Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

A New Fluorescent Salen-uranyl Sensor for the Sub-ppm Detection of Chemical Warfare Agents

Author(s): Andrea Pappalardo*, Chiara M.A. Gangemi, Rosa Maria Toscano and Giuseppe Trusso Sfrazzetto*

Volume 24, Issue 20, 2020

Page: [2378 - 2382] Pages: 5

DOI: 10.2174/1385272824999200930150313

Price: $65

Abstract

Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to prevent the lethal effects of a terroristic chemical attack. For this reason, the development of efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and its application for the detection of sub-ppm levels of CWAs is reported. Detection properties were evaluated by fluorescence measurements and selectivity tests demonstrated the strong affinity for CWAs.

Keywords: Chemical warfare agents, sensors, supramolecular chemistry, Salen, Bodipy, fluorescence.

Graphical Abstract
[1]
Stone, R.U.K. Attack puts nerve agent in the spotlight. Science, 2018, 359(6382), 1314-1315.
[http://dx.doi.org/10.1126/science.359.6382.1314] [PMID: 29567684]
[2]
Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev., 2011, 111(9), 5345-5403.
[http://dx.doi.org/10.1021/cr100193y] [PMID: 21667946]
[3]
Stone, R. How to defeat a nerve agent. Science, 2018, 359(6371), 23.
[http://dx.doi.org/10.1126/science.359.6371.23] [PMID: 29301996]
[4]
Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P-Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res., 2012, 45(5), 756-766.
[http://dx.doi.org/10.1021/ar2002864] [PMID: 22360473]
[5]
Lavoie, J.; Srinivasan, S.; Nagarajan, R. Using cheminformatics to find simulants for chemical warfare agents. J. Hazard. Mater., 2011, 194, 85-91.
[http://dx.doi.org/10.1016/j.jhazmat.2011.07.077] [PMID: 21872989]
[6]
Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent progress on the development of chemosensors for gases. Chem. Rev., 2015, 115(15), 7944-8000.
[http://dx.doi.org/10.1021/cr500567r] [PMID: 25651137]
[7]
Jang, Y.J.; Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Update 1 of: destruction and detection of chemical warfare agents. Chem. Rev., 2015, 115(24), PR1-PR76.
[http://dx.doi.org/10.1021/acs.chemrev.5b00402] [PMID: 26654832]
[8]
Sambrook, M.R.; Notman, S. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing. Chem. Soc. Rev., 2013, 42(24), 9251-9267.
[http://dx.doi.org/10.1039/c3cs60230c] [PMID: 24048279]
[9]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular recognition of a CWA simulant by metal-salen complexes: the first multi-topic approach. Chem. Commun. (Camb.), 2018, 54(79), 11156-11159.
[http://dx.doi.org/10.1039/C8CC06425C] [PMID: 30226513]
[10]
Legnani, L.; Puglisi, R.; Pappalardo, A.; Chiacchio, M.A.; Sfrazzetto, G.T. Supramolecular recognition of phosphocholine by an enzyme-like cavitand receptor. Chem. Commun. (Camb.), 2020, 56(4), 539-542.
[http://dx.doi.org/10.1039/C9CC07577A] [PMID: 31829317]
[11]
Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Sfrazzetto, G.T. Chiral Zn–salen complexes: a new class of fluorescent receptors for enantiodiscrimination of chiral amines. New J. Chem., 2017, 41, 911-915.
[http://dx.doi.org/10.1039/C6NJ03592B]
[12]
Trusso Sfrazzetto, G.; Millesi, S.; Pappalardo, A.; Tomaselli, G.A.; Ballistreri, F.P.; Toscano, R.M.; Fragalà, I.; Gulino, A. Nerve gas simulant sensing by a Uranyl-Salen monolayer covalently anchored on quartz substrates. Chemistry, 2017, 23(7), 1576-1583.
[http://dx.doi.org/10.1002/chem.201602292] [PMID: 27859726]
[13]
Tudisco, C.; Betti, P.; Motta, A.; Pinalli, R.; Bombaci, L.; Dalcanale, E.; Condorelli, G.G. Cavitand-functionalized porous silicon as an active surface for organophosphorus vapor detection. Langmuir, 2012, 28(3), 1782-1789.
[http://dx.doi.org/10.1021/la203797b] [PMID: 22185658]
[14]
Chen, S.; Ruan, Y.; Brown, J.D.; Gallucci, J.; Maslak, V.; Hadad, C.M.; Badjić, J.D. Assembly of amphiphilic baskets into stimuli-responsive vesicles. Developing a strategy for the detection of organophosphorus chemical nerve agents. J. Am. Chem. Soc., 2013, 135(40), 14964-14967.
[http://dx.doi.org/10.1021/ja408585j] [PMID: 24063351]
[15]
Chen, S.; Ruan, Y.; Brown, J.D.; Hadad, C.M.; Badjić, J.D. Recognition characteristics of an adaptive vesicular assembly of amphiphilic baskets for selective detection and mitigation of toxic nerve agents. J. Am. Chem. Soc., 2014, 136(49), 17337-17342.
[http://dx.doi.org/10.1021/ja510477q] [PMID: 25402739]
[16]
Ruan, Y.; Chen, S.; Brown, J.D.; Hadad, C.M.; Badjić, J.D. Ubiquitous assembly of amphiphilic baskets into unilamellar vesicles and their recognition characteristics. Org. Lett., 2015, 17(4), 852-855.
[http://dx.doi.org/10.1021/ol503675d] [PMID: 25654486]
[17]
Pappalardo, A.; Amato, M.E.; Ballistreri, F.P.; La Paglia Fragola, V.; Tomaselli, G.A.; Toscano, R.M.; Sfrazzetto, G.T. Binding of reactive organophosphate by oximes via hydrogen bond. J. Chem. Sci., 2013, 125, 869-873.
[http://dx.doi.org/10.1007/s12039-013-0463-1]
[18]
Grate, J.W.; Kaganove, S.N.; Patrash, S.J.; Craig, R.; Bliss, M. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acousticwave and optical sensors. Chem. Mater., 1997, 9, 1201-1207.
[http://dx.doi.org/10.1021/cm960590t]
[19]
Kim, H.J.; Lee, J.H.; Lee, H.; Lee, J.H.; Lee, J.H.; Jung, J.H.; Kim, J.S.A. Mesoporous, silica-immobilized-nanoparticle colorimetric chemosensor for the detection of nerve agents. Adv. Funct. Mater., 2011, 21, 4035-4040.
[http://dx.doi.org/10.1002/adfm.201100968]
[20]
Hiscock, J.R.; Piana, F.; Sambrook, M.R.; Wells, N.J.; Clark, A.J.; Vincent, J.C.; Busschaert, N.; Brown, R.C.D.; Gale, P.A. Detection of nerve agent via perturbation of supramolecular gel formation. Chem. Commun. (Camb.), 2013, 49(80), 9119-9121.
[http://dx.doi.org/10.1039/c3cc44841j] [PMID: 23994877]
[21]
Ruan, Y.; Dalkiliç, E.; Peterson, P.W.; Pandit, A.; Dastan, A.; Brown, J.D.; Polen, S.M.; Hadad, C.M.; Badjić, J.D. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets. Chemistry, 2014, 20(15), 4251-4256.
[http://dx.doi.org/10.1002/chem.201304779] [PMID: 24616086]
[22]
Barba-Bon, A.; Costero, A.M.; Parra, M.; Gil, S.; Martínez-Máñez, R.; Sancenón, F.; Gale, P.A.; Hiscock, J.R. Neutral 1,3-diindolylureas for nerve agent remediation. Chemistry, 2013, 19(5), 1586-1590.
[http://dx.doi.org/10.1002/chem.201202028] [PMID: 23280819]
[23]
Sambrook, M.R.; Hiscock, J.R.; Cook, A.; Green, A.C.; Holden, I.; Vincent, J.C.; Gale, P.A. Hydrogen bond-mediated recognition of the chemical warfare agent soman (GD). Chem. Commun. (Camb.), 2012, 48(45), 5605-5607.
[http://dx.doi.org/10.1039/c2cc31096a] [PMID: 22546851]
[24]
Puglisi, R.; Pappalardo, A.; Gulino, A.; Sfrazzetto, G.T. Multitopic supramolecular detection of chemical warfare agents by fluorescent sensors. ACS Omega, 2019, 4, 7550-7555.
[http://dx.doi.org/10.1021/acsomega.9b00502]
[25]
Ballistreri, F.P.; Pappalardo, A.; Toscano, R.M.; Tomaselli, G.A.; Sfrazzetto, G.T. A new heteroditopic chiral Uranyl–Salen receptor for molecular recognition of amino acid ammonium salts. Eur. J. Org. Chem., 2010, 20, 3806-3810.
[http://dx.doi.org/10.1002/ejoc.201000566]
[26]
Amato, M.E.; Ballistreri, F.P.; D’Agata, S.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Sfrazzetto, G.T. Enantioselective molecular recognition of chiral organic ammonium ions and amino acids using Cavitand-Salen based receptors. Eur. J. Org. Chem., 2011, 5674-5680.
[http://dx.doi.org/10.1002/ejoc.201100955]
[27]
Forte, G.; D’Urso, A.; Ballistreri, F.P.; Toscano, R.M.; Tomaselli, G.A.; Sfrazzetto, G.A.T. Pappalardo enantiomeric recognition of α-amino acid derivatives by chiral Uranyl-Salen receptors. Tetrahedron Lett., 2015, 56, 2922-2926.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.092]
[28]
Puglisi, R.; Mineo, P.G.; Pappalardo, A.; Gulino, A.; Sfrazzetto, G.T. Supramolecular detection of a nerve agent simulant by fluorescent Zn-Salen oligomer receptors. Molecules, 2019, 24(11), 2160-2172.
[http://dx.doi.org/10.3390/molecules24112160] [PMID: 31181723]
[29]
Gangemi, C.M.A.; Rimkaite, U.; Cipria, F.; Sfrazzetto, G.T.; Pappalardo, A. Enantiomeric recognition of α-aminoacids by a uranyl Salen-bis-porphyrin complex. Front Chem., 2019, 7, 836-843.
[http://dx.doi.org/10.3389/fchem.2019.00836] [PMID: 31850322]
[30]
Zammataro, A.; Gangemi, C.M.A.; Pappalardo, A.; Toscano, R.M.; Puglisi, R.; Nicotra, G.; Fragalà, M.E.; Tuccitto, N.; Sfrazzetto, G.T. Covalently functionalized carbon nanoparticles with a chiral Mn-Salen: a new nanocatalyst for enantioselective epoxidation of alkenes. Chem. Commun. (Camb.), 2019, 55(36), 5255-5258.
[http://dx.doi.org/10.1039/C9CC01825E] [PMID: 30990489]
[31]
Trusso Sfrazzetto, G.; Satriano, C.; Tomaselli, G.A.; Rizzarelli, E. Synthetic fluorescent probes to map metallostasis and intracellularfate of zinc and copper. Coord. Chem. Rev., 2016, 311, 125-167.
[http://dx.doi.org/10.1016/j.ccr.2015.11.012]
[32]
Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Trusso Sfrazzetto, G. Chiral Zn-salen complexes: a new class of fluores-cent receptors for enantiodiscrimination of chiral amines. New J. Chem., 2017, 41, 911-915.
[http://dx.doi.org/10.1039/C6NJ03592B ]
[33]
Wiener, S.W.; Hoffman, R.S. Nerve agents: a comprehensive review. J. Intensive Care Med., 2004, 19(1), 22-37.
[http://dx.doi.org/10.1177/0885066603258659] [PMID: 15035752]
[34]
Pappalardo, A.; Amato, M.E.; Ballistreri, F.P.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. Pair of diastereomeric uranyl salen cavitands displaying opposite enantiodiscrimination of α-amino acid ammonium salts. J. Org. Chem., 2012, 77(17), 7684-7687.
[http://dx.doi.org/10.1021/jo301098d] [PMID: 22892015]
[35]
Pappalardo, A.; Ballistreri, F.P.; Li Destri, G.; Mineo, P.G.; Tomaselli, G.A.; Toscano, R.M.; Sfrazzetto, G.T. Supramolecular Polymer networks based on calix[5]arene tethered poly(p-phenyleneethynylene). Macromolecules, 2012, 45, 7549-7556.
[http://dx.doi.org/10.1021/ma3015239]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy