New Heterocyclic Compounds: Synthesis, Antioxidant Activity and Computational Insights of Nano-Antioxidant as Ascorbate Peroxidase Inhibitor by Various Cyclodextrins as Drug Delivery Systems

Author(s): Yassine Kaddouri*, Farid Abrigach, El Bekaye Yousfi, Belkheir Hammouti, Mohamed El Kodadi, Ali Alsalme, Nabil Al-Zaqri, Ismail Warad, Rachid Touzani

Journal Name: Current Drug Delivery

Volume 18 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Aim: The synthesis of seven new antioxidant agents based on the combination of thiazole, pyridine, triazole and pyrazole moieties. The studies of their antioxidant activity using DPPH reduction method. The DFT analysis of the 7 ligands. The docking study was also investigated. The better binding affinity with α-cyclodextrin as best drug delivery system.

Background: The screening of new antioxidant compounds and find the good mechanism for binding sites, with correlating between experience and computer theory.

Objectives: The DFT analysis of the 7 synthesized ligands.The docking study was also investigated by using the amino acids Ala167 and Arg172. The better binding affinity with α-cyclodextrin as best drug delivery system.

Methods: The studies of their antioxidant activity using DPPH reduction method.

Results: Chemistry: synthesis of 7 ligands by condensation reaction with 89% yield. Antioxidant activities using DPPH reduction with a good value IC50=13.05 ± 3.73 μg/ml. Using DFT (EHOMO and ELUMO) and Docking APX with the amino acids Ala167 and Arg172 compared to the ascorbic acid. Correlation between all these properties. α-cyclodextrin as best drug delivery system (better binding affinity than caffeic acid).

Conclusion: For the drug delivery study, The ACD is best system for all the compounds due to the smallest cavity size which makes the binding affinities favorable and possible to prepare prospective nano-antioxidants.

Keywords: Pyrazole, triazole, DPPH, DFT, docking, drug delivery system, cyclodextrin.

[1]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[http://dx.doi.org/10.1016/j.cbi.2014.10.016] [PMID: 25452175]
[2]
Lee, C.Y.; Nanah, C.N.; Held, R.A.; Clark, A.R.; Huynh, U.G.T.; Maraskine, M.C.; Uzarski, R.L.; McCracken, J.; Sharma, A. Effect of electron donating groups on polyphenol-based antioxidant dendrimers. Biochimie, 2015, 111, 125-134.
[http://dx.doi.org/10.1016/j.biochi.2015.02.001] [PMID: 25668210]
[3]
Dayem, A.A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120-142.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[4]
Manda, G.; Nechifor, M.T.; Neagu, T.M. Reactive oxygen species, cancer and anti-cancer therapies. Curr. Chem. Biol., 2009, 3, 342-366.
[http://dx.doi.org/10.2174/187231309787158271]
[5]
Mellor, K.M.; Ritchie, R.H.; Delbridge, L.M. Reactive oxygen species and insulin-resistant cardiomyopathy. Clin. Exp. Pharmacol. Physiol., 2010, 37(2), 222-228.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05274.x] [PMID: 19671065]
[6]
Zhang, M.M; Shah, A. Reactive oxygen species in heart failure. Roy. Soc. Med. Int., 2008, 118-123.
[7]
Oliveira, B.F.; Nogueira-Machado, J.A.; Chaves, M.M. The role of oxidative stress in the aging process. Scientific World J., 2010, 10, 1121-1128.
[http://dx.doi.org/10.1100/tsw.2010.94] [PMID: 20563535]
[8]
Nayak, S.; Gaonkar, S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini Rev. Med. Chem., 2019, 19(3), 215-238.
[http://dx.doi.org/10.2174/1389557518666180816112151] [PMID: 30112994]
[9]
Ejaz, S.; Nadeem, H.; Paracha, R.Z.; Sarwar, S.; Ejaz, S. Designing, synthesis and characterization of 2-aminothiazole-4-carboxylate Schiff bases; antimicrobial evaluation against multidrug resistant strains and molecular docking. BMC Chem., 2019, 13(1), 115-128.
[http://dx.doi.org/10.1186/s13065-019-0631-6] [PMID: 31535091]
[10]
Koudad, M.; El Hamouti, C.; Elaatiaoui, A.; Dadou, S.; Oussaid, A.; Abrigach, F.; Pilet, G.; Benchat, N.; Allali, M. Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives. J. Iran. Chem. Soc., 2019, 17, 297-306.
[http://dx.doi.org/10.1007/s13738-019-01766-4]
[11]
Mohapatra, R.K.; Sarangi, A.K.; Azam, M.; El-ajaily, M.M. Kudrat-E-Zahan, M. Synthesis, structural investigations, DFT, molecular docking and antifungal studies of transition metal complexes with benzothiazole based Schiff base ligands. J. Mol. Struct., 2019, 1179, 65-75.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.070]
[12]
Alpaslan, G.; Boyacioglu, B.; Demir, N.; Tümer, Y.; Yapar, G.; Yıldırım, N.; Yıldız, M.; Ünver, H. Synthesis, characterization, biological activity and theoretical studies of a 2-amino-6-methoxybenzothiazole-based fluorescent Schiff base. J. Mol. Struct., 2019, 1180, 170-178.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.065]
[13]
Pricopie, A.I.; Ionuț, I.; Marc, G.; Arseniu, A.M.; Vlase, L.; Grozav, A.; Găină, L.I.; Vodnar, D.C.; Pîrnău, A.; Tiperciuc, B.; Oniga, O. Design and synthesis of novel 1,3-thiazole and 2-hydrazinyl-1,3-thiazole derivatives as anti-candida agents: in vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with bovine serum albumin. Molecules, 2019, 24(19), 3435-3456.
[http://dx.doi.org/10.3390/molecules24193435] [PMID: 31546673]
[14]
Sharma, D.; Kumar, S.; Narasimhan, B.; Ramasamy, K.; Lim, S.M.; Shah, S.A.A.; Mani, V. 4-(4-Bromophenyl)-thiazol-2-amine derivatives: synthesis, biological activity and molecular docking study with ADME profile. BMC Chem., 2019, 13(1), 60.
[http://dx.doi.org/10.1186/s13065-019-0575-x] [PMID: 31384808]
[15]
Kaddouri, Y.; Abrigach, F.; Yousfi, E.B.; El Kodadi, M.; Touzani, R. New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: synthesis, DFT calculations and molecular docking study. Heliyon, 2020, 6(1), e03185.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03185] [PMID: 31956713]
[16]
Sethi, S.; Jena, S.; Das, P.K.; Behera, N. Synthetic approach and structural diversities of pyridylpyrazole derived late transition metal complexes. J. Mol. Struct., 2019, 1193, 495-521.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.112]
[17]
Kaddouri, Y.; Abrigach, F.; Mechbal, N.; Karzazi, Y.; El Kodadi, M.; Aouniti, A.; Touzani, R. Pyrazole compounds: synthesis, molecular structure, chemical reactivity, experimental and theoretical DFT FTIR spectra. Mater. Today Proc., 2019, 13, 956-963.
[http://dx.doi.org/10.1016/j.matpr.2019.04.060]
[18]
Brahmbhatt, G.C.; Sutariya, T.R.; Atara, H.D.; Parmar, N.J.; Gupta, V.K.; Lagunes, I.; Padrón, J.M.; Murumkar, P.R.; Yadav, M.R. New pyrazolyl-dibenzo[b,e][1,4]diazepinones: room temperature one-pot synthesis and biological evaluation. Mol. Divers., 2020, 24(2), 355-377.
[http://dx.doi.org/10.1007/s11030-019-09958-z] [PMID: 31127460]
[19]
Rastija, V.; Brahmbhatt, H.; Molnar, M.; Loncari, M.; Strelec, I.; Komar, M.; Pavic, V. Synthesis, tyrosinase inhibiting activity and molecular docking of fluorinated pyrazole aldehydes as phosphodiesterase inhibitors. Appl. Sci. (Basel), 2019, 9, 1704-1715.
[http://dx.doi.org/10.3390/app9081704]
[20]
Beheshti, A.; Mousavifard, E.S.; Noorizadeh, S.; Mayer, P.K.; Woźniak, K. Impact of cyanide co-ligand to convert crystal structure of pyrazole-based copper coordination compounds from a dinuclear to a polymeric structure and DFT calculations of [Cu2(tpmp)X2] (X = Cl and I). Inorg. Chim. Acta, 2019, 497, 119082.
[http://dx.doi.org/10.1016/j.ica.2019.119082]
[21]
Brewer, G.; Butcher, R.J.; Zavalij, P. Use of pyrazole hydrogen bonding in tripodal complexes to form self assembled homochiral dimers. Materials (Basel), 2020, 13(7), 1595.
[http://dx.doi.org/10.3390/ma13071595] [PMID: 32244503]
[22]
El-Saghier, A.M.M.; Mohamed, M.A.A.; Abdalla, O.A.; Kadry, A.M. Utility of amino acid coupled 1,2,4-triazoles in organic synthesis: synthesis of some new antileishmainal agents. Bull. Chem. Soc. Ethiop., 2018, 32, 559-570.
[http://dx.doi.org/10.4314/bcse.v32i3.14]
[23]
Kaur, P.; Kaur, R.; Goswami, M. A review on methods of synthesis of 1,2,4-triazole derivatives. Int. Res. J. Pharm., 2018, 9, 1-35.
[http://dx.doi.org/10.7897/2230-8407.097121]
[24]
Qian, A.; Zheng, Y.; Wang, R.; Wei, J.; Cui, Y.; Cao, X.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel tetrazole antifungal agents with potent activity, broad antifungal spectrum and high selectivity. Bioorg. Med. Chem. Lett., 2018, 28(3), 344-350.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.040] [PMID: 29289430]
[25]
Othman, A.A.; Kihel, M.; Amara, S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. Arab. J. Chem., 2019, 12, 1660-1675.
[http://dx.doi.org/10.1016/j.arabjc.2014.09.003]
[26]
Váhovská, L.; Bukrynov, O.; Potočňák, I.; Čižmár, E.; Kliuikov, A.; Vitushkina, S.; Dušek, M.; Herchel, R. New cobalt(II) field-induced single-molecule magnet and the first example of a cobalt(III) complex with tridentate binding of a deprotonated 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole ligand. Eur. J. Inorg. Chem., 2019, 2, 250-261.
[http://dx.doi.org/10.1002/ejic.201801225]
[27]
Liao, L.; Jiang, C.; Chen, J.; Shi, J.; Li, X.; Wang, Y.; Wen, J.; Zhou, S.; Liang, J.; Lao, Y.; Zhang, J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur. J. Med. Chem., 2020, 190, 112114.
[http://dx.doi.org/10.1016/j.ejmech.2020.112114] [PMID: 32061962]
[28]
Barbuceanu, S.F.; Ilies, D.C.; Saramet, G.; Uivarosi, V.; Draghici, C.; Radulescu, V. Synthesis and antioxidant activity evaluation of new compounds from hydrazinecarbothioamide and 1,2,4-triazole class containing diarylsulfone and 2,4-difluorophenyl moieties. Int. J. Mol. Sci., 2014, 15(6), 10908-10925.
[http://dx.doi.org/10.3390/ijms150610908] [PMID: 24941252]
[29]
Chohan, Z.H.; Sumrra, S.H.; Youssoufi, M.H.; Hadda, T.B. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes. Eur. J. Med. Chem., 2010, 45(7), 2739-2747.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.053] [PMID: 20338672]
[30]
Cretu, O.; Barbuceanu, S.; Saramet, G.; Draghici, C. Synthesis and characterization of some 1,2,4-triazole-3(4h)-thiones obtained from intramolecular cyclization of new 1-(4-(4-x-phenylsulfonyl)benzoyl)-4-(4-iodophenyl)- thiosemicarbazides. J. Serb. Chem. Soc., 2010, 75, 1463-1471.
[http://dx.doi.org/10.2298/JSC091221122C]
[31]
Emami, S.; Shojapour, S.; Faramarzi, M.A.; Samadi, N.; Irannejad, H. Synthesis, in vitro antifungal activity and in silico study of 3-(1,2,4-triazol-1-yl)flavanones. Eur. J. Med. Chem., 2013, 66, 480-488.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.008] [PMID: 23831810]
[32]
Klapötke, T.M.; Nordheider, A.; Stierstorfer, J. Synthesis and reactivity of an unexpected highly sensitive 1-carboxymethyl-3-diazonio-5-nitrimino-1,2,4-triazole. New J. Chem., 2012, 36, 1463-1468.
[http://dx.doi.org/10.1039/c2nj40044h]
[33]
Kostyuchenko, A.S.L.; Yurpalov, V.; Kurowska, A.; Domagala, W.; Pron, A.; Fisyuk, A.S. Synthesis of new, highly luminescent bis(2,2′-bithiophen-5-yl) substituted 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole. Beilstein J. Org. Chem., 2014, 10, 1596-1602.
[http://dx.doi.org/10.3762/bjoc.10.165] [PMID: 25161716]
[34]
Kwiecień, A.; Barys, M.; Ciunik, Z. Stable hemiaminals with a cyano group and a triazole ring. Molecules, 2014, 19(8), 11160-11177.
[http://dx.doi.org/10.3390/molecules190811160] [PMID: 25079658]
[35]
Mohan Krishna, K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.051] [PMID: 25055342]
[36]
Rosić, J.; Petrović, B.; Djuran, M.I.; Bugarčić, Ž.D. Thermodynamic and kinetic studies on reactions of Pt(II) complexes with pyrazole, pyridazine, and 1,2,4-triazole. Monatsh. Chem., 2006, 138, 1-11.
[http://dx.doi.org/10.1007/s00706-006-0568-z]
[37]
Suramwar, N.V.; Thakare, S.R.; Khaty, N.T. Room temperature N-arylation of 1,2,4-triazoles under ligand-free condition. Org. Chem. Int., 2012, 1-7.
[http://dx.doi.org/10.1155/2012/515092]
[38]
Xu, J.; Cao, Y.; Zhang, J.; Yu, S.; Zou, Y.; Chai, X.; Wu, Q.; Zhang, D.; Jiang, Y.; Sun, Q. Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2011, 46(7), 3142-3148.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.042] [PMID: 21420761]
[39]
Aggarwal, R.; Kumar, S. 5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines. Beilstein J. Org. Chem., 2018, 14, 203-242.
[http://dx.doi.org/10.3762/bjoc.14.15] [PMID: 29441143]
[40]
Figarella, K.; Marsiccobetre, S.; Galindo-Castro, I.; Urdaneta, N.; Herrera, J.C.; Canudas, N.; Galarraga, E.K. Antileishmanial and antitrypanosomal activity of synthesized hydrazones, pyrazoles, pyrazolo[1,5-a]-pyrimidines and pyrazolo[3,4-b]-pyridine. Curr. Bioact. Compd., 2018, 14, 234-239.
[http://dx.doi.org/10.2174/1573407213666170405121810]
[41]
Omondi, R.O.; Ojwach, S.O.; Jaganyi, D.; Fatokun, A.A. (Pyrazolyl)pyridine ruthenium(III) complexes: synthesis, kinetics of substitution reactions with thiourea and biological studies. Inorg. Chem. Commun., 2018, 94, 98-103.
[http://dx.doi.org/10.1016/j.inoche.2018.06.006]
[42]
Bansal, R.K.; Gupta, R.; Kour, M. Synergy between experimental and theoretical results of some reactions of annelated 1,3-azaphospholes. Molecules, 2018, 23(6), 1283-1296.
[http://dx.doi.org/10.3390/molecules23061283] [PMID: 29861479]
[43]
Ashok, P.; Chander, S.; Smith, T.K.; Prakash Singh, R.; Jha, P.N.; Sankaranarayanan, M. Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg. Chem., 2019, 84, 98-105.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.037] [PMID: 30500524]
[44]
Benabdallah, J.; Setifi, Z.; Setifi, F.; Boughzala, H.; Titi, A. Crystal structure of tris-(2,2′-bi-pyridine)-cobalt(II) bis-(1,1,3,3-tetra- cyano-2-eth-oxy-propenide). Acta Crystallogr. E Crystallogr. Commun., 2019, 75(Pt 2), 142-145.
[http://dx.doi.org/10.1107/S2056989018018261] [PMID: 30800439]
[45]
Mohi El-Deen, E.M.; Abd El-Meguid, E.A.; Hasabelnaby, S.; Karam, E.A.; Nossier, E.S. Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine-quinolines as antibacterial agents and DNA gyrase inhibitors. Molecules, 2019, 24(20), 3650-3670.
[http://dx.doi.org/10.3390/molecules24203650] [PMID: 31658631]
[46]
Liu, J.; Zhou, J.; He, F.; Gao, L.; Wen, Y.; Gao, L.; Wang, P.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem., 2020, 192, 112189.
[http://dx.doi.org/10.1016/j.ejmech.2020.112189] [PMID: 32151834]
[47]
Curreli, F.; Ahmed, S.; Benedict Victor, S.M.; Iusupov, I.R.; Belov, D.S.; Markov, P.O.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Preclinical optimization of gp120 entry antagonists as anti-HIV-1 agents with improved cytotoxicity and ADME properties through rational design, synthesis, and antiviral evaluation. J. Med. Chem., 2020, 63(4), 1724-1749.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02149] [PMID: 32031803]
[48]
Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M.; Basirun, W.J.; Seyfoddin, A. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants, 2019, 9(1), 24-54.
[http://dx.doi.org/10.3390/antiox9010024] [PMID: 31888023]
[49]
Wang, H.; Wang, S.; Zhu, H.; Wang, S.; Xing, J. Inclusion complexes of lycopene and beta-cyclodextrin: preparation, characterization, stability and antioxidant activity. Antioxidants, 2019, 8(8), 314-327.
[http://dx.doi.org/10.3390/antiox8080314] [PMID: 31426339]
[50]
Celebioglu, A.; Uyar, T. Antioxidant vitamin E/cyclodextrin inclusion complex electrospun nanofibers: enhanced water solubility, prolonged shelf life, and photostability of vitamin E. J. Agric. Food Chem., 2017, 65(26), 5404-5412.
[http://dx.doi.org/10.1021/acs.jafc.7b01562] [PMID: 28608684]
[51]
Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015, 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[52]
Muankaew, C.; Loftsson, T. Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 46-55.
[http://dx.doi.org/10.1111/bcpt.12917] [PMID: 29024354]
[53]
Tiwari, G.; Tiwari, R.; Sriwastawa, B.; Bhati, L.; Pandey, S.; Pandey, P.; Bannerjee, S.K. Drug delivery systems: an updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[54]
Aljuffali, I.A.; Hsu, C.Y.; Lin, Y.K.; Fang, J.Y. Cutaneous delivery of natural antioxidants: the enhancement approaches. Curr. Pharm. Des., 2015, 21(20), 2745-2757.
[http://dx.doi.org/10.2174/1381612821666150428125428] [PMID: 25925121]
[55]
Siatka, T.; Kašparová, M. Seasonal variation in total phenolic and flavonoid contents and DPPH scavenging activity of Bellis perennis L. flowers. Molecules, 2010, 15(12), 9450-9461.
[http://dx.doi.org/10.3390/molecules15129450] [PMID: 21178900]
[56]
Jing, P.; Zhao, S.J.; Jian, W.J.; Qian, B.J.; Dong, Y.; Pang, J. Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids. Molecules, 2012, 17(11), 12910-12924.
[http://dx.doi.org/10.3390/molecules171112910] [PMID: 23117431]
[57]
Foti, M.C. Use and abuse of the DPPH radical. J. Agric. Food Chem., 2015, 63(40), 8765-8776.
[http://dx.doi.org/10.1021/acs.jafc.5b03839] [PMID: 26390267]
[58]
Kaur, R.; Kaur, K.; Bansal, M. Evaluation of DPPH radical scavenging activity of 2-(furan-2′-yl)-3-hydroxy-4H-chromen-4-one and their derivatives. Asian J. Chem., 2016, 28, 1921-1924.
[http://dx.doi.org/10.14233/ajchem.2016.19809]
[59]
Liu, S.; Schauer, C.K.; Pedersen, L.G. Molecular acidity: a quantitative conceptual density functional theory description. J. Chem. Phys., 2009, 131(16), 164107.
[http://dx.doi.org/10.1063/1.3251124] [PMID: 19894927]
[60]
Sheena Mary, Y.; Yohannan Panicker, C.; Anto, P.L.; Sapnakumari, M.; Narayana, B.; Sarojini, B.K. Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one by HF and density functional methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 81-92.
[http://dx.doi.org/10.1016/j.saa.2014.06.140] [PMID: 25062053]
[61]
Abraham, C.S.; Muthu, S.; Prasana, J.C.; Armaković, S.J.; Armaković, S.; Rizwana, B. F.; Geoffrey, B.A.S. Spectroscopic profiling (FT-IR, FT-Raman, NMR and UV-Vis), autoxidation mechanism (H-BDE) and molecular docking investigation of 3-(4-chlorophenyl)-N,N-dimethyl-3-pyridin-2-ylpropan-1-amine by DFT/TD-DFT and molecular dynamics: a potential SSRI drug. Comput. Biol. Chem., 2018, 77, 131-145.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.08.010] [PMID: 30312906]
[62]
Fujishima, T.M.A.; da Silva, R.N.D.S.; Ramos, R.D.S.; Ferreira, B.E.F.; Dos Santos, B.K.L.; da Silva, T.P.C.H.; da Silva, O.J.; Rosa, C.J.M.; Dos Santos, R.C.B. An antioxidant potential, quantum-chemical and molecular docking study of the major chemical constituents present in the leaves of Curatella americana linn. Pharm, 2018, 11, 72-92.
[63]
Mohsen, G.L.; Abdula, A.M.; Jassim, A.M.N. Synthesis, antimicrobial, antioxidant and docking study of novel isoxazoline derivatives. ACTA Pharm Sci, 2018, 56, 71-83.
[http://dx.doi.org/10.23893/1307-2080.APS.05619]
[64]
Khalf-Alla, P.A.; Hassan, S.S.; Shoukry, M.M. Complex formation equilibria, DFT, docking, antioxidant and antimicrobial studies of iron(III) complexes involving Schiff bases derived from glucosamine or ethanolamine. Inorg. Chim. Acta, 2019, 492, 192-197.
[http://dx.doi.org/10.1016/j.ica.2019.04.035]
[65]
Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of hesperitin derivatives as new xanthine oxidase inhibitors. BMC Chem., 2019, 13(1), 53-64.
[http://dx.doi.org/10.1186/s13065-019-0571-1] [PMID: 31384801]
[66]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J.B.; Fox, D.J.M. , 2016.
[67]
Xue, Y.; Zheng, Y.; An, L.; Dou, Y.; Liu, Y. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem., 2014, 151, 198-206.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.064] [PMID: 24423521]
[68]
Datta, C.; Das, D.; Mondal, P.; Chakraborty, B.; Sengupta, M.; Bhattacharjee, C.R. Novel water soluble neutral vanadium(IV)-antibiotic complex: antioxidant, immunomodulatory and molecular docking studies. Eur. J. Med. Chem., 2015, 97, 214-224.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.005] [PMID: 25982330]
[69]
Bandari, S.K.; Kammari, B.R.; Madda, J.; Kommu, N.; Lakkadi, A.; Vuppala, S.; Tigulla, P. Synthesis of new chromeno-carbamodithioate derivatives and preliminary evaluation of their antioxidant activity and molecular docking studies. Bioorg. Med. Chem. Lett., 2017, 27(5), 1256-1260.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.047] [PMID: 28153358]
[70]
Arokiyaraj, S.; Bharanidharan, R.; Agastian, P.; Shin, H. Chemical composition, antioxidant activity and antibacterial mechanism of action from Marsilea minuta leaf hexane: methanol extract. Chem. Cent. J., 2018, 12(1), 105-116.
[http://dx.doi.org/10.1186/s13065-018-0476-4] [PMID: 30343444]
[71]
Khanam, R.; Hejazi, I.I.; Shahabuddin, S.; Bhat, A.R.; Athar, F. Pharmacokinetic evaluation, molecular docking and in vitro biological evaluation of 1, 3, 4-oxadiazole derivatives as potent antioxidants and STAT3 inhibitors. J. Pharm. Anal., 2019, 9(2), 133-141.
[http://dx.doi.org/10.1016/j.jpha.2018.12.002] [PMID: 31011470]
[72]
Galano, A.; Francisco-Márquez, M.; Alvarez-Idaboy, J.R. Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys. Chem. Chem. Phys., 2011, 13(23), 11199-11205.
[http://dx.doi.org/10.1039/c1cp20722a] [PMID: 21566849]
[73]
Zheng, Y.Z.; Chen, D.F.; Deng, G.; Guo, R. The substituent effect on the radical scavenging activity of apigenin. Molecules, 2018, 23(8), 1989-2000.
[http://dx.doi.org/10.3390/molecules23081989] [PMID: 30103379]
[74]
Pandithavidana, D.R.; Jayawardana, S.B. Comparative study of antioxidant potential of selected dietary vitamins; computational insights. Molecules, 2019, 24(9), 1646-1655.
[http://dx.doi.org/10.3390/molecules24091646] [PMID: 31027343]
[75]
Sas, E.B.; Kose, E.; Kurt, M.; Karabacak, M.F.T-I.R. FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 1315-1333.
[http://dx.doi.org/10.1016/j.saa.2014.08.049] [PMID: 25305625]
[76]
Liu, Y.; Luo, Z.; Zhang, J.Z.; Xia, F. DFT calculations on the mechanism of transition-metal-catalyzed reaction of diazo compounds with phenols: O-H insertion versus C-H insertion. J. Phys. Chem. A, 2016, 120(32), 6485-6492.
[http://dx.doi.org/10.1021/acs.jpca.6b05735] [PMID: 27472439]
[77]
Abraham, C.S.; Prasana, J.C.; Muthu, S. Quantum mechanical, spectroscopic and docking studies of 2-amino-3-bromo-5-nitropyridine by density functional method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 181, 153-163.
[http://dx.doi.org/10.1016/j.saa.2017.03.045] [PMID: 28359904]
[78]
Siiskonen, A.; Priimagi, A. Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths. J. Mol. Model., 2017, 23(2), 50-59.
[http://dx.doi.org/10.1007/s00894-017-3212-4] [PMID: 28161778]
[79]
Contreras-García, J.; Yang, W. Perspective: chemical information encoded in electron density. Wuli Huaxue Xuebao, 2018, 34(6), 567-580.
[80]
Cuesta, S.; Arias, J.; Gallegos, F.; Alzate-Morales, J.; Meneses, L. On the reaction mechanism of the 3,4-dimethoxybenzaldehyde formation from 1-(3′,4′-dimethoxyphenyl)propene. Molecules, 2018, 23(2), 412-422.
[http://dx.doi.org/10.3390/molecules23020412] [PMID: 29443875]
[81]
Tighadouini, S.; Benabbes, R.; Tillard, M.; Eddike, D.; Haboubi, K.; Karrouchi, K.; Radi, S. Synthesis, crystal structure, DFT studies and biological activity of (Z)-3-(3-bromophenyl)-1-(1,5-dimethyl-1H-pyrazol-3-yl)-3-hydroxyprop-2-en-1-one. Chem. Cent. J., 2018, 12(1), 122-133.
[http://dx.doi.org/10.1186/s13065-018-0492-4] [PMID: 30474759]
[82]
Cameron, E.A.; Maynard, M.A.; Smith, C.J.; Smith, T.J.; Koropatkin, N.M.; Martens, E.C. Multidomain carbohydrate-binding proteins involved in bacteroides thetaiotaomicron starch metabolism. J. Biol. Chem., 2012, 287(41), 34614-34625.
[http://dx.doi.org/10.1074/jbc.M112.397380] [PMID: 22910908]
[83]
Schmidt, A.K.; Cottaz, S.; Driguez, H.; Schulz, G.E. Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product beta-cyclodextrin. Biochemistry, 1998, 37(17), 5909-5915.
[http://dx.doi.org/10.1021/bi9729918] [PMID: 9558324]
[84]
Uitdehaag, J.C.; Kalk, K.H.; van Der Veen, B.A.; Dijkhuizen, L.; Dijkstra, B.W. The cyclization mechanism of Cyclodextrin Glycosyltransferase (CGTase) as revealed by a gamma-cyclodextrin-CGTase complex at 1.8-A resolution. J. Biol. Chem., 1999, 274(49), 34868-34876.
[http://dx.doi.org/10.1074/jbc.274.49.34868] [PMID: 10574960]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 3
Year: 2021
Published on: 01 October, 2020
Page: [334 - 349]
Pages: 16
DOI: 10.2174/1567201817999201001205627
Price: $65

Article Metrics

PDF: 28
HTML: 2
EPUB: 1