Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances in Miniaturized Microextraction Techniques for the Determination of Bisphenols in Environmental Samples: An Overview of the Last Two Decades

Author(s): Athanasios Tsalbouris, Natasa P. Kalogiouri and Victoria F. Samanidou*

Volume 17, Issue 4, 2021

Published on: 30 September, 2020

Page: [478 - 494] Pages: 17

DOI: 10.2174/1573411016999200930115626

Price: $65

Abstract

Background: Bisphenols are major industrial chemicals that have raised public concern due to their endocrine disrupting properties and toxicity. Sample preparation is the most critical step for the determination of bisphenols, especially if the analyst has to deal with environmental samples which are complex matrices and the co-extraction and co-elution of other relevant compounds results in the enhancement or suppression of the analyte signal. The need for the precise determination of bisphenols has signaled the development of effective microextraction techniques according to the Green Analytical Chemistry (GAC) guidelines.

Objective: The objective of this review is to gather and discuss all the recent advances in the development of microextraction techniques such as solid phase extraction (SPE), solid phase microextraction (SPME), magnetic solid phase microextraction (MSPE), liquid-phase microextraction (LPME), dispersive liquid-liquid microextraction (DLLME), stir bar sorptive extraction (SBSE), and matrix solid-phase dispersion (MSPD), that have been successfully applied in the extraction of bisphenols from environmental matrices.

Conclusion: The analytical performance of the proposed techniques is critically discussed, highlighting the potential and the limitations of each method.

Keywords: BPA, SPE, SPME, green chemistry, microextraction techniques, environmental samples.

Graphical Abstract
[1]
Alves, T.S.; Santos, J.S.; Fiorucci, A.R.; Arruda, G.J. A new simple electrochemical method for the determination of Bisphenol A using bentonite as modifier. Mater. Sci. Eng. C, 2019, 105(August)110048
[http://dx.doi.org/10.1016/j.msec.2019.110048] [PMID: 31546367]
[2]
Anthemidis, A.N.; Kalogiouri, N.P. Advances in on-line hydride generation atomic spectrometric determination of arsenic. Anal. Lett., 2013, 46(11), 1672-1704.
[http://dx.doi.org/10.1080/00032719.2012.755691]
[3]
Xie, P.; Zhao, C.; Zhao, H.; Chen, X.; Cai, Z. Determination of Bisphenol A and Bisphenol S in sacked mouse foods by liquid chromatography-tandem mass spectrometry. Int. J. Mass Spectrom., 2018, 434, 17-22.
[http://dx.doi.org/10.1016/j.ijms.2018.08.011]
[4]
Qu, J.; Li, Y.; Gao, M.; Tan, C.; Li, J.; Wang, X.; Wang, H. Development and optimization of a thiol imidazolium-based ionic liquid for ultrasonic assisted liquid-liquid microextraction combined with HPLC-FLD for determination of bisphenols in milk and juice samples. Lwt, 2018, 2019(111), 653-662.
[http://dx.doi.org/10.1016/j.lwt.2019.05.096]
[5]
Kolatorova Sosvorova, L.; Chlupacova, T.; Vitku, J.; Vlk, M.; Heracek, J.; Starka, L.; Saman, D.; Simkova, M.; Hampl, R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta, 2017, 174(May), 21-28.
[http://dx.doi.org/10.1016/j.talanta.2017.05.070] [PMID: 28738570]
[6]
Hercog, K.; Maisanaba, S.; Filipič, M.; Sollner-Dolenc, M.; Kač, L.; Žegura, B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Sci. Total Environ., 2019, 687, 267-276.
[http://dx.doi.org/10.1016/j.scitotenv.2019.05.486] [PMID: 31207516]
[7]
Park, S.R.; Park, S.J.; Jeong, M.J.; Choi, J.C.; Kim, M. Fast and simple determination and exposure assessment of bisphenol A, phenol, p-tert-butylphenol, and diphenylcarbonate transferred from polycarbonate food-contact materials to food simulants. Chemosphere, 2018, 203, 300-306.
[http://dx.doi.org/10.1016/j.chemosphere.2018.03.185] [PMID: 29625319]
[8]
Vermeirssen, E.L.M.; Dietschweiler, C.; Werner, I.; Burkhardt, M. Corrosion protection products as a source of bisphenol A and toxicity to the aquatic environment. Water Res., 2017, 123, 586-593.
[http://dx.doi.org/10.1016/j.watres.2017.07.006] [PMID: 28704774]
[9]
Wang, H.; Song, S.; Shao, M.; Gao, Y.; Yang, C.; Li, Y.; Wang, W.; He, Y.; Li, P. Determination of bisphenol analogues in food-contact plastics using diode array detector, charged aerosol detector and evaporative light-scattering detector. Ecotoxicol. Environ. Saf., 2019, 186(October)109778
[http://dx.doi.org/10.1016/j.ecoenv.2019.109778] [PMID: 31627095]
[10]
Usman, A.; Ikhlas, S.; Ahmad, M. Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol. Lett., 2019, 312(May), 222-227.
[http://dx.doi.org/10.1016/j.toxlet.2019.05.018] [PMID: 31136786]
[11]
Wang, H.; Liu, Z.H.; Zhang, J.; Huang, R.P.; Yin, H.; Dang, Z.; Wu, P.X.; Liu, Y. Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants. Sci. Total Environ., 2019, 692, 107-116.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.134] [PMID: 31344564]
[12]
Nikahd, B.; Khalilzadeh, M.A. Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J. Mol. Liq., 2016, 215, 253-257.
[http://dx.doi.org/10.1016/j.molliq.2015.12.003]
[13]
Noszczyńska, M.; Piotrowska-Seget, Z. Bisphenols: Application, occurrence, safety, and biodegradation mediated by bacterial communities in wastewater treatment plants and rivers. Chemosphere, 2018, 201, 214-223.
[http://dx.doi.org/10.1016/j.chemosphere.2018.02.179] [PMID: 29524822]
[14]
Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. adults and children: The national health and nutrition examination survey 2013-2014. ACS Omega, 2018, 3(6), 6523-6532.
[http://dx.doi.org/10.1021/acsomega.8b00824] [PMID: 29978145]
[15]
Kalogiouri, N.P.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Synthesis and application of molecularly imprinted polymers using sol-gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J., 2020, 157(May)104965
[http://dx.doi.org/10.1016/j.microc.2020.104965]
[16]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[17]
Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the Significance Mnemonic of green analytical practices. TrAC -. Trends Analyt. Chem., 2013, 50, 78-84.
[http://dx.doi.org/10.1016/j.trac.2013.04.010]
[18]
Salehinia, S.; Ghoreishi, S.M.; Maya, F.; Cerdà, V. Hydrophobic magnetic montmorillonite composite material for the efficient adsorption and microextraction of bisphenol A from water samples. J. Environ. Chem. Eng., 2016, 4(4), 4062-4071.
[http://dx.doi.org/10.1016/j.jece.2016.08.007]
[19]
Liu, D.; Liu, J.; Guo, M.; Xu, H.; Zhang, S.; Shi, L.; Yao, C. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Mar. Pollut. Bull., 2016, 112(1-2), 142-150.
[http://dx.doi.org/10.1016/j.marpolbul.2016.08.026] [PMID: 27539633]
[20]
Xiong, L.; Yan, P.; Chu, M.; Gao, Y.Q.; Li, W.H.; Yang, X.L. A rapid and simple HPLC-FLD screening method with QuEChERS as the sample treatment for the simultaneous monitoring of nine bisphenols in milk. Food Chem., 2018, 244(244), 371-377.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.030] [PMID: 29120796]
[21]
Nascimento, C.F.; Rocha, F.R.P. Spectrofluorimetric determination of Bisphenol A in tap waters by exploiting liquid-liquid microextraction in a sequential injection system. Microchem. J., 2018, 137, 429-434.
[http://dx.doi.org/10.1016/j.microc.2017.12.006]
[22]
Cunha, S.C.; Pena, A.; Fernandes, J.O. Dispersive liquid-liquid microextraction followed by microwave-assisted silylation and gas chromatography-mass spectrometry analysis for simultaneous trace quantification of bisphenol A and 13 ultraviolet filters in wastewaters. J. Chromatogr. A, 2015, 1414, 10-21.
[http://dx.doi.org/10.1016/j.chroma.2015.07.099] [PMID: 26341596]
[23]
Magi, E.; Di Carro, M.; Liscio, C. Passive sampling and stir bar sorptive extraction for the determination of endocrine-disrupting compounds in water by GC-MS. Anal. Bioanal. Chem., 2010, 397(3), 1335-1345.
[http://dx.doi.org/10.1007/s00216-010-3656-1] [PMID: 20376432]
[24]
Kawaguchi, M.; Inoue, K.; Yoshimura, M.; Ito, R.; Sakui, N.; Okanouchi, N.; Nakazawa, H. Determination of bisphenol A in river water and body fluid samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 805(1), 41-48.
[http://dx.doi.org/10.1016/j.jchromb.2004.02.005] [PMID: 15113538]
[25]
Česen, M.; Lenarčič, K.; Mislej, V.; Levstek, M.; Kovačič, A.; Cimrmančič, B.; Uranjek, N.; Kosjek, T.; Heath, D.; Dolenc, M.S.; Heath, E. The occurrence and source identification of bisphenol compounds in wastewaters. Sci. Total Environ., 2018, 616-617, 744-752.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.252] [PMID: 29096955]
[26]
Rashid, A.; Wang, Y.; Li, Y.; Yu, C.P.; Sun, Q. Simultaneous analysis of multiclass contaminants of emerging concern in sediments by liquid chromatography with tandem quadrupole mass spectrometry. Environ. Toxicol. Chem., 2019, 38(7), 1409-1422.
[http://dx.doi.org/10.1002/etc.4450] [PMID: 31017690]
[27]
Berlioz-Barbier, A.; Vauchez, A.; Wiest, L.; Baudot, R.; Vulliet, E.; Cren-Olivé, C. Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Anal. Bioanal. Chem., 2014, 406(4), 1259-1266.
[http://dx.doi.org/10.1007/s00216-013-7450-8] [PMID: 24258400]
[28]
Salgueiro-González, N.; Concha-Graña, E.; Turnes-Carou, I.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Determination of alkylphenols and bisphenol A in seawater samples by dispersive liquid-liquid microextraction and liquid chromatography tandem mass spectrometry for compliance with environmental quality standards (Directive 2008/105/EC). J. Chromatogr. A, 2012, 1223, 1-8.
[http://dx.doi.org/10.1016/j.chroma.2011.12.011] [PMID: 22227360]
[29]
Salvatierra-stamp, V.; Muñiz-Valencia, R.; Jurado, J.M.; Ceballos-Magaña, S.G. Hollow fiber liquid phase microextraction combined with liquid chromatography-tandem mass spectrometry for the analysis of emerging contaminants in water samples. Microchem. J., 2018, 140(March), 87-95.
[http://dx.doi.org/10.1016/j.microc.2018.04.012]
[30]
Lu, X.; Sun, J.; Sun, X. Recent advances in biosensors for the detection of estrogens in the environment and food. Trends Analyt. Chem., 2020, 127115882
[http://dx.doi.org/10.1016/j.trac.2020.115882]]
[31]
Deng, Z.H.; Li, N.; Jiang, H.L.; Lin, J.M.; Zhao, R.S. Pretreatment techniques and analytical methods for phenolic endocrine disrupting chemicals in food and environmental samples. TrAC -. Trends Analyt. Chem., 2019, 119, 1.
[http://dx.doi.org/10.1016/j.trac.2019.07.003]
[32]
Caballero-Casero, N.; Lunar, L.; Rubio, S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review. Anal. Chim. Acta, 2016, 908, 22-53.
[http://dx.doi.org/10.1016/j.aca.2015.12.034] [PMID: 26826686]
[33]
Ros, O.; Vallejo, A.; Blanco-Zubiaguirre, L.; Olivares, M.; Delgado, A.; Etxebarria, N.; Prieto, A. Microextraction with polyethersulfone for bisphenol-A, alkylphenols and hormones determination in water samples by means of gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis. Talanta, 2015, 134, 247-255.
[http://dx.doi.org/10.1016/j.talanta.2014.11.015] [PMID: 25618664]
[34]
Rutkowska, M.; Dubalska, K.; Konieczka, P.; Namieśnik, J. Microextraction techniques used in the procedures for determining organomercury and organotin compounds in environmental samples. Molecules, 2014, 19(6), 7581-7609.
[http://dx.doi.org/10.3390/molecules19067581] [PMID: 24914902]
[35]
Barrionuevo, W.R.; Lanças, F.M. Comparison of liquid-liquid extraction (LLE), solid-phase extraction (SPE), and solid-phase microextraction (SPME) for pyrethroid pesticides analysis from enriched river water. Bull. Environ. Contam. Toxicol., 2002, 69(1), 123-128.
[http://dx.doi.org/10.1007/s00128-002-0018-5] [PMID: 12053266]
[36]
Reyhanitash, E.; Brouwer, T.; Kersten, S.R.A.; van der Ham, A.G.J.; Schuur, B. Liquid-Liquid extraction-based process concepts for recovery of carboxylic acids from aqueous streams evaluated for dilute streams. Chem. Eng. Res. Des., 2018, 137, 510-533.
[http://dx.doi.org/10.1016/j.cherd.2018.07.038]
[37]
Amani, P.; Amani, M.; Ahmadi, G.; Mahian, O.; Wongwises, S. A Critical review on the use of nanoparticles in liquid-liquid extraction. Chem. Eng. Sci., 2018, 183, 148-176.
[http://dx.doi.org/10.1016/j.ces.2018.03.001]
[38]
Wang, Y.; Li, G.; Zhu, Q.; Liao, C. A multi-residue method for determination of 36 endocrine disrupting chemicals in human serum with a simple extraction procedure in combination of UPLC-MS/MS analysis. Talanta, 2019, 205(April)120144
[http://dx.doi.org/10.1016/j.talanta.2019.120144] [PMID: 31450414]
[39]
Zech, J.; Manowski, A.; Malchow, S.; Rettberg, N.; Garbe, L.A. Determination of bisphenols, bisphenol a diglycidyl ether (BADGE), BADGE chlorohydrins and hydrates from canned beer by high-performance liquid chromatographytandem mass spectrometry. BrewingScience, 2015, 68(9-10), 102-109.
[40]
Yang, Y.; Guan, J.; Yin, J.; Shao, B.; Li, H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere, 2014, 112, 481-486.
[http://dx.doi.org/10.1016/j.chemosphere.2014.05.004] [PMID: 25048943]
[41]
F, S. Die Gewichtsanalytische Bestimmung Des Milchfettes: Von Dr. F. Soxhlet. Digit. des Polytech. J., 1879, 232, 461-465.
[42]
Luque de Castro, M.D.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A, 2010, 1217(16), 2383-2389.
[http://dx.doi.org/10.1016/j.chroma.2009.11.027] [PMID: 19945707]
[43]
Mortazavi, S.; Bakhtiari, A.R.; Sari, A.E.; Bahramifar, N.; Rahbarizade, F. Phenolic endocrine disrupting chemicals (EDCs) in Anzali Wetland, Iran: elevated concentrations of 4-nonylphenol, octhylphenol and bisphenol A. Mar. Pollut. Bull., 2012, 64(5), 1067-1073.
[http://dx.doi.org/10.1016/j.marpolbul.2012.02.010] [PMID: 22459496]
[44]
Morales-Muñoz, S.; Luque-García, J.L.; Ramos, M.J.; Martínez-Bueno, M.J.; Luque De Castro, M.D. Sequential automated focused microwave-assisted soxhlet extraction of compounds with different polarity from marine sediments prior to gas chromatography mass spectrometry detection. Chromatographia, 2005, 62(1-2), 69-74.
[http://dx.doi.org/10.1365/s10337-005-0574-z]
[45]
Li, X.; Zhou, M.; Jia, J.; Ma, J.; Jia, Q. Design of a Hyper-Crosslinked B-Cyclodextrin porous polymer for highly efficient removal toward bisphenol a from water. Separ. Purif. Tech., 2017, 2018(195), 130-137.
[http://dx.doi.org/10.1016/j.seppur.2017.12.007]
[46]
Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase extraction of organic compounds: A critical review. Part Ii. TrAC -. Trends Analyt. Chem., 2016, 80, 655-667.
[http://dx.doi.org/10.1016/j.trac.2015.08.014]
[47]
Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro Solid-Phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. TrAC -. Trends Analyt. Chem., 2019, 118, 810-827.
[http://dx.doi.org/10.1016/j.trac.2019.06.036]
[48]
Xue, J.; Kannan, K. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA. Sci. Total Environ., 2019, 648, 442-449.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.047] [PMID: 30121043]
[49]
Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem., 2016, 408(25), 6913-6927.
[http://dx.doi.org/10.1007/s00216-016-9791-6] [PMID: 27485626]
[50]
Mohamed, R.; Richoz-Payot, J.; Gremaud, E.; Mottier, P.; Yilmaz, E.; Tabet, J.C.; Guy, P.A. Advantages of molecularly imprinted polymers LC-ESI-MS/MS for the selective extraction and quantification of chloramphenicol in milk-based matrixes. comparison with a classical sample preparation. Anal. Chem., 2007, 79(24), 9557-9565.
[http://dx.doi.org/10.1021/ac7019859] [PMID: 18001131]
[51]
Sellergren, B. Direct drug determination by selective sample enrichment on an imprinted polymer. Anal. Chem., 1994, 66(9), 1578-1582.
[http://dx.doi.org/10.1021/ac00081a036]
[52]
Rozaini, M.N.H.; Yahaya, N.; Saad, B.; Kamaruzaman, S.; Hanapi, N.S.M. Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta, 2017, 171(May), 242-249.
[http://dx.doi.org/10.1016/j.talanta.2017.05.006] [PMID: 28551135]
[53]
Lin, Z.; Zhang, Y.; Su, Y.; Qi, J.; Jia, Y.; Huang, C.; Dong, Q. Selective extraction of bisphenol A from water by one-monomer molecularly imprinted magnetic nanoparticles. J. Sep. Sci., 2018, 41(9), 2029-2036.
[http://dx.doi.org/10.1002/jssc.201701162] [PMID: 29333682]
[54]
Huang, C.; Wu, L.H.; Liu, G.Q.; Shi, L.; Guo, Y. Occurrence and ecological risk assessment of eight endocrine-disrupting chemicals in urban river water and sediments of south china. Arch. Environ. Contam. Toxicol., 2018, 75(2), 224-235.
[http://dx.doi.org/10.1007/s00244-018-0527-9] [PMID: 29725723]
[55]
Wang, Q.; Zhu, L.; Chen, M.; Ma, X.; Wang, X.; Xia, J. Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere, 2017, 169, 709-715.
[http://dx.doi.org/10.1016/j.chemosphere.2016.11.095] [PMID: 27918998]
[56]
Ashfaq, M.; Sun, Q.; Zhang, H.; Li, Y.; Wang, Y.; Li, M.; Lv, M.; Liao, X.; Yu, C.P. Occurrence and fate of bisphenol A transformation products, bisphenol A monomethyl ether and bisphenol A dimethyl ether, in wastewater treatment plants and surface water. J. Hazard. Mater., 2018, 357(June), 401-407.
[http://dx.doi.org/10.1016/j.jhazmat.2018.06.022] [PMID: 29913372]
[57]
Lv, M.; Sun, Q.; Hu, A.; Hou, L.; Li, J.; Cai, X.; Yu, C.P. Pharmaceuticals and personal care products in a mesoscale subtropical watershed and their application as sewage markers. J. Hazard. Mater., 2014, 280, 696-705.
[http://dx.doi.org/10.1016/j.jhazmat.2014.08.054] [PMID: 25232652]
[58]
Li, Y.; Lu, P.; Cheng, J.; Zhu, X.; Guo, W.; Liu, L.; Wang, Q.; He, C.; Liu, S. Novel microporous β-cyclodextrin polymer as sorbent for solid-phase extraction of bisphenols in water samples and orange juice. Talanta, 2018, 187(May), 207-215.
[http://dx.doi.org/10.1016/j.talanta.2018.05.030] [PMID: 29853037]
[59]
Liao, C.; Shi, J.; Wang, X.; Zhu, Q.; Kannan, K. Occurrence and distribution of parabens and bisphenols in sediment from northern Chinese coastal areas. Environ. Pollut., 2019, 253, 759-767.
[http://dx.doi.org/10.1016/j.envpol.2019.07.076] [PMID: 31344538]
[60]
Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci. Total Environ., 2019, 655, 607-613.
[http://dx.doi.org/10.1016/j.scitotenv.2018.11.053] [PMID: 30476841]
[61]
Liu, Y.; Zhang, S.; Song, N.; Guo, R.; Chen, M.; Mai, D.; Yan, Z.; Han, Z.; Chen, J. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake): Implications for ecological and human health risk. Sci. Total Environ., 2017, 599-600, 1090-1098.
[http://dx.doi.org/10.1016/j.scitotenv.2017.05.069] [PMID: 28511354]
[62]
Jin, H.; Zhu, L. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China. Water Res., 2016, 103, 343-351.
[http://dx.doi.org/10.1016/j.watres.2016.07.059] [PMID: 27486043]
[63]
Yang, J.; Li, Y.; Wang, J.; Sun, X.; Shah, S.M.; Cao, R.; Chen, J. Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts. Anal. Chim. Acta, 2015, 853(1), 311-319.
[http://dx.doi.org/10.1016/j.aca.2014.09.051] [PMID: 25467474]
[64]
Kabir, A.; Locatelli, M.; Ulusoy, H.I. Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations, 2017, 4(4), 1-15.
[http://dx.doi.org/10.3390/separations4040036]
[65]
Mudiam, M.K.R.; Jain, R.; Dua, V.K.; Singh, A.K.; Sharma, V.P.; Murthy, R.C. Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal. Bioanal. Chem., 2011, 401(5), 1695-1701.
[http://dx.doi.org/10.1007/s00216-011-5226-6] [PMID: 21744235]
[66]
Kim, D.; Han, J.; Choi, Y. On-line solid-phase microextraction of triclosan, bisphenol A, chlorophenols, and selected pharmaceuticals in environmental water samples by high-performance liquid chromatography-ultraviolet detection. Anal. Bioanal. Chem., 2013, 405(1), 377-387.
[http://dx.doi.org/10.1007/s00216-012-6490-9] [PMID: 23086088]
[67]
Qiu, L.; Liu, Q.; Zeng, X.; Liu, Q.; Hou, X.; Tian, Y.; Wu, L. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy. Talanta, 2018, 187(May), 13-18.
[http://dx.doi.org/10.1016/j.talanta.2018.05.001] [PMID: 29853025]
[68]
Basaglia, G.; Pietrogrande, M.C. Optimization of a SPME/GC/MS method for the simultaneous determination of pharmaceuticals and personal care products in waters. Chromatographia, 2012, 75(7-8), 361-370.
[http://dx.doi.org/10.1007/s10337-012-2207-7]
[69]
Kirschner, N.; Dias, A.N.; Budziak, D.; da Silveira, C.B.; Merib, J.; Carasek, E. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system. Anal. Chim. Acta, 2017, 996, 29-37.
[http://dx.doi.org/10.1016/j.aca.2017.09.047] [PMID: 29137705]
[70]
Mousa, A.; Basheer, C.; Al-Arfaj, A.R. Application of electro-enhanced solid-phase microextraction for determination of phthalate esters and bisphenol A in blood and seawater samples. Talanta, 2013, 115, 308-313.
[http://dx.doi.org/10.1016/j.talanta.2013.05.011] [PMID: 24054596]
[71]
Chisvert, A.; Cárdenas, S.; Lucena, R. Dispersive micro-solid phase extraction. TrAC -. Trends Analyt. Chem., 2019, 112, 226-233.
[http://dx.doi.org/10.1016/j.trac.2018.12.005]
[72]
Cárdenas, A.M.S. Dispersive solid-phase (Micro) extraction. Encycl. Anal. Chem, 2010, 2010, 1.
[73]
Kim, L.; Lee, D.; Cho, H.K.; Choi, S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem., 2019, 22e00063
[http://dx.doi.org/10.1016/j.teac.2019.e00063]
[74]
Correia-Sá, L.; Norberto, S.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Micro-QuEChERS extraction coupled to GC-MS for a fast determination of Bisphenol A in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072(1072), 9-16.
[http://dx.doi.org/10.1016/j.jchromb.2017.10.060] [PMID: 29132025]
[75]
Ben Salem, F.; Ben Said, O.; Duran, R.; Monperrus, M. Validation of an Adapted QuEChERS method for the simultaneous analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides in sediment by gas chromatography-mass spectrometry. Bull. Environ. Contam. Toxicol., 2016, 96(5), 678-684.
[http://dx.doi.org/10.1007/s00128-016-1770-2] [PMID: 27000380]
[76]
Luo, L.; Yang, Y.; Wang, Q.; Li, H. pu; Luo, Z. fei; Qu, Z. peng; Yang, Z. guang. Determination of 4-n-Octylphenol, 4-n-Nonylphenol and Bisphenol A in fish samples from lake and rivers within Hunan province, China. Microchem. J., 2017, 132, 100-106.
[http://dx.doi.org/10.1016/j.microc.2017.01.012]
[77]
Sobhi, H.R.; Ghambarian, M.; Behbahani, M.; Esrafili, A. Application of dispersive solid phase extraction based on a surfactant-coated titanium-based nanomagnetic sorbent for preconcentration of bisphenol A in water samples. J. Chromatogr. A, 2017, 1518, 25-33.
[http://dx.doi.org/10.1016/j.chroma.2017.08.064] [PMID: 28864107]
[78]
Song, S.; Shao, M.; Wang, W.; He, Y.; Dai, X.; Wang, H.; Liu, L.; Guo, F. Development and evaluation of microwave-assisted and ultrasound-assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach for the determination of bisphenol analogues in serum and sediments. J. Sep. Sci., 2017, 40(23), 4610-4618.
[http://dx.doi.org/10.1002/jssc.201700628] [PMID: 28988464]
[79]
Gao, M.; Liu, W.; Wang, X.; Li, Y.; Zhou, P.; Shi, L.; Ye, B.; Dahlgren, R.A.; Wang, X. Hydrogen-bonding-induced efficient dispersive solid phase extraction of bisphenols and their derivatives in environmental waters using surface amino-functionalized MIL-101(Fe). Microchem. J., 2018, 2019(145), 1151-1161.
[http://dx.doi.org/10.1016/j.microc.2018.12.013]
[80]
Xu, Z.; Hu, Y.; Hu, Y.; Li, G. Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of beta2-agonists in complex samples. J. Chromatogr. A, 2010, 1217(22), 3612-3618.
[http://dx.doi.org/10.1016/j.chroma.2010.03.046] [PMID: 20399437]
[81]
Liu, R.; Feng, F.; Chen, G.; Liu, Z.; Xu, Z. Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Anal. Bioanal. Chem., 2016, 408(19), 5329-5335.
[http://dx.doi.org/10.1007/s00216-016-9628-3] [PMID: 27225173]
[82]
Li, M.; Sun, Q.; Li, Y.; Lv, M.; Lin, L.; Wu, Y.; Ashfaq, M.; Yu, C.P. Simultaneous analysis of 45 pharmaceuticals and personal care products in sludge by matrix solid-phase dispersion and liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem., 2016, 408(18), 4953-4964.
[http://dx.doi.org/10.1007/s00216-016-9590-0] [PMID: 27137519]
[83]
Li, C.; Wang, Z.; Sun, A.; Liu, R.; Diao, C. Magnetic multi-walled carbon nanotubes matrix solid-phase dispersion with dispersive liquid–liquid microextraction for the determination of ultra trace bisphenol A in water samples. Chromatographia, 2017, 80(8), 1189-1197.
[http://dx.doi.org/10.1007/s10337-017-3332-0]
[84]
Rezaee, M.; Yamini, Y.; Shariati, S.; Esrafili, A.; Shamsipur, M. Dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple, rapid and sensitive method for the determination of bisphenol A in water samples. J. Chromatogr. A, 2009, 1216(9), 1511-1514.
[http://dx.doi.org/10.1016/j.chroma.2008.12.091] [PMID: 19167003]
[85]
Haeri, S.A. Bio-sorption based dispersive liquid-liquid microextraction for the highly efficient enrichment of trace-level bisphenol A from water samples prior to its determination by HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1028, 186-191.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.025] [PMID: 27362996]
[86]
Kalogiouri, N.P.; Samanidou, V.F. Recent trends in the development of green microextraction techniques for the determination of hazardous organic compounds in wine. Curr. Anal. Chem., 2019, 15(7), 788-800.
[http://dx.doi.org/10.2174/1573411015666190328185337]
[87]
Diao, C. peng; Yang, X; Sun, A. ling; Liu, R. min. Vortex-assisted 380 liquid-liquid microextraction of bisphenol s prior to its determination by HPLC with UV detection. Mikrochim. Acta, 2015, 182(15-16), 2593-2600.
[http://dx.doi.org/10.1007/s00604-015-1635-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy