Tumor Penetrating Peptide-Functionalized Tenascin-C Antibody for Glioblastoma Targeting

Author(s): Prakash Lingasamy, Anett-Hildegard Laarmann, Tambet Teesalu*

Journal Name: Current Cancer Drug Targets

Volume 21 , Issue 1 , 2021

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Conjugation to clinical-grade tumor penetrating iRGD peptide is a widely used strategy to improve tumor homing, extravasation, and penetration of cancer drugs and tumor imaging agents. The C domain of the extracellular matrix molecule Tenascin-C (TNC-C) is upregulated in solid tumors and represents an attractive target for clinical-grade single-chain antibody- based vehicles for tumor delivery drugs and imaging agents.

Objective: To study the effect of C-terminal genetic fusion of the iRGD peptide to recombinant anti- TNC-C single-chain antibody clone G11 on systemic tumor homing and extravasation.

Methods: Enzyme-linked immunosorbent assay was used to study the interaction of parental and iRGD-fused anti-TNC-C single-chain antibodies with C domain of tenascin-C and αVβ3 integrins. For systemic homing studies, fluorescein-labeled ScFV G11-iRGD and ScFV G11 antibodies were administered in U87-MG glioblastoma xenograft mice, and their biodistribution was studied by confocal imaging of tissue sections stained with markers of blood vessels and Tenascin C immunoreactivity.

Results: In a cell-free system, iRGD fusion to ScFV G11 conferred the antibody has a robust ability to bind αVβ3 integrins. The fluorescein labeling of ScFV G11-iRGD did not affect its target binding activity. In U87-MG mice, iRGD fusion to ScFV G11 antibodies improved their homing to tumor blood vessels, extravasation, and penetration of tumor parenchyma.

Conclusion: The genetic fusion of iRGD tumor penetrating peptide to non-internalizing affinity targeting ligands may improve their tumor tropism and parenchymal penetration for more efficient delivery of imaging and therapeutic agents into solid tumor lesions.

Keywords: Tenascin-C, extracellular matrix, iRGD, single-chain antibody, tumor penetrating peptide, glioblastoma.

Carter, P.J.; Lazar, G.A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov., 2018, 17(3), 197-223.
[http://dx.doi.org/10.1038/nrd.2017.227] [PMID: 29192287]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
List, T.; Neri, D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin. Pharmacol., 2013, 5(Suppl. 1), 29-45.
[http://dx.doi.org/10.2147/CPAA.S49231] [PMID: 23990735]
Hambley, T.W.; Hait, W.N. Is anticancer drug development heading in the right direction? Cancer Res., 2009, 69(4), 1259-1262.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3786] [PMID: 19208831]
Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer, 2006, 6(8), 583-592.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
Adler, M.J.; Dimitrov, D.S. Therapeutic antibodies against cancer. Hematol. Oncol. Clin. North Am., 2012, 26(3), 447-481, vii. [vii.].
[http://dx.doi.org/10.1016/j.hoc.2012.02.013] [PMID: 22520975]
Cruz, E.; Kayser, V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics, 2019, 13, 33-51.
[http://dx.doi.org/10.2147/BTT.S166310] [PMID: 31118560]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
Kalim, M.; Chen, J.; Wang, S.; Lin, C.; Ullah, S.; Liang, K.; Ding, Q.; Chen, S.; Zhan, J. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des. Devel. Ther., 2017, 11, 2265-2276.
[http://dx.doi.org/10.2147/DDDT.S135571] [PMID: 28814834]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 3-12.
[http://dx.doi.org/10.1016/j.addr.2016.03.008] [PMID: 27040947]
Teesalu, T.; Sugahara, K.N.; Ruoslahti, E. Tumor-penetrating peptides. Front. Oncol., 2013, 3, 216.
[http://dx.doi.org/10.3389/fonc.2013.00216] [PMID: 23986882]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E.; Prakash Karmali, P.; Ramana Kotamraju, V.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981), 1031-1035.
[http://dx.doi.org/10.1126/science.1183057] [PMID: 20378772]
Sha, H.; Zou, Z.; Xin, K.; Bian, X.; Cai, X.; Lu, W.; Chen, J.; Chen, G.; Huang, L.; Blair, A.M.; Cao, P.; Liu, B. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J. Control. Release, 2015, 200, 188-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.039] [PMID: 25553823]
Zhu, A.; Sha, H.; Su, S.; Chen, F.; Wei, J.; Meng, F.; Yang, Y.; Du, J.; Shao, J.; Ji, F.; Zhou, C.; Zou, Z.; Qian, X.; Liu, B. Bispecific tumor-penetrating protein anti-EGFR-iRGD efficiently enhances the infiltration of lymphocytes in gastric cancer. Am. J. Cancer Res., 2018, 8(1), 91-105.
[PMID: 29416923]
Järveläinen, H.; Sainio, A.; Koulu, M.; Wight, T.N.; Penttinen, R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol. Rev., 2009, 61(2), 198-223.
[http://dx.doi.org/10.1124/pr.109.001289] [PMID: 19549927]
Lingasamy, P.; Tobi, A.; Haugas, M.; Hunt, H.; Paiste, P.; Asser, T.; Rätsep, T.; Kotamraju, V.R.; Bjerkvig, R.; Teesalu, T. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials, 2019, 219, 119373.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119373] [PMID: 31374479]
Silacci, M.; Brack, S.S.; Späth, N.; Buck, A.; Hillinger, S.; Arni, S.; Weder, W.; Zardi, L.; Neri, D. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel., 2006, 19(10), 471-478.
[http://dx.doi.org/10.1093/protein/gzl033] [PMID: 16928692]
Spenlé, C.; Saupe, F.; Midwood, K.; Burckel, H.; Noel, G.; Orend, G. Tenascin-C: Exploitation and collateral damage in cancer management. Cell Adhes. Migr., 2015, 9(1-2), 141-153.
[http://dx.doi.org/10.1080/19336918.2014.1000074] [PMID: 25569113]
von Lukowicz, T.; Silacci, M.; Wyss, M.T.; Trachsel, E.; Lohmann, C.; Buck, A.; Lüscher, T.F.; Neri, D.; Matter, C.M.; Luscher, T.F.; Neri, D.; Matter, C.M. Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques ex vivo. J. Nucl. Med., 2007, 48(4), 582-587.
[http://dx.doi.org/10.2967/jnumed.106.036046] [PMID: 17401095]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455.
[http://dx.doi.org/10.1073/pnas.1114518108] [PMID: 21969599]
Agemy, L.; Kotamraju, V.R.; Friedmann-Morvinski, D.; Sharma, S.; Sugahara, K.N.; Ruoslahti, E. Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. Mol. Ther., 2013, 21(12), 2195-2204.
[http://dx.doi.org/10.1038/mt.2013.191] [PMID: 23959073]
Wang, K.; Zhang, X.; Liu, Y.; Liu, C.; Jiang, B.; Jiang, Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials, 2014, 35(30), 8735-8747.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.042] [PMID: 25023394]
Lampson, L. A monoclonal antibodies in neuro-oncology: Getting past the blood-brain barrier mAbs. Landes Bioscience, 2011, 153-160.
Säälik, P.; Lingasamy, P.; Toome, K.; Mastandrea, I.; Rousso-Noori, L.; Tobi, A.; Simón-Gracia, L.; Hunt, H.; Paiste, P.; Kotamraju, V.R.; Bergers, G.; Asser, T.; Rätsep, T.; Ruoslahti, E.; Bjerkvig, R.; Friedmann-Morvinski, D.; Teesalu, T. Peptide-guided nanoparticles for glioblastoma targeting. J. Control. Release, 2019, 308, 109-118.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.018] [PMID: 31255690]
Gambarota, G.; Leenders, W.; Maass, C.; Wesseling, P.; van der Kogel, B.; van Tellingen, O.; Heerschap, A. Characterisation of tumour vasculature in mouse brain by USPIO contrast-enhanced MRI. Br. J. Cancer, 2008, 98(11), 1784-1789.
[http://dx.doi.org/10.1038/sj.bjc.6604389] [PMID: 18506183]
Wang, R.; Shen, Q.; Li, X.; Xie, C.; Lu, W.; Wang, S.; Wang, J.; Wang, D.; Liu, M. Efficacy of inverso isomer of CendR peptide on tumor tissue penetration. Acta Pharm. Sin. B, 2018, 8(5), 825-832.
[http://dx.doi.org/10.1016/j.apsb.2018.06.006] [PMID: 30245969]
Lingasamy, P.; Tobi, A.; Kurm, K.; Kopanchuk, S.; Sudakov, A.; Salumäe, M.; Rätsep, T.; Asser, T.; Bjerkvig, R.; Teesalu, T. Tumor-penetrating peptide for systemic targeting of Tenascin-C. Sci. Rep., 2020, 10(1), 5809.
[http://dx.doi.org/10.1038/s41598-020-62760-y] [PMID: 32242067]
Jacobs, V.L.; Valdes, P.A.; Hickey, W.F.; De Leo, J.A. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro, 2011, 3(3), e00063.
[http://dx.doi.org/10.1042/AN20110014] [PMID: 21740400]
Mink, J.G.; Radl, J.; van den Berg, P.; Haaijman, J.J.; van Zwieten, M.J.; Benner, R. Serum immunoglobulins in nude mice and their heterozygous littermates during ageing. Immunology, 1980, 40(4), 539-545.
[PMID: 7429542]
Painter, R.H. IgG.Encyclopedia of Immunology. Elsevier; , 1998, pp. pp. 1208-1211.
Chen, R.; Braun, G.B.; Luo, X.; Sugahara, K.N.; Teesalu, T.; Ruoslahti, E. Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res., 2013, 73(4), 1352-1361.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1979] [PMID: 23248118]
Lao, X.; Liu, M.; Chen, J.; Zheng, H. A tumor-penetrating peptide modification enhances the antitumor activity of thymosin alpha 1. PLoS One, 2013, 8(8), e72242.
[http://dx.doi.org/10.1371/journal.pone.0072242] [PMID: 23977262]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
Raavé, R.; van Kuppevelt, T.H.; Daamen, W.F. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J. Control. Release, 2018, 274, 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.029] [PMID: 29382546]
Kumra, H.; Reinhardt, D.P. Fibronectin-targeted drug delivery in cancer. Adv. Drug Deliv. Rev., 2016, 97, 101-110.
[http://dx.doi.org/10.1016/j.addr.2015.11.014] [PMID: 26639577]
Hussain, S.; Rodriguez-Fernandez, M.; Braun, G.B.; Doyle, F.J., III; Ruoslahti, E. Quantity and accessibility for specific targeting of receptors in tumours. Sci. Rep., 2014, 4(1), 5232.
[http://dx.doi.org/10.1038/srep05232] [PMID: 24912981]
Braun, G.B.; Sugahara, K.N.; Yu, O.M.; Kotamraju, V.R.; Mölder, T.; Lowy, A.M.; Ruoslahti, E.; Teesalu, T. Urokinase-controlled tumor penetrating peptide. J. Control. Release, 2016, 232, 188-195.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.027] [PMID: 27106816]
Sharma, S.; Kotamraju, V.R.; Mölder, T.; Tobi, A.; Teesalu, T.; Ruoslahti, E. Tumor-penetrating nanosystem strongly suppresses breast tumor growth. Nano Lett., 2017, 17(3), 1356-1364.
[http://dx.doi.org/10.1021/acs.nanolett.6b03815] [PMID: 28178415]
Alberici, L.; Roth, L.; Sugahara, K.N.; Agemy, L.; Kotamraju, V.R.; Teesalu, T.; Bordignon, C.; Traversari, C.; Rizzardi, G.P.; Ruoslahti, E. De novo design of a tumor-penetrating peptide. Cancer Res., 2013, 73(2), 804-812.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1668] [PMID: 23151901]
Roth, L.; Agemy, L.; Kotamraju, V.R.; Braun, G.; Teesalu, T.; Sugahara, K.N.; Hamzah, J.; Ruoslahti, E. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31(33), 3754-3763.
[http://dx.doi.org/10.1038/onc.2011.537] [PMID: 22179825]
Laakkonen, P.; Porkka, K.; Hoffman, J.A.; Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med., 2002, 8(7), 751-755.
[http://dx.doi.org/10.1038/nm720] [PMID: 12053175]
Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15416-15421.
[http://dx.doi.org/10.1073/pnas.2136683100] [PMID: 14676325]
Kim, M.Y.; Kim, O.R.; Choi, Y.S.; Lee, H.; Park, K.; Lee, C.T.; Kang, K.W.; Jeong, S. Selection and characterization of tenascin C targeting peptide. Mol. Cells, 2012, 33(1), 71-77.
[http://dx.doi.org/10.1007/s10059-012-2214-4] [PMID: 22138765]
Akashi, Y.; Oda, T.; Ohara, Y.; Miyamoto, R.; Kurokawa, T.; Hashimoto, S.; Enomoto, T.; Yamada, K.; Satake, M.; Ohkohchi, N. Anticancer effects of gemcitabine are enhanced by co-administered iRGD peptide in murine pancreatic cancer models that overexpressed neuropilin-1. Br. J. Cancer, 2014, 110(6), 1481-1487.
[http://dx.doi.org/10.1038/bjc.2014.49] [PMID: 24556620]
Schmithals, C.; Köberle, V.; Korkusuz, H.; Pleli, T.; Kakoschky, B.; Augusto, E.A.; Ibrahim, A.A.; Arencibia, J.M.; Vafaizadeh, V.; Groner, B.; Korf, H.W.; Kronenberger, B.; Zeuzem, S.; Vogl, T.J.; Waidmann, O.; Piiper, A. Improving drug penetrability with iRGD leverages the therapeutic response to sorafenib and doxorubicin in hepatocellular carcinoma. Cancer Res., 2015, 75(15), 3147-3154.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0395] [PMID: 26239478]
Liu, X.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y.P.; Chang, C.H.; Jiang, J.; Wu, N.; Donahue, T.; Wainberg, Z.; Nel, A.E.; Meng, H. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Invest., 2017, 127(5), 2007-2018.
[http://dx.doi.org/10.1172/JCI92284] [PMID: 28414297]
Hudson, P.J. Recombinant antibody constructs in cancer therapy. Curr. Opin. Immunol., 1999, 11(5), 548-557.
[http://dx.doi.org/10.1016/S0952-7915(99)00013-8] [PMID: 10508712]
Avignolo, C.; Bagnasco, L.; Biasotti, B.; Melchiori, A.; Tomati, V.; Bauer, I.; Salis, A.; Chiossone, L.; Mingari, M.C.; Orecchia, P.; Carnemolla, B.; Neri, D.; Zardi, L.; Parodi, S. Internalization via Antennapedia protein transduction domain of an scFv antibody toward c-Myc protein. FASEB J., 2008, 22(4), 1237-1245.
[http://dx.doi.org/10.1096/fj.07-8865com] [PMID: 18048579]
Müller, D.; Karle, A.; Meissburger, B.; Höfig, I.; Stork, R.; Kontermann, R.E. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem., 2007, 282(17), 12650-12660.
[http://dx.doi.org/10.1074/jbc.M700820200] [PMID: 17347147]
Andersen, J.T.; Cameron, J.; Plumridge, A.; Evans, L.; Sleep, D.; Sandlie, I. Single-chain variable fragment albumin fusions bind the neonatal Fc receptor (FcRn) in a species-dependent manner: implications for in vivo half-life evaluation of albumin fusion therapeutics. J. Biol. Chem., 2013, 288(33), 24277-24285.
[http://dx.doi.org/10.1074/jbc.M113.463000] [PMID: 23818524]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 01 October, 2020
Page: [70 - 79]
Pages: 10
DOI: 10.2174/1568009620666201001112749

Article Metrics

PDF: 46
PRC: 1