Pharmacokinetic Drug-drug Interaction of Antibiotics Used in Sepsis Care in China

Author(s): Xuan Yu, Zixuan Chu, Jian Li, Rongrong He, Yaya Wang, Chen Cheng*

Journal Name: Current Drug Metabolism

Volume 22 , Issue 1 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Many antibiotics have a high potential for interactions with drugs, as a perpetrator and/or victim, in critically ill patients, and particularly in sepsis patients.

Methods: The aim of this review is to summarize the pharmacokinetic drug-drug interaction (DDI) of 45 antibiotics commonly used in sepsis care in China. Literature search was conducted to obtain human pharmacokinetics/ dispositions of the antibiotics, their interactions with drug-metabolizing enzymes or transporters, and their associated clinical drug interactions. Potential DDI is indicated by a DDI index ≥ 0.1 for inhibition or a treatedcell/ untreated-cell ratio of enzyme activity being ≥ 2 for induction.

Results: The literature-mined information on human pharmacokinetics of the identified antibiotics and their potential drug interactions is summarized.

Conclusion: Antibiotic-perpetrated drug interactions, involving P450 enzyme inhibition, have been reported for four lipophilic antibacterials (ciprofloxacin, erythromycin, trimethoprim, and trimethoprim-sulfamethoxazole) and three antifungals (fluconazole, itraconazole, and voriconazole). In addition, seven hydrophilic antibacterials (ceftriaxone, cefamandole, piperacillin, penicillin G, amikacin, metronidazole, and linezolid) inhibit drug transporters in vitro. Despite no clinical PK drug interactions with the transporters, caution is advised in the use of these antibacterials. Eight hydrophilic antibiotics (all β-lactams; meropenem, cefotaxime, cefazolin, piperacillin, ticarcillin, penicillin G, ampicillin, and flucloxacillin), are potential victims of drug interactions due to transporter inhibition. Rifampin is reported to perpetrate drug interactions by inducing CYP3A or inhibiting OATP1B; it is also reported to be a victim of drug interactions, due to the dual inhibition of CYP3A4 and OATP1B by indinavir. In addition, three antifungals (caspofungin, itraconazole, and voriconazole) are reported to be victims of drug interactions because of P450 enzyme induction. Reports for other antibiotics acting as victims in drug interactions are scarce.

Keywords: Pharmacokinetics, drug-drug interaction, antibiotic, sepsis, transporter, enzyme.

[1]
Greenblatt, D.J.; von Moltke, L.L. Clinical studies of drug-drug interactions: design and interpretation.In: Enzyme and transporter-based drug-drug interactions: progress and future challenges; Pang, K.S.; Rodrigues, A.D.; Peter, R.M. Eds.; Springer: New York, , 2010; pp. 625-649.
[http://dx.doi.org/10.1007/978-1-4419-0840-7_24]
[2]
Greenblatt, D.J. Introduction to drug-drug interactions. Drug Interaction in Infectious Diseases, 3rd ed; Piscitelli, S.C.; Rodvold, K.A.; Pai, M.P. Ed; Springer: New York 2011. pp. 1-10.
[http://dx.doi.org/10.1007/978-1-61779-213-7_1]
[3]
Shao, J.; Markowitz, J.S.; Bei, D.; An, G. Enzyme- and transporter-mediated drug interactions with small molecule tyrosine kinase inhibitors. J. Pharm. Sci., 2014, 103(12), 3810-3833.
[http://dx.doi.org/10.1002/jps.24113] [PMID: 25308414]
[4]
Li, J.; Olaleye, O.E.; Yu, X.; Jia, W.W.; Yang, J.L.; Lu, C.; Liu, S.Q.; Yu, J.J.; Duan, X.N.; Wang, Y.Y.; Dong, K.; He, R.R.; Cheng, C.; Li, C. High degree of pharmacokinetic compatibility exists between the five-herb medicine XueBiJing injection and antibiotics. Acta Pharm. Sin. B, 2019, 9, 1035-1049.
[http://dx.doi.org/10.1016/j.apsb.2019.06.003] [PMID: 31649852]
[5]
U.S. Food and Drug Administration. In vitro drug interaction studies – cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. Available at: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM581965.pdf
[6]
Bloomer, J.; Derimanov, G.; Dumont, E.; Ellens, H.; Matheny, C. Optimizing the in vitro and clinical assessment of drug interaction risk by understanding co-medications in patient populations. Expert Opin. Drug Metab. Toxicol., 2013, 9(6), 737-751.
[http://dx.doi.org/10.1517/17425255.2013.781582] [PMID: 23586918]
[7]
Pai, M.P.; Momary, K.M.; Rodvold, K.A. Antibiotic drug interactions. Med. Clin. North Am., 2006, 90(6), 1223-1255.
[http://dx.doi.org/10.1016/j.mcna.2006.06.008] [PMID: 17116445]
[8]
Drug Bank. Statistics https://www.drugbank.ca/stats
[9]
Monahan, B.P.; Ferguson, C.L.; Killeavy, E.S.; Lloyd, B.K.; Troy, J.; Cantilena, L.R., Jr. Torsades de pointes occurring in association with terfenadine use. JAMA, 1990, 264(21), 2788-2790.
[http://dx.doi.org/10.1001/jama.1990.03450210088038] [PMID: 1977935]
[10]
Mullins, M.E.; Horowitz, B.Z.; Linden, D.H.; Smith, G.W.; Norton, R.L.; Stump, J. Life-threatening interaction of mibefradil and beta-blockers with dihydropyridine calcium channel blockers. JAMA, 1998, 280(2), 157-158.
[http://dx.doi.org/10.1001/jama.280.2.157] [PMID: 9669789]
[11]
Henney, J.E. Withdrawal of troglitazone and cisapride. JAMA, 2000, 283, 2228.
[http://dx.doi.org/10.1001/jama.283.17.2228-JFD00003-2-1]
[12]
Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; Deutschman, C.S.; Escobar, G.J.; Angus, D.C. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8), 762-774.
[http://dx.doi.org/10.1001/jama.2016.0288] [PMID: 26903335]
[13]
Shankar-Hari, M.; Phillips, G.S.; Levy, M.L.; Seymour, C.W.; Liu, V.X.; Deutschman, C.S.; Angus, D.C.; Rubenfeld, G.D.; Singer, M. Sepsis Definitions Task Force. Developing a newdefinition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8), 775-787.
[http://dx.doi.org/10.1001/jama.2016.0289] [PMID: 26903336]
[14]
Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA, 2016, 315(8), 801-810.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[15]
van der Poll, T.; van de Veerdonk, F.L.; Scicluna, B.P.; Netea, M.G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol., 2017, 17(7), 407-420.
[http://dx.doi.org/10.1038/nri.2017.36] [PMID: 28436424]
[16]
Deutschman, C.S.; Tracey, K.J. Sepsis: current dogma and new perspectives. Immunity, 2014, 40(4), 463-475.
[http://dx.doi.org/10.1016/j.immuni.2014.04.001] [PMID: 24745331]
[17]
Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med., 2013, 369(9), 840-851.
[http://dx.doi.org/10.1056/NEJMra1208623] [PMID: 23984731]
[18]
Cohen, J.; Vincent, J.L.; Adhikari, N.K.; Machado, F.R.; Angus, D.C.; Calandra, T.; Jaton, K.; Giulieri, S.; Delaloye, J.; Opal, S.; Tracey, K.; van der Poll, T.; Pelfrene, E. Sepsis: a roadmap for future research. Lancet Infect. Dis., 2015, 15(5), 581-614.
[http://dx.doi.org/10.1016/S1473-3099(15)70112-X] [PMID: 25932591]
[19]
Howell, M.D.; Davis, A.M. Management of sepsis and septic shock. JAMA, 2017, 317(8), 847-848.
[http://dx.doi.org/10.1001/jama.2017.0131] [PMID: 28114603]
[20]
Fink, M.P.; Warren, H.S. Strategies to improve drug development for sepsis. Nat. Rev. Drug Discov., 2014, 13(10), 741-758.
[http://dx.doi.org/10.1038/nrd4368] [PMID: 25190187]
[21]
Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; Rochwerg, B.; Rubenfeld, G.D.; Angus, D.C.; Annane, D.; Beale, R.J.; Bellinghan, G.J.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.; De Backer, D.P.; French, C.J.; Fujishima, S.; Gerlach, H.; Hidalgo, J.L.; Hollenberg, S.M.; Jones, A.E.; Karnad, D.R.; Kleinpell, R.M.; Koh, Y.; Lisboa, T.C.; Machado, F.R.; Marini, J.J.; Marshall, J.C.; Mazuski, J.E.; McIntyre, L.A.; McLean, A.S.; Mehta, S.; Moreno, R.P.; Myburgh, J.; Navalesi, P.; Nishida, O.; Osborn, T.M.; Perner, A.; Plunkett, C.M.; Ranieri, M.; Schorr, C.A.; Seckel, M.A.; Seymour, C.W.; Shieh, L.; Shukri, K.A.; Simpson, S.Q.; Singer, M.; Thompson, B.T.; Townsend, S.R.; Van der Poll, T.; Vincent, J.L.; Wiersinga, W.J.; Zimmerman, J.L.; Dellinger, R.P. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock. Intensive Care Med., 2017, 43(3), 304-377.
[http://dx.doi.org/10.1007/s00134-017-4683-6] [PMID: 28101605]
[22]
Wang, H.L.; Zhang, Z.D.; Huang, W. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock (2016): interpretation and expectation. Chin. J. Crit. Care Intensive Care Med., 2017, 3, 26-32.
[23]
Xie, J.F.; Qiu, H.B. Surviving sepsis campaign: international guideline for management of sepsis and septic shock (2016): progress and comment. Chin. J. Crit. Care Intensive Care Med., 2017, 3, 18-25.
[24]
Uijtendaal, E.V.; van Harssel, L.L.; Hugenholtz, G.W.; Kuck, E.M.; Zwart- van Rijkom, J.E.; Cremer, O.L.; Egberts, T.C. Analysis of potential drug- drug interactions in medical intensive care unit patients. Pharmacotherapy, 2014, 34(3), 213-219.
[http://dx.doi.org/10.1002/phar.1395] [PMID: 24390929]
[25]
Pereira, J.M.; Paiva, J.A. Antimicrobial drug interactions in the critically ill patients. Curr. Clin. Pharmacol., 2013, 8(1), 25-38.
[PMID: 22946870]
[26]
Smithburger, P.L.; Kane-Gill, S.L.; Seybert, A.L. Drug-drug interactions in the medical intensive care unit: an assessment of frequency, severity and the medications involved. Int. J. Pharm. Pract., 2012, 20(6), 402-408.
[http://dx.doi.org/10.1111/j.2042-7174.2012.00221.x] [PMID: 23134100]
[27]
Pea, F.; Furlanut, M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin. Pharmacokinet., 2001, 40(11), 833-868.
[http://dx.doi.org/10.2165/00003088-200140110-00004] [PMID: 11735605]
[28]
Pharmapendium, Reed Elsevier Properties SA http://www.pharmapendium.com
[29]
Drusano, G.L.; Standiford, H.C. Pharmacokinetic profile of imipenem/cilastatin in normal volunteers. Am. J. Med., 1985, 78(6A), 47-53.
[http://dx.doi.org/10.1016/0002-9343(85)90101-9] [PMID: 3859215]
[30]
Novelli, A.; Adembri, C.; Livi, P.; Fallani, S.; Mazzei, T.; De Gaudio, A.R. Pharmacokinetic evaluation of meropenem and imipenem in critically ill patients with sepsis. Clin. Pharmacokinet., 2005, 44(5), 539-549.
[http://dx.doi.org/10.2165/00003088-200544050-00007] [PMID: 15871639]
[31]
Nakamura, Y.; Nakahira, K.; Mizutani, T. Decreased valproate level caused by VPA-glucuronidase inhibition by carbapenem antibiotics. Drug Metab. Lett., 2008, 2(4), 280-285.
[http://dx.doi.org/10.2174/187231208786734049] [PMID: 19356106]
[32]
Park, M.K.; Lim, K.S.; Kim, T.E.; Han, H.K.; Yi, S.J.; Shin, K.H.; Cho, J.Y.; Shin, S.G.; Jang, I.J.; Yu, K.S. Reduced valproic acid serum concentrations due to drug interactions with carbapenem antibiotics: overview of 6 cases. Ther. Drug Monit., 2012, 34(5), 599-603.
[http://dx.doi.org/10.1097/FTD.0b013e318260f7b3] [PMID: 22929406]
[33]
Wu, C.C.; Pai, T.Y.; Hsiao, F.Y.; Shen, L.J.; Wu, F.L. The effect of different carbapenem antibiotics (ertapenem, imipenem/cilastatin, and meropenem) on serum valproic acid concentrations. Ther. Drug Monit., 2016, 38(5), 587-592.
[http://dx.doi.org/10.1097/FTD.0000000000000316] [PMID: 27322166]
[34]
Takeda, M.; Narikawa, S.; Hosoyamada, M.; Cha, S.H.; Sekine, T.; Endou, H. Characterization of organic anion transport inhibitors using cells stably expressing human organic anion transporters. Eur. J. Pharmacol., 2001, 419(2-3), 113-120.
[http://dx.doi.org/10.1016/S0014-2999(01)00962-1] [PMID: 11426832]
[35]
Shibayama, T.; Sugiyama, D.; Kamiyama, E.; Tokui, T.; Hirota, T.; Ikeda, T. Characterization of CS-023 (RO4908463), a novel parenteral carbapenem antibiotic, and meropenem as substrates of human renal transporters. Drug Metab. Pharmacokinet., 2007, 22(1), 41-47.
[http://dx.doi.org/10.2133/dmpk.22.41] [PMID: 17329910]
[36]
U.S. Food and Drug Administration. Drug Information: Merrem (meropenem for injection) 2016. Available at: http://www.pharmapendium.com
[37]
Majumdar, A.K.; Musson, D.G.; Birk, K.L.; Kitchen, C.J.; Holland, S.; McCrea, J.; Mistry, G.; Hesney, M.; Xi, L.; Li, S.X.; Haesen, R.; Blum, R.A.; Lins, R.L.; Greenberg, H.; Waldman, S.; Deutsch, P.; Rogers, J.D. Pharmacokinetics of ertapenem in healthy young volunteers. Antimicrob. Agents Chemother., 2002, 46(11), 3506-3511.
[http://dx.doi.org/10.1128/AAC.46.11.3506-3511.2002] [PMID: 12384357]
[38]
Brink, A.J.; Richards, G.A.; Schillack, V.; Kiem, S.; Schentag, J. Pharmacokinetics of once-daily dosing of ertapenem in critically ill patients with severe sepsis. Int. J. Antimicrob. Agents, 2009, 33(5), 432-436.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.005] [PMID: 19091521]
[39]
U.S. Food and Drug Administration. Drug Information: Invanz (ertapenem for injection) 2014.http://www.pharmapendium.com
[40]
Nix, D.E.; Majumdar, A.K.; DiNubile, M.J. Pharmacokinetics and pharmacodynamics of ertapenem: an overview for clinicians. J. Antimicrob. Chemother., 2004, 53(Suppl. 2), ii23-ii28.
[http://dx.doi.org/10.1093/jac/dkh205] [PMID: 15150180]
[41]
Liu, Y.; Li, Z.; Yang, C.; Zheng, H.; Lv, Y.; Chen, H.; Zhang, Y.; Shi, S. Tolerability and pharmacokinetics of biapenem following single and multiple intravenous administrations in healthy Chinese subjects: an open-label, randomized, single-center study. Drug Res. (Stuttg.), 2013, 63(8), 396-403.
[http://dx.doi.org/10.1055/s-0033-1341498] [PMID: 23585303]
[42]
Suyama, H.; Ikawa, K.; Morikawa, N.; Ikeda, K.; Fujiue, Y.; Morikawa, S.; Kaneko, K.; Kuwabara, M.; Yamanoue, T. Pharmacokinetics and pharmacodynamics of biapenem in critically ill patients under continuous venovenous hemodiafiltration. Jpn. J. Antibiot., 2008, 61(5), 303-313.
[PMID: 19260350]
[43]
Perry, C.M.; Ibbotson, T. Biapenem. Drugs, 2002, 62(15), 2221-2234.
[http://dx.doi.org/10.2165/00003495-200262150-00005] [PMID: 12381221]
[44]
Barbhaiya, R.H.; Forgue, S.T.; Gleason, C.R.; Knupp, C.A.; Pittman, K.A.; Weidler, D.J.; Movahhed, H.; Tenney, J.; Martin, R.R. Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob. Agents Chemother., 1992, 36(3), 552-557.
[http://dx.doi.org/10.1128/AAC.36.3.552] [PMID: 1622165]
[45]
Ganapathy, M.E.; Huang, W.; Rajan, D.P.; Carter, A.L.; Sugawara, M.; Iseki, K.; Leibach, F.H.; Ganapathy, V. beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem., 2000, 275(3), 1699-1707.
[http://dx.doi.org/10.1074/jbc.275.3.1699] [PMID: 10636865]
[46]
U.S. Food and Drug Administration. Drug Information: Maxipime (cefepime hydrochloride for injection) 2017. Available at: http://www.pharmapendium.com
[47]
Kieft, H.; Hoepelman, A.I.; Knupp, C.A.; van Dijk, A.; Branger, J.M.; Struyvenberg, A.; Verhoef, J. Pharmacokinetics of cefepime in patients with the sepsis syndrome. J. Antimicrob. Chemother., 1993, 32(Suppl. B), 117-122.
[http://dx.doi.org/10.1093/jac/32.suppl_B.117] [PMID: 8150754]
[48]
Zhu, Z.; Wang, A.X.; Li, Y.; Xu, X.W.; Chen, L.Y. Clinical pharmacokinetics of ceftriaxone. Chung Kuo Yao Hsueh Tsa Chih, 1993, 28, 543-546.
[49]
Grime, K.; Paine, S.W. Species differences in biliary clearance and possible relevance of hepatic uptake and efflux transporters involvement. Drug Metab. Dispos., 2013, 41(2), 372-378.
[http://dx.doi.org/10.1124/dmd.112.049312] [PMID: 23139379]
[50]
Hua, W.J.; Hua, W.X.; Jian, Z.; Wei, P.H.; Ni, L.Y.; Hua, L.Y.; Wen, C.D.; Ying, Z.; Li, C. The role of drug transporters in the pharmacokinetics of antibiotics. Curr. Drug Metab., 2016, 17(8), 799-805.
[http://dx.doi.org/10.2174/1389200217666160629114449] [PMID: 27364830]
[51]
Patel, I.H.; Chen, S.; Parsonnet, M.; Hackman, M.R.; Brooks, M.A.; Konikoff, J.; Kaplan, S.A. Pharmacokinetics of ceftriaxone in humans. Antimicrob. Agents Chemother., 1981, 20(5), 634-641.
[http://dx.doi.org/10.1128/AAC.20.5.634] [PMID: 6275779]
[52]
Joynt, G.M.; Lipman, J.; Gomersall, C.D.; Young, R.J.; Wong, E.L.; Gin, T. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J. Antimicrob. Chemother., 2001, 47(4), 421-429.
[http://dx.doi.org/10.1093/jac/47.4.421] [PMID: 11266414]
[53]
Ren, S.; Zeng, J.; Mei, Y.; Zhang, J.Z.; Yan, S.F.; Fei, J.; Chen, L. Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors. Drug Metab. Dispos., 2013, 41(1), 60-71.
[http://dx.doi.org/10.1124/dmd.112.048264] [PMID: 23033255]
[54]
Yamaguchi, H.; Takeuchi, T.; Okada, M.; Kobayashi, M.; Unno, M.; Abe, T.; Goto, J.; Hishinuma, T.; Shimada, M.; Mano, N. Screening of antibiotics that interact with organic anion-transporting polypeptides 1B1 and 1B3 using fluorescent probes. Biol. Pharm. Bull., 2011, 34(3), 389-395.
[http://dx.doi.org/10.1248/bpb.34.389] [PMID: 21372390]
[55]
de Waart, D.R.; van de Wetering, K.; Kunne, C.; Duijst, S.; Paulusma, C.C.; Oude Elferink, R.P. Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab. Dispos., 2012, 40(3), 515-521.
[http://dx.doi.org/10.1124/dmd.111.041731] [PMID: 22166395]
[56]
U.S. Food and Drug Administration. Drug Information: Rocephin (ceftriaxone sodium for injection) 2015. Available at: http://www.pharmapendium.com
[57]
Li, J.T.; Sun, Z.M.; Xu, X.Y.; Huang, Y.A. Pharmacokinetic study on ceftazidime & cefoperazone in healthy Chinese voluneer. Zhongguo Lin Chuang Yao Li Xue Za Zhi, 1986, 2, 65-69.
[58]
U.S. Food and Drug Administration. Drug Information: Fortaz (ceftazidime for injection) 2017.http://www.pharmapendium.com
[59]
Reitberg, D.P.; Whall, T.J.; Chung, M.; Blickens, D.; Swarz, H.; Arnold, J. Multiple-dose pharmacokinetics and toleration of intravenously administered cefoperazone and sulbactam when given as single agents or in combination. Antimicrob. Agents Chemother., 1988, 32(1), 42-46.
[http://dx.doi.org/10.1128/AAC.32.1.42] [PMID: 3348612]
[60]
Kato, Y.; Takahara, S.; Kato, S.; Kubo, Y.; Sai, Y.; Tamai, I.; Yabuuchi, H.; Tsuji, A. Involvement of multidrug resistance-associated protein 2 (Abcc2) in molecular weight-dependent biliary excretion of β-lactam antibiotics. Drug Metab. Dispos., 2008, 36(6), 1088-1096.
[http://dx.doi.org/10.1124/dmd.107.019125] [PMID: 18339814]
[61]
Akanuma, S.; Uchida, Y.; Ohtsuki, S.; Kamiie, J.; Tachikawa, M.; Terasaki, T.; Hosoya, K. Molecular-weight-dependent, anionic-substrate-preferential transport of β-lactam antibiotics via multidrug resistance-associated protein 4. Drug Metab. Pharmacokinet., 2011, 26(6), 602-611.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-063] [PMID: 21897051]
[62]
Schwartz, J.I.; Jauregui, L.E.; Bachmann, K.A.; Martin, M.E.; Reitberg, D.P. Multiple-dose pharmacokinetics of intravenously administered cefoperazone and sulbactam when given in combination to infected, seriously ill, elderly patients. Antimicrob. Agents Chemother., 1988, 32(5), 730-735.
[http://dx.doi.org/10.1128/AAC.32.5.730] [PMID: 3395103]
[63]
Esmieu, F.; Guibert, J.; Rosenkilde, H.C.; Ho, I.; Le Go, A. Pharmacokinetics of cefotaxime in normal human volunteers. J. Antimicrob. Chemother., 1980, 6(Suppl. A), 83-92.
[http://dx.doi.org/10.1093/jac/6.suppl_A.83] [PMID: 6252184]
[64]
Qi, H.M.; Wei, M.; Zhao, C.; Lv, Y.; Zhang, P.; Liu, Y. Influence of aging kidney on the pharmacokinetics of cefoperazone/sulbactam (1:1). Zhongguo Lin Chuang Yao Li Xue Za Zhi, 2007, 23, 433-436.
[65]
U.S. Food and Drug Administration. Drug Information: Cefobid (sterile cefoperazone sodium) 2017.http://www.pharmapendium.com
[66]
Yee, S.W.; Nguyen, A.N.; Brown, C.; Savic, R.M.; Zhang, Y.; Castro, R.A.; Cropp, C.D.; Choi, J.H.; Singh, D.; Tahara, H.; Stocker, S.L.; Huang, Y.; Brett, C.M.; Giacomini, K.M. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J. Pharm. Sci., 2013, 102(9), 3451-3457.
[http://dx.doi.org/10.1002/jps.23581] [PMID: 23649425]
[67]
Ci, L.; Kusuhara, H.; Adachi, M.; Schuetz, J.D.; Takeuchi, K.; Sugiyama, Y. Involvement of MRP4 (ABCC4) in the luminal efflux of ceftizoxime and cefazolin in the kidney. Mol. Pharmacol., 2007, 71(6), 1591-1597.
[http://dx.doi.org/10.1124/mol.106.031823] [PMID: 17344354]
[68]
Takeda, M.; Babu, E.; Narikawa, S.; Endou, H. Interaction of human organic anion transporters with various cephalosporin antibiotics. Eur. J. Pharmacol., 2002, 438(3), 137-142.
[http://dx.doi.org/10.1016/S0014-2999(02)01306-7] [PMID: 11909604]
[69]
Khamdang, S.; Takeda, M.; Babu, E.; Noshiro, R.; Onozato, M.L.; Tojo, A.; Enomoto, A.; Huang, X.L.; Narikawa, S.; Anzai, N.; Piyachaturawat, P.; Endou, H. Interaction of human and rat organic anion transporter 2 with various cephalosporin antibiotics. Eur. J. Pharmacol., 2003, 465(1-2), 1-7.
[http://dx.doi.org/10.1016/S0014-2999(03)01381-5] [PMID: 12650826]
[70]
U.S. Food and Drug Administration. Drug Information: Claforan (cefotaxime for injection) 2015. Available at: http://www.pharmapendium.com
[71]
Gower, P.E.; Dash, C.H. The pharmacokinetics of cefuroxime after intravenous injection. Eur. J. Clin. Pharmacol., 1977, 12(3), 221-227.
[http://dx.doi.org/10.1007/BF00609865] [PMID: 590309]
[72]
U.S. Food and Drug Administration. Drug Information: Duplex (cefuroxime for injection) 2015. Available at: http://www.pharmapendium.com
[73]
Griffith, R.S.; Black, H.R.; Brier, G.L.; Wolny, J.D. Cefamandole: in vitro and clinical pharmacokinetics. Antimicrob. Agents Chemother., 1976, 10(5), 814-823.
[http://dx.doi.org/10.1128/AAC.10.5.814] [PMID: 1008540]
[74]
Neu, H.C. Comparison of the pharmacokinetics of cefamandole and other cephalosporin compounds J. Infect. Dis., 1978, 137, S80-87.
[75]
Mellin, H.E.; Welling, P.G.; Madsen, P.O. Pharmacokinetics of cefamandole in patients with normal and impaired renal function. Antimicrob. Agents Chemother., 1977, 11(2), 262-266.
[http://dx.doi.org/10.1128/AAC.11.2.262] [PMID: 848932]
[76]
Craig, W.A.; Welling, P.G. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin. Pharmacokinet., 1977, 2(4), 252-268.
[http://dx.doi.org/10.2165/00003088-197702040-00002] [PMID: 20259]
[77]
Brown, G.; Zemcov, S.J.; Clarke, A.M. Effect of probenecid on cefazolin serum concentrations. J. Antimicrob. Chemother., 1993, 31(6), 1009-1011.
[http://dx.doi.org/10.1093/jac/31.6.1009] [PMID: 8360120]
[78]
Mathialagan, S.; Piotrowski, M.A.; Tess, D.A.; Feng, B.; Litchfield, J.; Varma, M.V. Quantitative prediction of human renal clearance and drug-drug interactions of organic anion transporter substrates using in vitro transport data: a relative activity factor approach. Drug Metab. Dispos., 2017, 45(4), 409-417.
[http://dx.doi.org/10.1124/dmd.116.074294] [PMID: 28179375]
[79]
Sörgel, F.; Kinzig, M. The chemistry, pharmacokinetics and tissue distribution of piperacillin/tazobactam. J. Antimicrob. Chemother., 1993, 31(Suppl. A), 39-60.
[http://dx.doi.org/10.1093/jac/31.suppl_A.39] [PMID: 8383655]
[80]
Hayashi, Y.; Roberts, J.A.; Paterson, D.L.; Lipman, J. Pharmacokinetic evaluation of piperacillin-tazobactam. Expert Opin. Drug Metab. Toxicol., 2010, 6(8), 1017-1031.
[http://dx.doi.org/10.1517/17425255.2010.506187] [PMID: 20636224]
[81]
Wen, S.; Wang, C.; Duan, Y.; Huo, X.; Meng, Q.; Liu, Z.; Yang, S.; Zhu, Y.; Sun, H.; Ma, X.; Yang, S.; Liu, K. OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int. J. Pharm., 2018, 537(1-2), 172-182.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.037] [PMID: 29277663]
[82]
Uchida, Y.; Kamiie, J.; Ohtsuki, S.; Terasaki, T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm. Res., 2007, 24(12), 2281-2296.
[http://dx.doi.org/10.1007/s11095-007-9453-7] [PMID: 17939016]
[83]
Ganes, D.; Batra, V.; Faulkner, R.; Greene, D.; Haynes, J.; Kuye, O. Effect of probenecid on the pharmacokinetics of piperacillin and tazobactam in healthy volunteers. Proceedings of the Sixth Annual Meeting and Exposition, American Association of Pharmaceutical Scientists, Washington DC. Pharm. Res., 1991, 8, S-299.
[84]
U.S. Food and Drug Administration. Drug Information: Zosyn (piperacillin and tazobactam for injection) 2017. Available at: http://www.pharmapendium.com
[85]
Warner, D.J.; Chen, H.; Cantin, L.D.; Kenna, J.G.; Stahl, S.; Walker, C.L.; Noeske, T. Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification. Drug Metab. Dispos., 2012, 40(12), 2332-2341.
[http://dx.doi.org/10.1124/dmd.112.047068] [PMID: 22961681]
[86]
Scully, B.E.; Chin, N.X.; Neu, H.C. Pharmacology of ticarcillin combined with clavulanic acid in humans. Am. J. Med., 1985, 79(5B), 39-43.
[http://dx.doi.org/10.1016/0002-9343(85)90127-5] [PMID: 4073094]
[87]
Davies, B.E.; Humphrey, M.J.; Langley, P.F.; Lees, L.; Legg, B.; Wadds, G.A. Pharmacokinetics of ticarcillin in man. Eur. J. Clin. Pharmacol., 1982, 23(2), 167-172.
[http://dx.doi.org/10.1007/BF00545973] [PMID: 7140806]
[88]
Jungbluth, G.L.; Cooper, D.L.; Doyle, G.D.; Chudzik, G.M.; Jusko, W.J. Pharmacokinetics of ticarcillin and clavulanic acid (timentin) in relation to renal function. Antimicrob. Agents Chemother., 1986, 30(6), 896-900.
[http://dx.doi.org/10.1128/AAC.30.6.896] [PMID: 3492959]
[89]
U.S. Food and Drug Administration. Drug Information: Timentin (ticarcillin disodium and clavulanate potassium for injection) 2014. Available at: http://www.pharmapendium.com
[90]
Burckhardt, G.; Burckhardt, B.C. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb. Exp. Pharmacol., 2011, 201(201), 29-104.
[http://dx.doi.org/10.1007/978-3-642-14541-4_2] [PMID: 21103968]
[91]
Nathwani, D.; Wood, M.J. Penicillins. A current review of their clinical pharmacology and therapeutic use. Drugs, 1993, 45(6), 866-894.
[http://dx.doi.org/10.2165/00003495-199345060-00002] [PMID: 7691496]
[92]
Gibaldi, M.; Schwartz, M.A. Apparent effect of probenecid on the distribution of penicillins in man. Clin. Pharmacol. Ther., 1968, 9(3), 345-349.
[http://dx.doi.org/10.1002/cpt196893345] [PMID: 5649987]
[93]
U.S. Food and Drug Administration. Drug Information: Penicillin G potassium injection Baxter Healthcare Corp, 2017. Available at: http://www.pharmapendium.com
[94]
Takeda, M.; Khamdang, S.; Narikawa, S.; Kimura, H.; Hosoyamada, M.; Cha, S.H.; Sekine, T.; Endou, H. Characterization of methotrexate transport and its drug interactions with human organic anion transporters. J. Pharmacol. Exp. Ther., 2002, 302(2), 666-671.
[http://dx.doi.org/10.1124/jpet.102.034330] [PMID: 12130730]
[95]
Wang, C.; Wang, C.; Liu, Q.; Meng, Q.; Cang, J.; Sun, H.; Peng, J.; Ma, X.; Huo, X.; Liu, K. Aspirin and probenecid inhibit organic anion transporter 3- mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat. Drug Metab. Dispos., 2014, 42(6), 996-1007.
[http://dx.doi.org/10.1124/dmd.113.055194] [PMID: 24692216]
[96]
Blum, R.A.; Kohli, R.K.; Harrison, N.J.; Schentag, J.J. Pharmacokinetics of ampicillin (2.0 grams) and sulbactam (1.0 gram) coadministered to subjects with normal and abnormal renal function and with end-stage renal disease on hemodialysis. Antimicrob. Agents Chemother., 1989, 33(9), 1470-1476.
[http://dx.doi.org/10.1128/AAC.33.9.1470] [PMID: 2817847]
[97]
Luckner, P.; Brandsch, M. Interaction of 31 β-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1. Eur. J. Pharm. Biopharm., 2005, 59(1), 17-24.
[http://dx.doi.org/10.1016/j.ejpb.2004.07.008] [PMID: 15567297]
[98]
Kind, A.C.; Tupasi, T.E.; Standiford, H.C.; Kirby, W.M. Mechanisms responsible for plasma levels of nafcillin lower than those of oxacillin. Arch. Intern. Med., 1970, 125(4), 685-690.
[http://dx.doi.org/10.1001/archinte.1970.00310040109013] [PMID: 5437893]
[99]
Nesseler, N.; Verdier, M.C.; Launey, Y.; Malherbe, A.; Dermu, M.; Piau, C.; Flécher, E.; Tribut, O.; Mallédant, Y.; Seguin, P. High-dose continuous oxacillin infusion results in achievement of pharmacokinetics targets in critically ill patients with deep sternal wound infections following cardiac surgery. Antimicrob. Agents Chemother., 2014, 58(9), 5448-5455.
[http://dx.doi.org/10.1128/AAC.02624-14] [PMID: 24982092]
[100]
Wolman, A.T.; Gionfriddo, M.R.; Heindel, G.A.; Mukhija, P.; Witkowski, S.; Bommareddy, A.; Vanwert, A.L. Organic anion transporter 3 interacts selectively with lipophilic β-lactam antibiotics. Drug Metab. Dispos., 2013, 41(4), 791-800.
[http://dx.doi.org/10.1124/dmd.112.049569] [PMID: 23344796]
[101]
U.S. Food and Drug Administration. Drug Information: Oxacillin injection Baxter Healthcare Corp, 2017. Available at: http://www.pharmapendium.com
[102]
U.S. Food and Drug Administration. Drug Information: Geocillin (Carbenicillin indanyl sodium for oral use) Pfizer Inc., 2007. Available at: https://www.fda.gov
[103]
Landersdorfer, C.B.; Kirkpatrick, C.M.; Kinzig-Schippers, M.; Bulitta, J.B.; Holzgrabe, U.; Drusano, G.L.; Sörgel, F. Population pharmacokinetics at two dose levels and pharmacodynamic profiling of flucloxacillin. Antimicrob. Agents Chemother., 2007, 51(9), 3290-3297.
[http://dx.doi.org/10.1128/AAC.01410-06] [PMID: 17576847]
[104]
Zheng, H.; Li, H.M.; Fang, S.X. Pharmacokinetics of flucloxacillin sodium for injection. Chin. Hosp. Pharm. J., 2007, 27, 208-211.
[105]
Dawson, S.; Stahl, S.; Paul, N.; Barber, J.; Kenna, J.G. In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans. Drug Metab. Dispos., 2012, 40(1), 130-138.
[http://dx.doi.org/10.1124/dmd.111.040758] [PMID: 21965623]
[106]
Thijssen, H.H.; Wolters, J. The metabolic disposition of flucloxacillin in patients with impaired kidney function. Eur. J. Clin. Pharmacol., 1982, 22(5), 429-434.
[http://dx.doi.org/10.1007/BF00542548] [PMID: 7117355]
[107]
Hedström, S.A.; Kahlmeter, G. Dicloxacillin and flucloxacillin twice daily with probenecid in staphylococcal infections. A clinical and pharmakokinetic evaluation. Scand. J. Infect. Dis., 1980, 12(3), 221-225.
[http://dx.doi.org/10.3109/inf.1980.12.issue-3.10] [PMID: 7433922]
[108]
Huwyler, J.; Wright, M.B.; Gutmann, H.; Drewe, J. Induction of cytochrome P450 3A4 and P-glycoprotein by the isoxazolyl-penicillin antibiotic flucloxacillin. Curr. Drug Metab., 2006, 7(2), 119-126.
[http://dx.doi.org/10.2174/138920006775541534] [PMID: 16472102]
[109]
Schrogie, J.J.; Davies, R.O.; Yeh, K.C.; Rogers, D.; Holmes, G.I.; Skeggs, H.; Martin, C.M. Bioavailability and pharmacokinetics of cefoxitin sodium. J. Antimicrob. Chemother., 1978, 4(B), 69-78.
[http://dx.doi.org/10.1093/jac/4.suppl_B.69] [PMID: 99418]
[110]
Vlasses, P.H.; Holbrook, A.M.; Schrogie, J.J.; Rogers, J.D.; Ferguson, R.K.; Abrams, W.B. Effect of orally administered probenecid on the pharmacokinetics of cefoxitin. Antimicrob. Agents Chemother., 1980, 17(5), 847-855.
[http://dx.doi.org/10.1128/AAC.17.5.847] [PMID: 7396472]
[111]
Zhang, Z.N.; Chen, R.X.; Wang, Y.F.; Liu, Y.N.; Jiang, Z.Z. Interaction between drugs and gut microbiota. Chin. Med. Mater., 2015, 6, 207-211.
[112]
Kirby, W.M. Pharmacokinetics of fosfomycin. Chemotherapy, 1977, 23(Suppl. 1), 141-151.
[http://dx.doi.org/10.1159/000222040] [PMID: 832510]
[113]
Matzi, V.; Lindenmann, J.; Porubsky, C.; Kugler, S.A.; Maier, A.; Dittrich, P.; Smolle-Jüttner, F.M.; Joukhadar, C. Extracellular concentrations of fosfomycin in lung tissue of septic patients. J. Antimicrob. Chemother., 2010, 65(5), 995-998.
[http://dx.doi.org/10.1093/jac/dkq070] [PMID: 20228081]
[114]
Parker, S.; Lipman, J.; Koulenti, D.; Dimopoulos, G.; Roberts, J.A. What is the relevance of fosfomycin pharmacokinetics in the treatment of serious infections in critically ill patients? A systematic review. Int. J. Antimicrob. Agents, 2013, 42(4), 289-293.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.05.018] [PMID: 23880170]
[115]
U.S. Food and Drug Administration. Drug Information: Amikacin (Amikacin sulfate for injection) Hospira Inc., 1996. Available at: https://www.fda.gov
[116]
Parvez, M.M.; Jung, J.A.; Shin, H.J.; Kim, D.H.; Shin, J.G. Characterization of 22 antituberculosis drugs for inhibitory interaction potential on organic anionic transporter polypeptide (OATP)-mediated uptake. Antimicrob. Agents Chemother., 2016, 60(5), 3096-3105.
[http://dx.doi.org/10.1128/AAC.02765-15] [PMID: 26976869]
[117]
Gai, Z.; Visentin, M.; Hiller, C.; Krajnc, E.; Li, T.; Zhen, J.; Kullak-Ublick, G.A. Organic cation transporter 2 overexpression may confer an increased risk of gentamicin-induced nephrotoxicity. Antimicrob. Agents Chemother., 2016, 60(9), 5573-5580.
[http://dx.doi.org/10.1128/AAC.00907-16] [PMID: 27401566]
[118]
Notenboom, S.; Wouterse, A.C.; Peters, B.; Kuik, L.H.; Heemskerk, S.; Russel, F.G.; Masereeuw, R. Increased apical insertion of the multidrug resistance protein 2 (MRP2/ABCC2) in renal proximal tubules following gentamicin exposure. J. Pharmacol. Exp. Ther., 2006, 318(3), 1194-1202.
[http://dx.doi.org/10.1124/jpet.106.104547] [PMID: 16757538]
[119]
Boeckh, M.; Lode, H.; Borner, K.; Höffken, G.; Wagner, J.; Koeppe, P. Pharmacokinetics and serum bactericidal activity of vancomycin alone and in combination with ceftazidime in healthy volunteers. Antimicrob. Agents Chemother., 1988, 32(1), 92-95.
[http://dx.doi.org/10.1128/AAC.32.1.92] [PMID: 3279907]
[120]
U.S. Food and Drug Administration. Drug Information: Vancocin (vancomycin hydrochloride for injection) ANI Pharmaceuticals, Inc., 2017. Available at: http://www.pharmapendium.com
[121]
Pearce, R.E.; Cohen-Wolkowiez, M.; Sampson, M.R.; Kearns, G.L. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst. Drug Metab. Dispos., 2013, 41(9), 1686-1694.
[http://dx.doi.org/10.1124/dmd.113.052548] [PMID: 23813797]
[122]
U.S. Food and Drug Administration. Drug Information: Metronidazole injection B. Braun Medical Inc., 2018. Available at: http://www.pharmapendium.com
[123]
O’Reilly, R.A. The stereoselective interaction of warfarin and metronidazole in man. N. Engl. J. Med., 1976, 295(7), 354-357.
[http://dx.doi.org/10.1056/NEJM197608122950702] [PMID: 934223]
[124]
Lu, X.; Chan, T.; Zhu, L.; Bao, X.; Velkov, T.; Zhou, Q.T.; Li, J.; Chan, H.K.; Zhou, F. The inhibitory effects of eighteen front-line antibiotics on the substrate uptake mediated by human organic anion/cation transporters, organic anion transporting polypeptides and oligopeptide transporters in in vitro models. Eur. J. Pharm. Sci., 2018, 115, 132-143.
[http://dx.doi.org/10.1016/j.ejps.2018.01.002] [PMID: 29307856]
[125]
Du, J.; You, T.; Chen, X.; Zhong, D. Stereoselective glucuronidation of ornidazole in humans: predominant contribution of UDP-glucuronosyltransferases 1A9 and 2B7. Drug Metab. Dispos., 2013, 41(7), 1306-1318.
[http://dx.doi.org/10.1124/dmd.113.051235] [PMID: 23571427]
[126]
Taburet, A.M.; Delion, F.; Attali, P.; Thebault, J.J.; Singlas, E. Pharmacokinetics of ornidazole in patients with severe liver cirrhosis. Clin. Pharmacol. Ther., 1986, 40(3), 359-364.
[http://dx.doi.org/10.1038/clpt.1986.189] [PMID: 3742940]
[127]
U.S. Food and Drug Administration. Drug Information: Zyvox (Linezolid for injection) Pfizer, Inc., 2018. Available at: http://www.pharmapendium.com
[128]
Stalker, D.J.; Jungbluth, G.L.; Hopkins, N.K.; Batts, D.H. Pharmacokinetics and tolerance of single- and multiple-dose oral or intravenous linezolid, an oxazolidinone antibiotic, in healthy volunteers. J. Antimicrob. Chemother., 2003, 51(5), 1239-1246.
[http://dx.doi.org/10.1093/jac/dkg180] [PMID: 12668582]
[129]
Phillips, O.A.; Sharaf, L.H.; D’Silva, R.; Udo, E.E.; Benov, L. Evaluation of the monoamine oxidases inhibitory activity of a small series of 5-(azole)methyl oxazolidinones. Eur. J. Pharm. Sci., 2015, 71, 56-61.
[http://dx.doi.org/10.1016/j.ejps.2015.02.006] [PMID: 25701103]
[130]
Parvez, M.M.; Kaisar, N.; Shin, H.J.; Jung, J.A.; Shin, J.G. Inhibitory interaction potential of 22 antituberculosis drugs on organic anion and cation transporters of the SLC22A Family. Antimicrob. Agents Chemother., 2016, 60(11), 6558-6567.
[http://dx.doi.org/10.1128/AAC.01151-16] [PMID: 27550354]
[131]
U.S. Food and Drug Administration. Drug Information: Cubicin (daptomycin for injection) Merck & Co. Inc., 2017. Available at: http://www.pharmapendium.com
[132]
Kielstein, J.T.; Eugbers, C.; Bode-Boeger, S.M.; Martens-Lobenhoffer, J.; Haller, H.; Joukhadar, C.; Traunmüller, F.; Knitsch, W.; Hafer, C.; Burkhardt, O. Dosing of daptomycin in intensive care unit patients with acute kidney injury undergoing extended dialysis-a pharmacokinetic study. Nephrol. Dial. Transplant., 2010, 25(5), 1537-1541.
[http://dx.doi.org/10.1093/ndt/gfp704] [PMID: 20031929]
[133]
Dvorchik, B.H.; Brazier, D.; DeBruin, M.F.; Arbeit, R.D. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob. Agents Chemother., 2003, 47(4), 1318-1323.
[http://dx.doi.org/10.1128/AAC.47.4.1318-1323.2003] [PMID: 12654665]
[134]
Hu, L.L.; Guo, N.; Zhang, X.L.; Shao, H. Determination of daptomycin by UPLC-MS /MS and its pharmacokinetic evaluation in critically ill patients. Zhongguo Yaoke Daxue Xuebao, 2015, 46, 700-706.
[135]
Chien, S.C.; Rogge, M.C.; Gisclon, L.G.; Curtin, C.; Wong, F.; Natarajan, J.; Williams, R.R.; Fowler, C.L.; Cheung, W.K.; Chow, A.T. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother., 1997, 41(10), 2256-2260.
[http://dx.doi.org/10.1128/AAC.41.10.2256] [PMID: 9333057]
[136]
Rebuck, J.A.; Fish, D.N.; Abraham, E. Pharmacokinetics of intravenous and oral levofloxacin in critically ill adults in a medical intensive care unit. Pharmacotherapy, 2002, 22(10), 1216-1225.
[http://dx.doi.org/10.1592/phco.22.15.1216.33484] [PMID: 12389872]
[137]
U.S. Food and Drug Administration. Drug Information: Levaquin (levofloxacin for injection) Janssen Pharmaceuticals, Inc., 2017. Available at: http://www.pharmapendium.com
[138]
Okuda, M.; Kimura, N.; Inui, K. Interactions of fluoroquinolone antibacterials, DX-619 and levofloxacin, with creatinine transport by renal organic cation transporter hOCT2. Drug Metab. Pharmacokinet., 2006, 21(5), 432-436.
[http://dx.doi.org/10.2133/dmpk.21.432] [PMID: 17072098]
[139]
Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol., 2007, 74(2), 359-371.
[http://dx.doi.org/10.1016/j.bcp.2007.04.010] [PMID: 17509534]
[140]
Martínez-Guerrero, L.J.; Morales, M.; Ekins, S.; Wright, S.H. Lack of influence of substrate on ligand interaction with the human multidrug and toxin extruder, MATE1. Mol. Pharmacol., 2016, 90(3), 254-264.
[http://dx.doi.org/10.1124/mol.116.105056] [PMID: 27418674]
[141]
Lettieri, J.T.; Rogge, M.C.; Kaiser, L.; Echols, R.M.; Heller, A.H. Pharmacokinetic profiles of ciprofloxacin after single intravenous and oral doses. Antimicrob. Agents Chemother., 1992, 36(5), 993-996.
[http://dx.doi.org/10.1128/AAC.36.5.993] [PMID: 1510426]
[142]
Landersdorfer, C.B.; Kirkpatrick, C.M.; Kinzig, M.; Bulitta, J.B.; Holzgrabe, U.; Jaehde, U.; Reiter, A.; Naber, K.G.; Rodamer, M.; Sörgel, F. Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br. J. Clin. Pharmacol., 2010, 69(2), 167-178.
[http://dx.doi.org/10.1111/j.1365-2125.2009.03564.x] [PMID: 20233180]
[143]
Goldman, J.L.; Leeder, J.S.; Van Haandel, L.; Pearce, R.E. In vitro hepatic oxidative biotransformation of trimethoprim. Drug Metab. Dispos., 2015, 43(9), 1372-1380.
[http://dx.doi.org/10.1124/dmd.115.065193] [PMID: 26138612]
[144]
Zhang, L.; Wei, M.J.; Zhao, C.Y.; Qi, H.M. Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol. Sin., 2008, 29(12), 1507-1514.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00908.x] [PMID: 19026171]
[145]
Batty, K.T.; Davis, T.M.; Ilett, K.F.; Dusci, L.J.; Langton, S.R. The effect of ciprofloxacin on theophylline pharmacokinetics in healthy subjects. Br. J. Clin. Pharmacol., 1995, 39(3), 305-311.
[http://dx.doi.org/10.1111/j.1365-2125.1995.tb04453.x] [PMID: 7619673]
[146]
Raaska, K.; Neuvonen, P.J. Ciprofloxacin increases serum clozapine and N-desmethylclozapine: a study in patients with schizophrenia. Eur. J. Clin. Pharmacol., 2000, 56(8), 585-589.
[http://dx.doi.org/10.1007/s002280000192] [PMID: 11151749]
[147]
Granfors, M.T.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin. Pharmacol. Ther., 2004, 76(6), 598-606.
[http://dx.doi.org/10.1016/j.clpt.2004.08.018] [PMID: 15592331]
[148]
U.S. Food and Drug Administration. Drug Information: Cipro IV (Ciprofloxacin for injection) Bayer Health Care, 2017. Available at: http://www.pharmapendium.com
[149]
Senggunprai, L.; Yoshinari, K.; Yamazoe, Y. Selective role of sulfotransferase 2A1 (SULT2A1) in the N-sulfoconjugation of quinolone drugs in humans. Drug Metab. Dispos., 2009, 37(8), 1711-1717.
[http://dx.doi.org/10.1124/dmd.109.027441] [PMID: 19420132]
[150]
Stass, H.; Kubitza, D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J. Antimicrob. Chemother., 1999, 43(Suppl. B), 83-90.
[http://dx.doi.org/10.1093/jac/43.suppl_2.83] [PMID: 10382880]
[151]
Tachibana, M.; Tanaka, M.; Masubuchi, Y.; Horie, T. Acyl glucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes. Drug Metab. Dispos., 2005, 33(6), 803-811.
[http://dx.doi.org/10.1124/dmd.104.003178] [PMID: 15769885]
[152]
Te Brake, L.H.; van den Heuvel, J.J.; Buaben, A.O.; van Crevel, R.; Bilos, A.; Russel, F.G.; Aarnoutse, R.E.; Koenderink, J.B. Moxifloxacin is a potent in vitro inhibitor of OCT-and MATE-mediated transport of metformin and ethambutol. Antimicrob. Agents Chemother., 2016, 60(12), 7105-7114.
[PMID: 27645247]
[153]
Morrissey, K.M.; Stocker, S.L.; Chen, E.C.; Castro, R.A.; Brett, C.M.; Giacomini, K.M. The effect of nizatidine, a MATE2K selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin in healthy volunteers. Clin. Pharmacokinet., 2016, 55(4), 495-506.
[http://dx.doi.org/10.1007/s40262-015-0332-9] [PMID: 26507723]
[154]
U.S. Food and Drug Administration. Drug Information: Avelox (moxifloxacin hydrochloride for injection) Merck & Co. Inc., 2016. Available at: http://www.pharmapendium.com
[155]
Wang, R.W.; Newton, D.J.; Scheri, T.D.; Lu, A.Y. Human cytochrome P450 3A4-catalyzed testosterone 6 β-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab. Dispos., 1997, 25(4), 502-507.
[PMID: 9107550]
[156]
Huang, W.; Lin, Y.S.; McConn, D.J., II; Calamia, J.C.; Totah, R.A.; Isoherranen, N.; Glodowski, M.; Thummel, K.E. Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab. Dispos., 2004, 32(12), 1434-1445.
[http://dx.doi.org/10.1124/dmd.104.001313] [PMID: 15383492]
[157]
Olkkola, K.T.; Aranko, K.; Luurila, H.; Hiller, A.; Saarnivaara, L.; Himberg, J.J.; Neuvonen, P.J. A potentially hazardous interaction between erythromycin and midazolam. Clin. Pharmacol. Ther., 1993, 53(3), 298-305.
[http://dx.doi.org/10.1038/clpt.1993.25] [PMID: 8453848]
[158]
Hall, K.W.; Nightingale, C.H.; Gibaldi, M.; Nelson, E.; Bates, T.R.; DiSanto, A.R. Pharmacokinetics of erythromycin in normal and alcoholic liver disease subjects. J. Clin. Pharmacol., 1982, 22(7), 321-325.
[http://dx.doi.org/10.1002/j.1552-4604.1982.tb02682.x] [PMID: 7107981]
[159]
Lancaster, C.S.; Bruun, G.H.; Peer, C.J.; Mikkelsen, T.S.; Corydon, T.J.; Gibson, A.A.; Hu, S.; Orwick, S.J.; Mathijssen, R.H.J.; Figg, W.D.; Baker, S.D.; Sparreboom, A. OATP1B1 polymorphism as a determinant of erythromycin disposition. Clin. Pharmacol. Ther., 2012, 92(5), 642-650.
[http://dx.doi.org/10.1038/clpt.2012.106] [PMID: 22990751]
[160]
Franke, R.M.; Lancaster, C.S.; Peer, C.J.; Gibson, A.A.; Kosloske, A.M.; Orwick, S.J.; Mathijssen, R.H.J.; Figg, W.D.; Baker, S.D.; Sparreboom, A. Effect of ABCC2 (MRP2) transport function on erythromycin metabolism. Clin. Pharmacol. Ther., 2011, 89(5), 693-701.
[http://dx.doi.org/10.1038/clpt.2011.25] [PMID: 21451505]
[161]
Lin, X.; Skolnik, S.; Chen, X.; Wang, J. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Drug Metab. Dispos., 2011, 39(2), 265-274.
[http://dx.doi.org/10.1124/dmd.110.034629] [PMID: 21051535]
[162]
Kobayashi, Y.; Sakai, R.; Ohshiro, N.; Ohbayashi, M.; Kohyama, N.; Yamamoto, T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab. Dispos., 2005, 33(5), 619-622.
[http://dx.doi.org/10.1124/dmd.104.003301] [PMID: 15708966]
[163]
Zhang, X.; Jones, D.R.; Hall, S.D. Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Drug Metab. Dispos., 2009, 37(1), 150-160.
[http://dx.doi.org/10.1124/dmd.108.022178] [PMID: 18854379]
[164]
McConn, D.J., II; Lin, Y.S.; Allen, K.; Kunze, K.L.; Thummel, K.E. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos., 2004, 32(10), 1083-1091.
[http://dx.doi.org/10.1124/dmd.32.10.1083] [PMID: 15377640]
[165]
Freeman, D.J.; Martell, R.; Carruthers, S.G.; Heinrichs, D.; Keown, P.A.; Stiller, C.R. Cyclosporin-erythromycin interaction in normal subjects. Br. J. Clin. Pharmacol., 1987, 23(6), 776-778.
[PMID: 3606938]
[166]
Jensen, C.; Jordan, M.; Shapiro, R.; Scantlebury, V.; Hakala, T.; Fung, J.; Starzl, T.; Venkataramanan, R. Interaction between tacrolimus and erythromycin. Lancet, 1994, 344(8925), 825.
[http://dx.doi.org/10.1016/S0140-6736(94)92383-3] [PMID: 7521928]
[167]
Hirano, M.; Maeda, K.; Shitara, Y.; Sugiyama, Y. Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos., 2006, 34(7), 1229-1236.
[http://dx.doi.org/10.1124/dmd.106.009290] [PMID: 16595711]
[168]
De Bruyn, T.; van Westen, G.J.; Ijzerman, A.P.; Stieger, B.; de Witte, P.; Augustijns, P.F.; Annaert, P.P. Structure-based identification of OATP1B1/3 inhibitors. Mol. Pharmacol., 2013, 83(6), 1257-1267.
[http://dx.doi.org/10.1124/mol.112.084152] [PMID: 23571415]
[169]
U.S. Food and Drug Administration. Drug Information: Erythrocin (erythromycin lactobionate for injection) Hospira, Inc., 2013. Available at: http://www.pharmapendium.com
[170]
Wynalda, M.A.; Hutzler, J.M.; Koets, M.D.; Podoll, T.; Wienkers, L.C. In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metab. Dispos., 2003, 31(7), 878-887.
[http://dx.doi.org/10.1124/dmd.31.7.878] [PMID: 12814964]
[171]
Muralidharan, G.; Micalizzi, M.; Speth, J.; Raible, D.; Troy, S. Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects. Antimicrob. Agents Chemother., 2005, 49(1), 220-229.
[http://dx.doi.org/10.1128/AAC.49.1.220-229.2005] [PMID: 15616299]
[172]
Hoffmann, M.; DeMaio, W.; Jordan, R.A.; Talaat, R.; Harper, D.; Speth, J.; Scatina, J. Metabolism, excretion, and pharmacokinetics of [14C]tigecycline, a first-in-class glycylcycline antibiotic, after intravenous infusion to healthy male subjects. Drug Metab. Dispos., 2007, 35(9), 1543-1553.
[http://dx.doi.org/10.1124/dmd.107.015735] [PMID: 17537869]
[173]
U.S. Food and Drug Administration. Drug Information: Tygacil (Tigecycline for injection) Wyeth Pharmaceuticals, LLC, 2018. Available at: http://www.pharmapendium.com
[174]
Zimmerman, J.J.; Raible, D.G.; Harper, D.M.; Matschke, K.; Speth, J.L. Evaluation of a potential tigecycline-warfarin drug interaction. Pharmacotherapy, 2008, 28(7), 895-905.
[http://dx.doi.org/10.1592/phco.28.7.895] [PMID: 18576904]
[175]
U.S. Food and Drug Administration. Drug Information: Bactrim (sulfamethoxazole and trimethoprim for injection) Sun Pharmaceutical Industries, Inc., 2018. Available at: http://www.pharmapendium.com
[176]
Cribb, A.E.; Nakamura, H.; Grant, D.M.; Miller, M.A.; Spielberg, S.P. Role of polymorphic and monomorphic human arylamine N-acetyltransferases in determining sulfamethoxazole metabolism. Biochem. Pharmacol., 1993, 45(6), 1277-1282.
[http://dx.doi.org/10.1016/0006-2952(93)90280-A] [PMID: 8466547]
[177]
Niemi, M.; Kajosaari, L.I.; Neuvonen, M.; Backman, J.T.; Neuvonen, P.J. The CYP2C8 inhibitor trimethoprim increases the plasma concentrations of repaglinide in healthy subjects. Br. J. Clin. Pharmacol., 2004, 57(4), 441-447.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02027.x] [PMID: 15025742]
[178]
Tornio, A.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab. Dispos., 2008, 36(1), 73-80.
[http://dx.doi.org/10.1124/dmd.107.018010] [PMID: 17913794]
[179]
Elsby, R.; Chidlaw, S.; Outteridge, S.; Pickering, S.; Radcliffe, A.; Sullivan, R.; Jones, H.; Butler, P. Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine. Pharmacol. Res. Perspect., 2017, 5(5), e00357.
[http://dx.doi.org/10.1002/prp2.357] [PMID: 28971610]
[180]
O’Reilly, R.A. Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphs of racemic warfarin in man. N. Engl. J. Med., 1980, 302(1), 33-35.
[http://dx.doi.org/10.1056/NEJM198001033020106] [PMID: 7350395]
[181]
Fischer, H.D.; Juurlink, D.N.; Mamdani, M.M.; Kopp, A.; Laupacis, A. Hemorrhage during warfarin therapy associated with cotrimoxazole and other urinary tract anti-infective agents: a population-based study. Arch. Intern. Med., 2010, 170(7), 617-621.
[http://dx.doi.org/10.1001/archinternmed.2010.37] [PMID: 20386005]
[182]
Wen, X.; Wang, J.S.; Backman, J.T.; Laitila, J.; Neuvonen, P.J. Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab. Dispos., 2002, 30(6), 631-635.
[http://dx.doi.org/10.1124/dmd.30.6.631] [PMID: 12019187]
[183]
Hansen, J.M.; Kampmann, J.P.; Siersbaek-Nielsen, K.; Lumholtz, I.B.; Arrøe, M.; Abildgaard, U.; Skovsted, L. The effect of different sulfonamides on phenytoin metabolism in man. Acta Med. Scand. Suppl., 1979, 624, 106-110.
[http://dx.doi.org/10.1111/j.0954-6820.1979.tb00729.x] [PMID: 284708]
[184]
Niemi, M.; Backman, J.T.; Neuvonen, P.J. Effects of trimethoprim and rifampin on the pharmacokinetics of the cytochrome P450 2C8 substrate rosiglitazone. Clin. Pharmacol. Ther., 2004, 76(3), 239-249.
[http://dx.doi.org/10.1016/j.clpt.2004.05.001] [PMID: 15371985]
[185]
Pedersen, J.M.; Khan, E.K.; Bergström, C.A.S.; Palm, J.; Hoogstraate, J.; Artursson, P. Substrate and method dependent inhibition of three ABC-transporters (MDR1, BCRP, and MRP2). Eur. J. Pharm. Sci., 2017, 103, 70-76.
[http://dx.doi.org/10.1016/j.ejps.2017.03.002] [PMID: 28263911]
[186]
Choi, M.K.; Jin, Q.R.; Choi, Y.L.; Ahn, S.H.; Bae, M.A.; Song, I.S. Inhibitory effects of ketoconazole and rifampin on OAT1 and OATP1B1 transport activities: considerations on drug-drug interactions. Biopharm. Drug Dispos., 2011, 32(3), 175-184.
[http://dx.doi.org/10.1002/bdd.749] [PMID: 21456052]
[187]
Niemi, M.; Backman, J.T.; Fromm, M.F.; Neuvonen, P.J.; Kivistö, K.T. Pharmacokinetic interactions with rifampicin : clinical relevance. Clin. Pharmacokinet., 2003, 42(9), 819-850.
[http://dx.doi.org/10.2165/00003088-200342090-00003] [PMID: 12882588]
[188]
U.S. Food and Drug Administration. Drug Information: Rifadin IV (rifampin for injection) Sanofi-aventis U.S. LLC, 2018. Available at: http://www.pharmapendium.com
[189]
Jaruratanasirikul, S.; Sriwiriyajan, S. Effect of indinavir on the pharmacokinetics of rifampicin in HIV-infected patients. J. Pharm. Pharmacol., 2001, 53(3), 409-412.
[http://dx.doi.org/10.1211/0022357011775488] [PMID: 11291758]
[190]
Zheng, H.X.; Huang, Y.; Frassetto, L.A.; Benet, L.Z. Elucidating rifampin’s inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin. Pharmacol. Ther., 2009, 85(1), 78-85.
[http://dx.doi.org/10.1038/clpt.2008.186] [PMID: 18843263]
[191]
Westerink, W.M.; Stevenson, J.C.; Schoonen, W.G. Pharmacologic profiling of human and rat cytochrome P450 1A1 and 1A2 induction and competition. Arch. Toxicol., 2008, 82(12), 909-921.
[http://dx.doi.org/10.1007/s00204-008-0317-7] [PMID: 18493746]
[192]
Rae, J.M.; Johnson, M.D.; Lippman, M.E.; Flockhart, D.A. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther., 2001, 299(3), 849-857.
[PMID: 11714868]
[193]
Dixit, V.; Hariparsad, N.; Li, F.; Desai, P.; Thummel, K.E.; Unadkat, J.D. Cytochrome P450 enzymes and transporters induced by anti-human immunodeficiency virus protease inhibitors in human hepatocytes: implications for predicting clinical drug interactions. Drug Metab. Dispos., 2007, 35(10), 1853-1859.
[http://dx.doi.org/10.1124/dmd.107.016089] [PMID: 17639026]
[194]
Kay, L.; Kampmann, J.P.; Svendsen, T.L.; Vergman, B.; Hansen, J.E.; Skovsted, L.; Kristensen, M. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br. J. Clin. Pharmacol., 1985, 20(4), 323-326.
[http://dx.doi.org/10.1111/j.1365-2125.1985.tb05071.x] [PMID: 4074601]
[195]
Hebert, M.F.; Smith, H.E.; Marbury, T.C.; Swan, S.K.; Smith, W.B.; Townsend, R.W.; Buell, D.; Keirns, J.; Bekersky, I. Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J. Clin. Pharmacol., 2005, 45(10), 1145-1152.
[http://dx.doi.org/10.1177/0091270005279580] [PMID: 16172179]
[196]
Yanni, S.B.; Augustijns, P.F.; Benjamin, D.K., Jr; Brouwer, K.L.; Thakker, D.R.; Annaert, P.P. In vitro investigation of the hepatobiliary disposition mechanisms of the antifungal agent micafungin in humans and rats. Drug Metab. Dispos., 2010, 38(10), 1848-1856.
[http://dx.doi.org/10.1124/dmd.110.033811] [PMID: 20606004]
[197]
U.S. Food and Drug Administration. Drug Information: Mycamine (micafungin sodium for injection) Astellas Pharma Tech Co. Ltd., 2016. Available at: http://www.pharmapendium.com
[198]
Lempers, V.J.; Schouten, J.A.; Hunfeld, N.G.; Colbers, A.; van Leeuwen, H.J.; Burger, D.M.; Verweij, P.E.; Pickkers, P.; Brüggemann, R.J. Altered micafungin pharmacokinetics in intensive care unit patients. Antimicrob. Agents Chemother., 2015, 59(8), 4403-4409.
[http://dx.doi.org/10.1128/AAC.00623-15] [PMID: 25963988]
[199]
Jullien, V.; Azoulay, E.; Schwebel, C.; Le Saux, T.; Charles, P.E.; Cornet, M.; Souweine, B.; Klouche, K.; Jaber, S.; Trouillet, J.L.; Bruneel, F.; Cour, M.; Cousson, J.; Meziani, F.; Gruson, D.; Paris, A.; Darmon, M.; Garrouste-Orgeas, M.; Navellou, J.C.; Foucrier, A.; Allaouchiche, B.; Das, V.; Gangneux, J.P.; Ruckly, S.; Wolff, M.; Timsit, J.F. Population pharmacokinetics of micafungin in ICU patients with sepsis and mechanical ventilation. J. Antimicrob. Chemother., 2017, 72(1), 181-189.
[http://dx.doi.org/10.1093/jac/dkw352] [PMID: 27609051]
[200]
Stone, J.A.; Holland, S.D.; Wickersham, P.J.; Sterrett, A.; Schwartz, M.; Bonfiglio, C.; Hesney, M.; Winchell, G.A.; Deutsch, P.J.; Greenberg, H.; Hunt, T.L.; Waldman, S.A. Single- and multiple-dose pharmacokinetics of caspofungin in healthy men. Antimicrob. Agents Chemother., 2002, 46(3), 739-745.
[http://dx.doi.org/10.1128/AAC.46.3.739-745.2002] [PMID: 11850256]
[201]
Stone, J.A.; Migoya, E.M.; Hickey, L.; Winchell, G.A.; Deutsch, P.J.; Ghosh, K.; Freeman, A.; Bi, S.; Desai, R.; Dilzer, S.C.; Lasseter, K.C.; Kraft, W.K.; Greenberg, H.; Waldman, S.A. Potential for interactions between caspofungin and nelfinavir or rifampin. Antimicrob. Agents Chemother., 2004, 48(11), 4306-4314.
[http://dx.doi.org/10.1128/AAC.48.11.4306-4314.2004] [PMID: 15504857]
[202]
Stone, J.A.; Xu, X.; Winchell, G.A.; Deutsch, P.J.; Pearson, P.G.; Migoya, E.M.; Mistry, G.C.; Xi, L.; Miller, A.; Sandhu, P.; Singh, R.; deLuna, F.; Dilzer, S.C.; Lasseter, K.C. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob. Agents Chemother., 2004, 48(3), 815-823.
[http://dx.doi.org/10.1128/AAC.48.3.815-823.2004] [PMID: 14982770]
[203]
Muilwijk, E.W.; Schouten, J.A.; van Leeuwen, H.J.; van Zanten, A.R.; de Lange, D.W.; Colbers, A.; Verweij, P.E.; Burger, D.M.; Pickkers, P.; Brüggemann, R.J. Pharmacokinetics of caspofungin in ICU patients. J. Antimicrob. Chemother., 2014, 69(12), 3294-3299.
[http://dx.doi.org/10.1093/jac/dku313] [PMID: 25139840]
[204]
U.S. Food and Drug Administration. Drug Information: Cancidas (caspofungin acetate for injection) Merck Sharp & Dohme Corp., 2018. Available at: http://www.pharmapendium.com
[205]
Colburn, D.E.; Giles, F.J.; Oladovich, D.; Smith, J.A. In vitro evaluation of cytochrome P450-mediated drug interactions between cytarabine, idarubicin, itraconazole and caspofungin. Hematology, 2004, 9(3), 217-221.
[http://dx.doi.org/10.1080/10245330410001701585] [PMID: 15204103]
[206]
Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.N.; Walsh, T.J. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother., 2002, 46(3), 828-833.
[http://dx.doi.org/10.1128/AAC.46.3.828-833.2002] [PMID: 11850268]
[207]
Heinemann, V.; Bosse, D.; Jehn, U.; Kähny, B.; Wachholz, K.; Debus, A.; Scholz, P.; Kolb, H.J.; Wilmanns, W. Pharmacokinetics of liposomal amphotericin B (Ambisome) in critically ill patients. Antimicrob. Agents Chemother., 1997, 41(6), 1275-1280.
[http://dx.doi.org/10.1128/AAC.41.6.1275] [PMID: 9174183]
[208]
U.S. Food and Drug Administration. Drug Information: Diflucan (fluconazole for injection) Pfizer Inc., 2014. Available at: http://www.pharmapendium.com
[209]
Niwa, T.; Shiraga, T.; Takagi, A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol. Pharm. Bull., 2005, 28(9), 1805-1808.
[http://dx.doi.org/10.1248/bpb.28.1805] [PMID: 16141567]
[210]
Black, D.J.; Kunze, K.L.; Wienkers, L.C.; Gidal, B.E.; Seaton, T.L.; McDonnell, N.D.; Evans, J.S.; Bauwens, J.E.; Trager, W.F. Warfarin-fluconazole. II. A metabolically based drug interaction: in vivo studies. Drug Metab. Dispos., 1996, 24(4), 422-428.
[PMID: 8801057]
[211]
Kantola, T.; Backman, J.T.; Niemi, M.; Kivistö, K.T.; Neuvonen, P.J. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur. J. Clin. Pharmacol., 2000, 56(3), 225-229.
[http://dx.doi.org/10.1007/s002280000127] [PMID: 10952477]
[212]
Ahonen, J.; Olkkola, K.T.; Neuvonen, P.J. Effect of route of administration of fluconazole on the interaction between fluconazole and midazolam. Eur. J. Clin. Pharmacol., 1997, 51(5), 415-419.
[http://dx.doi.org/10.1007/s002280050223] [PMID: 9049584]
[213]
Saari, T.I.; Laine, K.; Bertilsson, L.; Neuvonen, P.J.; Olkkola, K.T. Voriconazole and fluconazole increase the exposure to oral diazepam. Eur. J. Clin. Pharmacol., 2007, 63(10), 941-949.
[http://dx.doi.org/10.1007/s00228-007-0350-0] [PMID: 17676319]
[214]
Isoherranen, N.; Ludington, S.R.; Givens, R.C.; Lamba, J.K.; Pusek, S.N.; Dees, E.C.; Blough, D.K.; Iwanaga, K.; Hawke, R.L.; Schuetz, E.G.; Watkins, P.B.; Thummel, K.E.; Paine, M.F. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: an in vitro-in vivo evaluation. Drug Metab. Dispos., 2008, 36(1), 146-154.
[http://dx.doi.org/10.1124/dmd.107.018382] [PMID: 17954524]
[215]
Moody, D.E.; Liu, F.; Fang, W.B. Azole antifungal inhibition of buprenorphine, methadone and oxycodone in vitro metabolism. J. Anal. Toxicol., 2015, 39(5), 374-386.
[http://dx.doi.org/10.1093/jat/bkv030] [PMID: 25868557]
[216]
Niwa, T.; Hata, T. The effect of genetic polymorphism on the inhibition of azole antifungal agents against CYP2C9-mediated metabolism. J. Pharm. Sci., 2016, 105(3), 1345-1348.
[http://dx.doi.org/10.1016/j.xphs.2016.01.007] [PMID: 26886310]
[217]
Wang, H.; Kim, R.A.; Sun, D.; Gao, Y.; Wang, H.; Zhu, J.; Chen, C. Evaluation of the effects of 18 non-synonymous single-nucleotide polymorphisms of CYP450 2C19 on in vitro drug inhibition potential by a fluorescence-based high-throughput assay. Xenobiotica, 2011, 41(9), 826-835.
[http://dx.doi.org/10.3109/00498254.2011.582893] [PMID: 21692664]
[218]
Uchaipichat, V.; Winner, L.K.; Mackenzie, P.I.; Elliot, D.J.; Williams, J.A.; Miners, J.O. Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br. J. Clin. Pharmacol., 2006, 61(4), 427-439.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02588.x] [PMID: 16542204]
[219]
Mouton, J.W.; van Peer, A.; de Beule, K.; Van Vliet, A.; Donnelly, J.P.; Soons, P.A. Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob. Agents Chemother., 2006, 50(12), 4096-4102.
[http://dx.doi.org/10.1128/AAC.00630-06] [PMID: 16982783]
[220]
U.S. Food and Drug Administration. Drug Information: Sporanox (itraconazole for injection) Hospira, Inc., 2009. Available at: http://www.pharmapendium.com
[221]
Bonay, M.; Jonville-Bera, A.P.; Diot, P.; Lemarie, E.; Lavandier, M.; Autret, E. Possible interaction between phenobarbital, carbamazepine and itraconazole. Drug Saf., 1993, 9(4), 309-311.
[http://dx.doi.org/10.2165/00002018-199309040-00008] [PMID: 8260123]
[222]
Drayton, J.; Dickinson, G.; Rinaldi, M.G. Coadministration of rifampin and itraconazole leads to undetectable levels of serum itraconazole. Clin. Infect. Dis., 1994, 18(2), 266.
[http://dx.doi.org/10.1093/clinids/18.2.266] [PMID: 8161649]
[223]
Vermeer, L.M.; Isringhausen, C.D.; Ogilvie, B.W.; Buckley, D.B. Evaluation of ketoconazole and its alternative clinical CYP3A4/5 inhibitors as inhibitors of drug transporters: the in vitro effects of ketoconazole, ritonavir, clarithromycin, and itraconazole on 13 clinically-relevant drug transporters. Drug Metab. Dispos., 2016, 44(3), 453-459.
[http://dx.doi.org/10.1124/dmd.115.067744] [PMID: 26668209]
[224]
Foti, R.S.; Rock, D.A.; Wienkers, L.C.; Wahlstrom, J.L. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab. Dispos., 2010, 38(6), 981-987.
[http://dx.doi.org/10.1124/dmd.110.032094] [PMID: 20203109]
[225]
Walsky, R.L.; Astuccio, A.V.; Obach, R.S. Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J. Clin. Pharmacol., 2006, 46(12), 1426-1438.
[http://dx.doi.org/10.1177/0091270006293753] [PMID: 17101742]
[226]
Walsky, R.L.; Bauman, J.N.; Bourcier, K.; Giddens, G.; Lapham, K.; Negahban, A.; Ryder, T.F.; Obach, R.S.; Hyland, R.; Goosen, T.C. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metab. Dispos., 2012, 40(5), 1051-1065.
[http://dx.doi.org/10.1124/dmd.111.043117] [PMID: 22357286]
[227]
Purkins, L.; Wood, N.; Ghahramani, P.; Greenhalgh, K.; Allen, M.J.; Kleinermans, D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob. Agents Chemother., 2002, 46(8), 2546-2553.
[http://dx.doi.org/10.1128/AAC.46.8.2546-2553.2002] [PMID: 12121931]
[228]
Hyland, R.; Jones, B.C.; Smith, D.A. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab. Dispos., 2003, 31(5), 540-547.
[http://dx.doi.org/10.1124/dmd.31.5.540] [PMID: 12695341]
[229]
Jeong, S.; Nguyen, P.D.; Desta, Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A. Antimicrob. Agents Chemother., 2009, 53(2), 541-551.
[http://dx.doi.org/10.1128/AAC.01123-08] [PMID: 19029318]
[230]
Levêque, D.; Nivoix, Y.; Jehl, F.; Herbrecht, R. Clinical pharmacokinetics of voriconazole. Int. J. Antimicrob. Agents, 2006, 27(4), 274-284.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.01.003] [PMID: 16563707]
[231]
Geist, M.J.; Egerer, G.; Burhenne, J.; Riedel, K.D.; Mikus, G. Induction of voriconazole metabolism by rifampin in a patient with acute myeloid leukemia: importance of interdisciplinary communication to prevent treatment errors with complex medications. Antimicrob. Agents Chemother., 2007, 51(9), 3455-3456.
[http://dx.doi.org/10.1128/AAC.00579-07] [PMID: 17606672]
[232]
Liu, P.; Foster, G.; Gandelman, K.; LaBadie, R.R.; Allison, M.J.; Gutierrez, M.J.; Sharma, A. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob. Agents Chemother., 2007, 51(10), 3617-3626.
[http://dx.doi.org/10.1128/AAC.00526-07] [PMID: 17646413]
[233]
Xu, C.; Ogburn, E.T.; Guo, Y.; Desta, Z. Effects of the CYP2B6*6 allele on catalytic properties and inhibition of CYP2B6 in vitro: implication for the mechanism of reduced efavirenz metabolism and other CYP2B6 substrates in vivo. Drug Metab. Dispos., 2012, 40(4), 717-725.
[http://dx.doi.org/10.1124/dmd.111.042416] [PMID: 22232427]
[234]
U.S. Food and Drug Administration. Drug Information: Vfend (voriconazole for injection) Pfizer Inc., 2017. Available at: http://www.pharmapendium.com
[235]
Saari, T.I.; Laine, K.; Leino, K.; Valtonen, M.; Neuvonen, P.J.; Olkkola, K.T. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin. Pharmacol. Ther., 2006, 79(4), 362-370.
[http://dx.doi.org/10.1016/j.clpt.2005.12.305] [PMID: 16580904]
[236]
Tucker, G.T.; Houston, J.B.; Huang, S.M. Optimizing drug development: strategies to assess drug metabolism/transporter interaction potential-towards a consensus. Br. J. Clin. Pharmacol., 2001, 52(1), 107-117.
[http://dx.doi.org/10.1046/j.0306-5251.2001.temp.1441.x] [PMID: 11453898]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 1
Year: 2021
Published on: 29 September, 2020
Page: [5 - 23]
Pages: 19
DOI: 10.2174/1389200221666200929115117
Price: $65

Article Metrics

PDF: 57
HTML: 5