Effects of Transport Medium Composition on In vitro Drug Permeation Across Excised Pig Intestinal Tissue

Author(s): Bianca Peterson*, Henrico Heystek, Josias H. Hamman, Johan D. Steyn

Journal Name: Drug Delivery Letters

Volume 11 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Knowledge of the permeation characteristics of new chemical entities across biological membranes is essential to drug research and development. Transport medium composition may affect the absorption of compounds during in vitro drug transport testing. To preserve the predictive values of screening tests, the possible influence of transport media on the solubility of model drugs and on the activities of tight junctions and efflux transporter proteins (e.g., Pglycoprotein) must be known.

Objective: The aim of this study was to compare the impact of different transport media on the bidirectional transport of standard compounds, selected from the four classes of the Biopharmaceutical Classification System (BCS), across excised pig intestinal tissue.

Methods: The Sweetana-Grass diffusion apparatus was used for transport studies. Krebs-Ringer bicarbonate (KRB) buffer and simulated intestinal fluids in the fed (FeSSIF) and fasted (FaSSIF) states were used as the three transport media, while the chosen compounds were abacavir (BCS class 1), dapsone (BCS class 2), lamivudine (BCS class 3) and furosemide (BCS class 4).

Results: Abacavir exhibited lower permeability in both the simulated intestinal fluids than in the KRB buffer. Dapsone showed similar permeability in all media. Lamivudine exhibited lower permeability in FaSSIF than in the other two media. Furosemide exhibited improved transport with pronounced efflux in FaSSIF.

Conclusion: Different permeation behaviors were observed for the selected drugs in the respective media, which may have resulted from their different physico-chemical properties, as well as from the effects that dissimilar transport media components had on excised pig intestinal tissue.

Keywords: Buffer, drug transport studies, in vitro model, simulated intestinal fluid, Sweetana-Grass diffusion chamber apparatus, transport medium.

[1]
Jibodh, R.A.; Lagas, J.S.; Nuijen, B.; Beijnen, J.H.; Schellens, J.H.M. Taxanes: Old drugs, new oral formulations. Eur. J. Pharmacol., 2013, 717(1-3), 40-46.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.058] [PMID: 23660368]
[2]
Mrsny, R.J. Oral drug delivery research in Europe. J. Control. Release, 2012, 161(2), 247-253.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.017] [PMID: 22342473]
[3]
Jambhekar, S.S.; Breen, P.J. Drug dissolution: Significance of physicochemical properties and physiological conditions. Drug Discov. Today, 2013, 18(23-24), 1173-1184.
[http://dx.doi.org/10.1016/j.drudis.2013.08.013] [PMID: 24042023]
[4]
Balimane, P.V.; Chong, S. Cell culture-based models for intestinal permeability: A critique. Drug Discov. Today, 2005, 10(5), 335-343.
[http://dx.doi.org/10.1016/S1359-6446(04)03354-9] [PMID: 15749282]
[5]
Augustijns, P.; Wuyts, B.; Hens, B.; Annaert, P.; Butler, J.; Brouwers, J. A review of drug solubility in human intestinal fluids: Implications for the prediction of oral absorption. Eur. J. Pharm. Sci., 2014, 57, 322-332.
[http://dx.doi.org/10.1016/j.ejps.2013.08.027] [PMID: 23994640]
[6]
Balimane, P.V.; Han, Y-H.; Chong, S. Current industrial practices of assessing permeability and P-glycoprotein interaction. AAPS J., 2006, 8(1), E1-E13.
[http://dx.doi.org/10.1208/aapsj080101] [PMID: 16584115]
[7]
Custodio, J.M.; Wu, C-Y.; Benet, L.Z. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv. Drug Deliv. Rev., 2008, 60(6), 717-733.
[http://dx.doi.org/10.1016/j.addr.2007.08.043] [PMID: 18199522]
[8]
Riethorst, D.; Mols, R.; Duchateau, G.; Tack, J.; Brouwers, J.; Augustijns, P. Characterization of human duodenal fluids in fasted and fed state conditions. J. Pharm. Sci., 2016, 105(2), 673-681.
[http://dx.doi.org/10.1002/jps.24603] [PMID: 26228456]
[9]
Markopoulos, C.; Thoenen, F.; Preisig, D.; Symillides, M.; Vertzoni, M.; Parrott, N.; Reppas, C.; Imanidis, G. Biorelevant media for transport experiments in the Caco-2 model to evaluate drug absorption in the fasted and the fed state and their usefulness. Eur. J. Pharm. Biopharm., 2014, 86(3), 438-448.
[http://dx.doi.org/10.1016/j.ejpb.2013.10.017] [PMID: 24184673]
[10]
Riethorst, D.; Mitra, A.; Kesisoglou, F.; Xu, W.; Tack, J.; Brouwers, J.; Augustijns, P. Human intestinal fluid layer separation: The effect on colloidal structures & solubility of lipophilic compounds. Eur. J. Pharm. Biopharm., 2018, 129, 104-110.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.026] [PMID: 29802985]
[11]
Sen, S.; Paul, B.K.; Guchhait, N. Differential interaction behaviors of an alkaloid drug berberine with various bile salts. J. Colloid Interface Sci., 2017, 505, 266-277.
[http://dx.doi.org/10.1016/j.jcis.2017.05.081] [PMID: 28578289]
[12]
Paul, B.K.; Ghosh, N.; Mukherjee, S. Association and sequestered dissociation of an anticancer drug from liposome membrane: Role of hydrophobic hydration. Colloids Surf. B Biointerfaces, 2018, 170, 36-44.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.064] [PMID: 29864652]
[13]
Wu, C-Y.; Benet, L.Z. Predicting drug disposition via application of BCS: Transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res., 2005, 22(1), 11-23.
[http://dx.doi.org/10.1007/s11095-004-9004-4] [PMID: 15771225]
[14]
Wishart, D. S.; Knox, C.; Guo, A. C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res, 2008, 36(suppl_1), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958]
[15]
Storch, C.H.; Theile, D.; Lindenmaier, H.; Haefeli, W.E.; Weiss, J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem. Pharmacol., 2007, 73(10), 1573-1581.
[http://dx.doi.org/10.1016/j.bcp.2007.01.027] [PMID: 17328866]
[16]
Bragatto, M.S.; dos Santos, M.B.; Pugens Pinto, A.M.; Gomes, E.; Angonese, N.T. Comparison between pharmacokinetic and pharmacodynamic of single-doses of furosemide 40 mg tablets. J. Bioequivalence Bioavailab., 2011, 3, 191-197.
[http://dx.doi.org/10.4172/jbb.1000084]
[17]
Daugherty, A.L.; Mrsny, R.J. Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharm. Sci. Technol. Today, 1999, 4(2), 144-151.
[http://dx.doi.org/10.1016/S1461-5347(99)00142-X] [PMID: 10322371]
[18]
Yee, S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man fact or myth. Pharm. Res., 1997, 14(6), 763-766.
[http://dx.doi.org/10.1023/A:1012102522787] [PMID: 9210194]
[19]
Grès, M-C.; Julian, B.; Bourrié, M.; Meunier, V.; Roques, C.; Berger, M.; Boulenc, X.; Berger, Y.; Fabre, G. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: Comparison with the parental Caco-2 cell line. Pharm. Res., 1998, 15(5), 726-733.
[http://dx.doi.org/10.1023/A:1011919003030] [PMID: 9619781]
[20]
Tarirai, C.; Viljoen, A.M.; Hamman, J.H. Effects of dietary fruits, vegetables and a herbal tea on the in vitro transport of cimetidine: Comparing the Caco-2 model with porcine jejunum tissue. Pharm. Biol., 2012, 50(2), 254-263.
[http://dx.doi.org/10.3109/13880209.2011.598169] [PMID: 22085278]
[21]
Kleberg, K.; Jacobsen, J.; Müllertz, A. Characterising the behaviour of poorly water soluble drugs in the intestine: Application of biorelevant media for solubility, dissolution and transport studies. J. Pharm. Pharmacol., 2010, 62(11), 1656-1668.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01023.x] [PMID: 21039549]
[22]
Lindhardt, K.; Bechgaard, E. Sodium glycocholate transport across Caco-2 cell monolayers, and the enhancement of mannitol transport relative to transepithelial electrical resistance. Int. J. Pharm., 2003, 252(1-2), 181-186.
[http://dx.doi.org/10.1016/S0378-5173(02)00629-4] [PMID: 12550793]
[23]
Berginc, K.; Trontelj, J.; Kristl, A. Bio-relevant media to assess drug permeability: Sodium taurocholate and lecithin combination or crude bile? Int. J. Pharm., 2012, 429(1-2), 22-30.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.015] [PMID: 22449411]
[24]
Estudante, M.; Morais, J.G.; Soveral, G.; Benet, L.Z. Intestinal drug transporters: An overview. Adv. Drug Deliv. Rev., 2013, 65(10), 1340-1356.
[http://dx.doi.org/10.1016/j.addr.2012.09.042] [PMID: 23041352]
[25]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[26]
Ingels, F.; Deferme, S.; Destexhe, E.; Oth, M.; Van den Mooter, G.; Augustijns, P. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model. Int. J. Pharm., 2002, 232(1-2), 183-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00897-3] [PMID: 11790502]
[27]
Deferme, S.; Augustijns, P. The effect of food components on the absorption of P-gp substrates: A review. J. Pharm. Pharmacol., 2003, 55(2), 153-162.
[http://dx.doi.org/10.1211/002235702603] [PMID: 12631407]
[28]
Benet, L.Z. Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin. Pharmacol. Toxicol., 2010, 106(3), 162-167.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00498.x] [PMID: 20002064]
[29]
Reis, J.M.; Dezani, A.B.; Pereira, T.M.; Avdeef, A.; Serra, C.H. Lamivudine permeability study: A comparison between PAMPA, ex vivo and in situ Single-Pass Intestinal Perfusion (SPIP) in rat jejunum. Eur. J. Pharm. Sci., 2013, 48(4-5), 781-789.
[http://dx.doi.org/10.1016/j.ejps.2012.12.025] [PMID: 23298578]
[30]
Ingels, F.; Beck, B.; Oth, M.; Augustijns, P. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers. Int. J. Pharm., 2004, 274(1-2), 221-232.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.014] [PMID: 15072798]
[31]
Westerhout, J.; van de Steeg, E.; Grossouw, D.; Zeijdner, E.E.; Krul, C.A.M.; Verwei, M.; Wortelboer, H.M. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur. J. Pharm. Sci., 2014, 63, 167-177.
[http://dx.doi.org/10.1016/j.ejps.2014.07.003] [PMID: 25046168]
[32]
Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A.T. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(1), G173-G181.
[http://dx.doi.org/10.1152/ajpgi.00197.2006] [PMID: 16901995]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 1
Year: 2021
Published on: 05 October, 2020
Page: [62 - 70]
Pages: 9
DOI: 10.2174/2210303110999201005214114
Price: $25

Article Metrics

PDF: 19
HTML: 1