COVID-19 and Pneumolysis Simulating Extreme High-altitude Exposure with Altered Oxygen Transport Physiology; Multiple Diseases, and Scarce Need of Ventilators: Andean Condor's-eye-view

Author(s): Gustavo Zubieta-Calleja*, Natalia Zubieta-DeUrioste, Thuppil Venkatesh, Kusal K. Das, Jorge Soliz

Journal Name: Reviews on Recent Clinical Trials

Volume 15 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Critical hypoxia in this COVID-19 pandemic results in high mortality and economic loss worldwide. Initially, this disease’ pathophysiology was poorly understood and interpreted as a SARS (Severe Acute Respiratory Syndrome) pneumonia. The severe atypical lung CAT scan images alerted all countries, including the poorest, to purchase lacking sophisticated ventilators. However, up to 88% of the patients on ventilators lost their lives. It was suggested that COVID-19 could be similar to a High-Altitude Pulmonary Edema (HAPE). New observations and pathological findings are gradually clarifying the disease.

Methods: As high-altitude medicine and hypoxia physiology specialists working and living in the highlands for over 50 years, we perform a perspective analysis of hypoxic diseases treated at high altitudes and compare them to Covid-19. Oxygen transport physiology, SARS-Cov-2 characteristics, and its transmission, lung imaging in COVID-19, and HAPE, as well as the causes of clinical signs and symptoms, are discussed.

Results: High-altitude oxygen transport physiology has been systematically ignored. COVID-19 signs and symptoms indicate a progressive and irreversible failure in the oxygen transport system, secondary to pneumolysis produced by SARS-Cov-2’s alveolar-capillary membrane “attack”. HAPE’s pulmonary compromise is treatable and reversible. COVID-19 is associated with several diseases, with different individual outcomes, in different countries, and at different altitudes.

Conclusions: The pathophysiology of High-altitude illnesses can help explain COVID-19 pathophysiology, severity, and management. Early diagnosis and use of EPO, acetylsalicylic-acid, and other anti-inflammatories, oxygen therapy, antitussives, antibiotics, and the use of Earth open-circuit- astronaut-resembling suits to return to daily activities, should all be considered. Ventilator use can be counterproductive. Immunity development is the only feasible long-term survival tool.

Keywords: HAPE, tolerance to hypoxia, SARS-Cov-2, Polyerythrocythemia, EPO, coronavirus suit.

[1]
Gentile I, Abenavoli L. COVID-19: Perspectives on the potential novel global threat. Rev Recent Clin Trials 2020; 15(2): 84-6.
[http://dx.doi.org/10.2174/1574887115999200228100745] [PMID: 32116200]
[2]
Our World in Data Case Fatality Rate on the ongoing COVID-19 pandemic 2020.https://ourworldindata.org/grapher/coronavirus-cfr
[3]
Zubieta-Calleja GR. Co-Vid-19 pandemia essential suggestions 2020.http://altitudeclinic.com/blog/2020/03/covid-19-pandemia-essential-suggestions/
[4]
Richardson S, Hirsch JS, Narasimhan M, et al. and the Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[5]
Albano D, Bertagna F, Bertoli M, et al. Incidental findings suggestive of covid-19 in asymptomatic patients undergoing nuclear medicine procedures in a high prevalence region. J Nucl Med 2020; 61(5): 632-6.
[http://dx.doi.org/10.2967/jnumed.120.246256] [PMID: 32238429]
[6]
Haeck G, Ancion A, Marechal P, Oury C, Lancellotti P. Rev Med Liege 2020. [COVID-19 andcardiovascular diseases].
[7]
Puig-Domingo M, Marazuela M, Giustina A. COVID-19 and endocrine diseases. A statement from the European Society of Endocrinology. Endocrine 2020; 68(1): 2-5.
[http://dx.doi.org/10.1007/s12020-020-02294-5] [PMID: 32279224]
[8]
Prasad S, Potdar V, Cherian S, Abraham P, Basu A. Ransmission electron microscopy imaging of SARS-CoV-2 The Indian journal of medical research India 2020.
[9]
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int 2020; 139: 105730.
[http://dx.doi.org/10.1016/j.envint.2020.105730] [PMID: 32294574]
[10]
Ratnesar-Shumate S, Williams G, Green B, et al. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces. J Infect Dis 2020; 222(2): 214-22.
[http://dx.doi.org/10.1093/infdis/jiaa274] [PMID: 32432672]
[11]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[12]
Decker F. Electrochemistry encyclopedia 2009.http://electrochem.cwru.edu/encycl/art-v01-volta.htm
[13]
Arias-Reyes C, Zubieta-DeUrioste N, Poma-Machicao L, et al. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respir Physiol Neurobiol 2020; 277: 103443.
[http://dx.doi.org/10.1016/j.resp.2020.103443] [PMID: 32333993]
[14]
Zubieta-Calleja G. The advantages of ultraviolet radiation in controlling the coronavirus at high altitude http://altitudeclinic.com/blog/2020/04/u_v-radiation-covid-2-at-high-altitude/
[15]
Adhikari SP, Meng S, Wu YJ, et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect Dis Poverty 2020; 9(1): 29.
[http://dx.doi.org/10.1186/s40249-020-00646-x] [PMID: 32183901]
[16]
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: Observations and hypotheses Lancet 2020.
[17]
Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res 2020; 220: 1-13.
[http://dx.doi.org/10.1016/j.trsl.2020.04.007] [PMID: 32299776]
[18]
Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol 2020; 153(6): 725-33.
[http://dx.doi.org/10.1093/ajcp/aqaa062] [PMID: 32275742]
[19]
Bärtsch P, Mairbäurl H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 2005; 98(3): 1101-10.
[http://dx.doi.org/10.1152/japplphysiol.01167.2004] [PMID: 15703168]
[20]
Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39(10): e105114.
[http://dx.doi.org/10.15252/embj.20105114] [PMID: 32246845]
[21]
Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020; 12(1): 8.
[http://dx.doi.org/10.1038/s41368-020-0074-x] [PMID: 32094336]
[22]
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope 2020.
[http://dx.doi.org/10.1002/lary.28692]
[23]
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) - recent trends. Eur Rev Med Pharmacol Sci 2020.
[24]
Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol - Hear Circ Physiol 2008.
[http://dx.doi.org/10.1152/ajpheart.00331.2008]
[25]
Rubio R, Knabb M. Endothelial luminal membrane-glycocalyx: Functionalities in health and disease. Colloq Ser Integr Syst Physiol From Mol to Funct 2017.
[26]
Zubieta-Calleja GR, Zubieta-Castillo G. High altitude pathology at 12,000 ft. La Paz, Bolivia: Papiro 1989.
[27]
Zubieta-Castillo G, Zubieta-Calleja GR. Facts that Prove that adaptation to life at extreme altitude (8848m) is possible.Adaptation Biology and Medicine. Health Potentials 2007; pp. 347-55.
[28]
Nin N, Muriel A, Peñuelas O, et al. VENTILA Group. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med 2017; 43(2): 200-8.
[http://dx.doi.org/10.1007/s00134-016-4611-1] [PMID: 28108768]
[29]
Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care 2020; 24(1): 154.
[http://dx.doi.org/10.1186/s13054-020-02880-z] [PMID: 32299472]
[30]
Solaimanzadeh I. Acetazolamide, nifedipine and phosphodiesterase inhibitors: Rationale for their utilization as adjunctive countermeasures in the treatment of coronavirus disease 2019 (COVID-19). Cureus 2020; 12(3): e7343.
[http://dx.doi.org/10.7759/cureus.7343] [PMID: 32226695]
[31]
Ebert-Santos C. High-Altitude pulmonary edema in mountain community residents. High Alt Med Biol 2017; 18(3): 278-84.
[http://dx.doi.org/10.1089/ham.2016.0100] [PMID: 28846035]
[32]
Gibbs JS. Pulmonary hemodynamics: implications for high altitude pulmonary edema (HAPE). A review. Adv Exp Med Biol 1999; 474: 81-91.
[http://dx.doi.org/10.1007/978-1-4615-4711-2_7] [PMID: 10634995]
[33]
Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus (2019-NCoV). Radiology 2020; 295(1): 202-7.
[http://dx.doi.org/10.1148/radiol.2020200230] [PMID: 32017661]
[34]
Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med 2020; 383(2): 120-8.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[35]
Zafren K, Reeves JT, Schoene R. Treatment of high-altitude pulmonary edema by bed rest and supplemental oxygen. Wilderness Environ Med 1996; 7(2): 127-32.
[http://dx.doi.org/10.1580/1080-6032(1996)007[0127:TOHAPE]2.3.CO;2] [PMID: 11990106]
[36]
Marticorena E, Tapia FA, Dyer J, et al. Pulmonary edema by ascending to high altitudes. Dis Chest 1964; 45: 273-83.
[http://dx.doi.org/10.1378/chest.45.3.273] [PMID: 14132273]
[37]
Dawadi S, Adhikari S. Successful Summit of Two 8000 m Peaks After Recent High Altitude Pulmonary Edema. Wilderness Environ Med 2019; 30(2): 195-8.
[http://dx.doi.org/10.1016/j.wem.2018.12.009] [PMID: 30852106]
[38]
Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109(5): 531-8.
[http://dx.doi.org/10.1007/s00392-020-01626-9] [PMID: 32161990]
[39]
Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: Could we “Notch” the inflammatory storm? Basic Res Cardiol 2020; 115(3): 31.
[http://dx.doi.org/10.1007/s00395-020-0791-5] [PMID: 32274570]
[40]
Zubieta-Castillo G Sr, Zubieta-Calleja GR Jr, Zubieta-Calleja L. Chronic mountain sickness: The reaction of physical disorders to chronic hypoxia. J Physiol Pharmacol 2006; 57(Suppl. 4): 431-42.
[PMID: 17072074]
[41]
Bikdeli B, Madhavan MV, Jimenez D, et al. Global COVID-19 thrombosis collaborative group, endorsed by the ISTH, NATF, ESVM, and the IUA, supported by the ESC working group on pulmonary circulation and right ventricular function. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-Up: JACC state-of-the-art review. J Am Coll Cardiol 2020; 75(23): 2950-73.
[http://dx.doi.org/10.1016/j.jacc.2020.04.031] [PMID: 32311448]
[42]
Huang X, Wei F, Hu L, Wen L, Chen K. Epidemiology and clinical characteristics of COVID-19. Arch Iran Med 2020; 23(4): 268-71.
[http://dx.doi.org/10.34172/aim.2020.09] [PMID: 32271601]
[43]
Bodil Schmidt-Nielsen. August & Marie Krogh Lives in Science. Oxford: Oxford University Press 1995.
[44]
San T, Polat S, Cingi C, Eskiizmir G, Oghan F, Cakir B. Effects of high altitude on sleep and respiratory system and theirs adaptations. ScientificWorldJournal 2013; 2013: 241569.
[http://dx.doi.org/10.1155/2013/241569] [PMID: 23690739]
[45]
Zubieta-Calleja G, Zubieta-Castillo G. Changes in oximery during breath holding in normal residents of hIgh altitude (3510m) Ohno H, Kobayashi T, Shigeru M, Nakashima M, editors Progress in Mountain Medicine and HIgh Altitude Physiology Press Committe of the 3rd World Congress on Mountain Medicine and High Altitude Physiology. 343
[46]
Zubieta-Calleja GR, Zubieta-Castillo G, Paulev PE, Zubieta-Calleja L. Non-invasive measurement of circulation time using pulse oximetry during breath holding in chronic hypoxia. J Physiol Pharmacol 2005; 56(Suppl. 4): 251-6.
[PMID: 16204801]
[47]
Zubieta-Calleja GR, Paulev PE, Zubieta-Calleja L, Zubieta-Castillo G. Altitude adaptation through hematocrit changes. J Physiol Pharmacol 2007; 58(Pt 2)(Suppl. 5): 811-8.
[PMID: 18204195]
[48]
Zubieta-Calleja GR, Ardaya G, Zubieta N, Paulev PE. Z-CG Tolerance to hypoxia. J Fisiol 2013; Vol. 59: pp. 65-71.https://zuniv.net/pub/TolerancetoHypoxiaFiziol.pdf Internet
[49]
Paulev PE, Zubieta-Calleja GR. Essentials in the diagnosis of acid-base disorders and their high altitude application. J Physiol Pharmacol 2005; 56(Suppl. 4): 155-70.
[PMID: 16204789]
[50]
Zubieta-Calleja G, Zubieta-Castillo G, Zubieta-Calleja L, Ardaya-Zubieta G, Paulev PE. Do over 200 million healthy altitude residents really suffer from chronic Acid-base disorders? Indian J Clin Biochem 2011; 26(1): 62-5.
[http://dx.doi.org/10.1007/s12291-010-0088-9] [PMID: 22211016]
[51]
Vera O. Valores normales de gases sanguineos arteriales y del equilibrio acido-base en la ciudad de La Paz, Bolivia. Cuad del Hosp Clin 1991; 37(1): 18-27.
[52]
Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med 2020; 38(7): 1504-7.
[http://dx.doi.org/10.1016/j.ajem.2020.04.048] [PMID: 32317203]
[53]
Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support, and ventilator weaningComprehensive Physiology. 2012.
[54]
Hadadi A, Mortezazadeh M, Kolahdouzan K, Alavian G. Does recombinant human erythropoietin administration in critically ill COVID-19 patients have miraculous therapeutic effects? J Med Virol 2020; 92(7): 915-8.
[http://dx.doi.org/10.1002/jmv.25839] [PMID: 32270515]
[55]
Soliz J, Joseph V, Soulage C, et al. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 2005; 568(Pt 2): 559-71.
[http://dx.doi.org/10.1113/jphysiol.2005.093328] [PMID: 16051624]
[56]
Soliz J, Schneider-Gasser EM, Arias-Reyes C, et al. Coping with hypoxemia: Could erythropoietin (EPO) be an adjuvant treatment of COVID-19? Respir Physiol Neurobiol 2020; 279: 103476.
[http://dx.doi.org/10.1016/j.resp.2020.103476] [PMID: 32522574]
[57]
Ehrenreich H, Weissenborn K, Begemann M, Busch M, Vieta E, Miskowiak KW. Erythropoietin as candidate for supportive treatment of severe COVID-19. Mol Med 2020; 26(1): 58.
[http://dx.doi.org/10.1186/s10020-020-00186-y] [PMID: 32546125]
[58]
Zubieta-Castillo G, Zubieta-Calleja G, Zubieta-Calleja L. Pulse oximetry in chronic mountain sickness - long breath holding time & oscillation at lowest saturation Ohno H, Kobayashi T, Masuyama S, Nakashima Mi, editors Progress in Mountain Medicine and High Altitude Physiology Matsumoto: Press Committe of the 3rd World Congress on Mountain Medicine and High Altitude Physiology. 349-54.
[59]
Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood 2004; 104(7): 2073-80.
[http://dx.doi.org/10.1182/blood-2004-02-0744] [PMID: 15205261]
[60]
Kertesz N, Wu J, Chen THP, Sucov HM, Wu H. The role of erythropoietin in regulating angiogenesis. Dev Biol 2004; 276(1): 101-10.
[http://dx.doi.org/10.1016/j.ydbio.2004.08.025] [PMID: 15531367]
[61]
Lombardy Section Italian Society Infectious And Tropical Diseases -. Vademecum for the treatment of people with COVID-19 Edition 20, 13 March 2020 Le Infez Med 2020; 28(2): 143-52.
[62]
Zubieta-Calleja, G., Zubieta-DeUrioste, N. Pneumolysis and “Silent Hypoxemia” in COVID-19. Ind J Clin Biochem 2020.
[http://dx.doi.org/10.1007/s12291-020-00935-0]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2020
Published on: 25 September, 2020
Page: [347 - 359]
Pages: 13
DOI: 10.2174/1574887115666200925141108

Article Metrics

PDF: 50
HTML: 3