfonamides on overoxidized polypyrrole electrodes. Aust. J. Chem., 2011, 64(7), 965-972.
[http://dx.doi.org/10.1071/CH10481]
[73]
Hong, X-P.; Ma, J-Y. Electrochemical study of sulfadiazine on a novel phthalocyanine-containing chemically modified electrode. Chin. Chem. Lett., 2013, 24(4), 329-331.
[http://dx.doi.org/10.1016/j.cclet.2013.02.010]
[74]
Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: simultaneous determination of sulfamethoxazole and trimethoprim. Sens. Actuators B Chem., 2013, 188, 1293-1299.
[http://dx.doi.org/10.1016/j.snb.2013.08.047]
[75]
Meshki, M.; Behpour, M.; Masoum, S. Application of Fe doped ZnO nanorods-based modified sensor for determination of sulfamethoxazole and sulfamethizole using chemometric methods in voltammetric studies. J. Electroanal. Chem. (Lausanne Switz.), 2015, 740, 1-7.
[http://dx.doi.org/10.1016/j.jelechem.2014.12.008]
[76]
Joseph, R.; Girish Kumar, K. Differential pulse voltammetric determination and catalytic oxidation of sulfamethoxazole using [5,10,15,20- tetrakis (3-methoxy-4-hydroxy phenyl) porphyrinato] Cu (II) modified carbon paste sensor. Drug Test. Anal., 2010, 2(6), 278-283.
[http://dx.doi.org/10.1002/dta.129] [PMID: 20564608]
[77]
Annamalai, C.; Radhakrishnan, S.; Kunjithapatham, R.; Rathinavelu, S. Electrochemical behavior and square wave stripping voltammetric determination of antibacterial drug at ionic liquid modified carbon paste electrode. J. Anal. Tech., 2011, 2(1), 9.
[78]
Sgobbi, L.F.; Razzino, C.A.; Machado, S.A.S. A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with prussian blue nanocubes modified screen-printed electrode. Electrochim. Acta, 2016, 191, 1010-1017.
[http://dx.doi.org/10.1016/j.electacta.2015.11.151]
[79]
Cai, M.; Zhu, L.; Ding, Y.; Wang, J.; Li, J.; Du, X. Determination of sulfamethoxazole in foods based on CeO2/chitosan nanocomposite-modified electrodes. Mater. Sci. Eng. C, 2012, 32(8), 2623-2627.
[http://dx.doi.org/10.1016/j.msec.2012.08.017]
[80]
Shabani-Nooshabadi, M.; Roostaee, M. Modification of carbon paste electrode with NiO/Graphene Oxide nanocomposite and ionic liquids for fabrication of high sensitive voltammetric sensor on sulfamethoxazole analysis. J. Mol. Liq., 2016, 220, 329-333.
[http://dx.doi.org/10.1016/j.molliq.2016.05.001]
[81]
Zhao, Y.; Yuan, F.; Quan, X.; Yu, H.; Chen, S.; Zhao, H.; Liu, Z.; Hilal, N. An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode. Anal. Methods, 2015, 7(6), 2693-2698.
[http://dx.doi.org/10.1039/C4AY03055A]
[82]
Turco, A.; Corvaglia, S.; Mazzotta, E. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters. Biosens. Bioelectron., 2015, 63, 240-247.
[http://dx.doi.org/10.1016/j.bios.2014.07.045] [PMID: 25104433]
[83]
Sadeghi, S.; Motaharian, A. Voltammetric sensor based on carbon paste electrode modified with molecular imprinted polymer for determination of sulfadiazine in milk and human serum. Mater. Sci. Eng. C, 2013, 33(8), 4884-4891.
[http://dx.doi.org/10.1016/j.msec.2013.08.001] [PMID: 24094201]
[84]
Zamora-Gálvez, A.; Ait-Lahcen, A.; Mercante, L.A.; Morales-Narváez, E.; Amine, A.; Merkoçi, A. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal. Chem., 2016, 88(7), 3578-3584.
[http://dx.doi.org/10.1021/acs.analchem.5b04092] [PMID: 26938352]
[85]
Guo, S.F.; Chen, X.Y.; Wang, P.; Chen, C.; Pan, R.H.; Ling, Y.T.; Tang, Y.Z. Preparation of molecularly imprinted composites initiated by hemin/graphene hybrid nanosheets and its application in detection of sulfamethoxazole. Curr Med Sci, 2019, 39(1), 159-165.
[http://dx.doi.org/10.1007/s11596-019-2014-6] [PMID: 30868507]
[86]
Tadi, K.K.; Motghare, R.V.; Ganesh, V. Electrochemical detection of sulfanilamide using pencil graphite electrode based on molecular imprinting technology. Electroanalysis, 2014, 26(11), 2328-2336.
[http://dx.doi.org/10.1002/elan.201400251]
[87]
Arvand, M.; Alirezanejad, F. New sensing material of molecularly imprinted polymer for the selective recognition of sulfamethoxazole in foods and plasma and employing the taguchi optimization methodology to optimize the carbon paste electrode. J. Iran. Chem. Soc., 2013, 10(1), 93-105.
[http://dx.doi.org/10.1007/s13738-012-0129-9]
[88]
Ozkorucuklu, S.P.; Sahin, Y.; Alsancak, G. Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors (Basel), 2008, 8(12), 8463-8478.
[http://dx.doi.org/10.3390/s8128463] [PMID: 27873996]
[89]
Liu, B.; Liu, G.; Xiao, B.; Yan, J. Molecularly imprinted electrochemical sensor for the determination of sulfamethoxazole. J. New Mater. Electrochem. Syst., 2018, 21(2), 77-82.
[http://dx.doi.org/10.14447/jnmes.v21i2.492]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy