Protective Potential of Uric Acid, Folic Acid, Glutathione and Ascorbic Acid Against the Formation of Toxic Met-Myoglobin

Author(s): Waleed Al Abdulmonem, Abdullah S. M. Aljohani, Fahad A. Alhumaydhi, Amira H.M. Mousa, Zafar Rasheed*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 3 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Myoglobin is an oxygen binding protein and its dysfunction has been associated with the pathology of several human disorders. This study was undertaken to investigation the role of hydrogen peroxide (H2O2) in the formation of met-myoglobin and the protective potential of four different reductants such as uric acid, folic acid, glutathione and ascorbic acid were also tested against met-myoglobin formation.

Methods: Human myoglobin was treated with H2O2 in-vitro in order to prepare met-myoglobin. The generation of met-myoglobin was confirmed by UV-visible spectroscopy and its stability was analysed by the treatment of human myoglobin with H2O2 at varying pH or time. High performance liquid chromatography (HPLC) was used to determine the oxidatively modified heme products in met-myoglobin. Spectroscopic analysis was used to identify the protective potential of uric acid, folic acid, glutathione and ascorbic acid against the formation of met-myoglobin.

Results: The novel data of this study showed that H2O2 induced extensive damage of myoglobin but the treatment with uric acid, folic acid, glutathione or ascorbic acid provides protection of myoglobin against H2O2 induced oxidative damaged. The study apparently proved the protective potential of all these compounds against the toxicity produced by H2O2.

Conclusion: This is the first study that shows uric acid, folic acid, glutathione and ascorbic acid provide protection against the generation of toxic met-myoglobin and might be used therapeutically to modify the blood conditions in order to prevent the progression of human disorders associated with myoglobin dysfunction.

Keywords: Met-myoglobin, myoglobin dysfunction, reductants, human disorders, protection, hydrogen peroxide.

[1]
Ordway, G.A.; Garry, D.J. Myoglobin: an essential hemoprotein in striated muscle. J. Exp. Biol., 2004, 207(Pt 20), 3441-3446.
[http://dx.doi.org/10.1242/jeb.01172] [PMID: 15339940]
[2]
Alayash, A.I. Oxygen therapeutics: can we tame haemoglobin? Nat. Rev. Drug Discov., 2004, 3(2), 152-159.
[http://dx.doi.org/10.1038/nrd1307] [PMID: 15043006]
[3]
Hendgen-Cotta, U.B.; Kelm, M.; Rassaf, T. Myoglobin functions in the heart. Free Radic. Biol. Med., 2014, 73, 252-259.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.005] [PMID: 24859377]
[4]
Khoshouei, M.; Danev, R.; Plitzko, J.M.; Baumeister, W. Revisiting the structure of hemoglobin and myoglobin with cryo-electron microscopy. J. Mol. Biol., 2017, 429(17), 2611-2618.
[http://dx.doi.org/10.1016/j.jmb.2017.07.004] [PMID: 28697886]
[5]
Silverstein, T.P.; Kirk, S.R.; Meyer, S.C.; Holman, K.L. Myoglobin structure and function: a multiweek biochemistry laboratory project. Biochem. Mol. Biol. Educ., 2015, 43(3), 181-188.
[http://dx.doi.org/10.1002/bmb.20845] [PMID: 25726810]
[6]
Reeder, B.J.; Svistunenko, D.A.; Cooper, C.E.; Wilson, M.T. The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Antioxid. Redox Signal., 2004, 6(6), 954-966.
[PMID: 15548893]
[7]
Reeder, B.J.; Wilson, M.T. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States. Curr. Med. Chem., 2005, 12(23), 2741-2751.
[http://dx.doi.org/10.2174/092986705774463021] [PMID: 16305469]
[8]
Estévez, M.; Xiong, Y. Intake of oxidized proteins and amino acids and causative oxidative stress and disease: recent scientific evidences and hypotheses. J. Food Sci., 2019, 84(3), 387-396.
[http://dx.doi.org/10.1111/1750-3841.14460] [PMID: 30714623]
[9]
Rasheed, Z.; Ahmad, R.; Rasheed, N.; Ali, R. Reactive oxygen species damaged human serum albumin in patients with hepatocellular carcinoma. J. Exp. Clin. Cancer Res., 2007, 26(3), 395-404.
[PMID: 17987802]
[10]
Rasheed, Z.; Ahmad, R.; Rasheed, N.; Ali, R. Enhanced recognition of reactive oxygen species damaged human serum albumin by circulating systemic lupus erythematosus autoantibodies. Autoimmunity, 2007, 40(7), 512-520.
[http://dx.doi.org/10.1080/08916930701574331] [PMID: 17966041]
[11]
Zhang, W.; Xiao, S.; Ahn, D.U. Protein oxidation: basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr., 2013, 53(11), 1191-1201.
[http://dx.doi.org/10.1080/10408398.2011.577540] [PMID: 24007423]
[12]
Rasheed, Z.; Ali, R. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: biochemical and immunological studies. Life Sci., 2006, 79(24), 2320-2328.
[http://dx.doi.org/10.1016/j.lfs.2006.07.041] [PMID: 16945391]
[13]
Rasheed, N.; Rasheed, Z. Oxidative biomolecular damage: A possible mechanism for systemic autoimmunity. Int. J. Health Sci. (Qassim), 2019, 13(5), 1-3.
[PMID: 31501645]
[14]
Rasheed, Z. Hydroxyl radical damaged immunoglobulin G in patients with rheumatoid arthritis: biochemical and immunological studies. Clin. Biochem., 2008, 41(9), 663-669.
[http://dx.doi.org/10.1016/j.clinbiochem.2008.02.013] [PMID: 18359293]
[15]
Ishizuka, T.; Nagata, W.; Nomura-Takahashi, S.; Satoh, Y. Effects of oxidized low-density lipoprotein on differentiation of mouse neural progenitor cells into neural cells. Eur. J. Pharmacol., 2020, 888, 173456.
[http://dx.doi.org/10.1016/j.ejphar.2020.173456] [PMID: 32771670]
[16]
Rasheed, Z.; Ahmad, R.; Rasheed, N.; Ali, R. Reactive oxygen species damaged hemoglobin presents unique epitopes for type 1 diabetes autoantibodies. Int J Biol Chem., 2008, 2, 1-13.
[http://dx.doi.org/10.3923/ijbc.2008.1.13]
[17]
Martínez-Sánchez, G.; Giuliani, A.; Pérez-Davison, G.; León-Fernández, O.S. Oxidized proteins and their contribution to redox homeostasis. Redox Rep., 2005, 10(4), 175-185.
[http://dx.doi.org/10.1179/135100005X57382] [PMID: 16259785]
[18]
Alhomaidan, H.T.; Rasheed, N.; Almatrafi, S.; Al-Rashdi, F.H.; Rasheed, Z. Bisphenol A modified DNA: A possible immunogenic stimulus for anti-DNA autoantibodies in systemic lupus erythematosus. Autoimmunity, 2019, 52(7-8), 272-280.
[http://dx.doi.org/10.1080/08916934.2019.1683545] [PMID: 31656085]
[19]
Guerrero-Hue, M.; Rubio-Navarro, A.; Sevillano, Á.; Yuste, C.; Gutiérrez, E.; Palomino-Antolín, A.; Román, E.; Praga, M.; Egido, J.; Moreno, J.A. Adverse effects of the renal accumulation of haem proteins. Novel therapeutic approaches. Nefrologia, 2018, 38(1), 13-26.
[http://dx.doi.org/10.1016/j.nefro.2017.05.009] [PMID: 28668175]
[20]
Sher, E.A.; Sholto, A.Y.; Shaklai, M.; Shaklai, N. Can gas replace protein function? CO abrogates the oxidative toxicity of myoglobin. PLoS One, 2014, 9(8), e104075.
[http://dx.doi.org/10.1371/journal.pone.0104075] [PMID: 25111140]
[21]
Alayash, A.I.; Patel, R.P.; Cashon, R.E. Redox reactions of hemoglobin and myoglobin: biological and toxicological implications. Antioxid. Redox Signal., 2001, 3(2), 313-327.
[http://dx.doi.org/10.1089/152308601300185250] [PMID: 11396484]
[22]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[23]
Plotnikov, E.Y.; Chupyrkina, A.A.; Pevzner, I.B.; Isaev, N.K.; Zorov, D.B. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim. Biophys. Acta, 2009, 1792(8), 796-803.
[http://dx.doi.org/10.1016/j.bbadis.2009.06.005] [PMID: 19545623]
[24]
Baron, C.P.; Andersen, H.J. Myoglobin-induced lipid oxidation. A review. J. Agric. Food Chem., 2002, 50(14), 3887-3897.
[http://dx.doi.org/10.1021/jf011394w] [PMID: 12083855]
[25]
Ryter, S.W.; Tyrrell, R.M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med., 2000, 28(2), 289-309.
[http://dx.doi.org/10.1016/S0891-5849(99)00223-3] [PMID: 11281297]
[26]
Reeder, B.J.; Wilson, M.T. The effects of pH on the mechanism of hydrogen peroxide and lipid hydroperoxide consumption by myoglobin: a role for the protonated ferryl species. Free Radic. Biol. Med., 2001, 30(11), 1311-1318.
[http://dx.doi.org/10.1016/S0891-5849(01)00534-2] [PMID: 11368929]
[27]
Regl, C.; Wohlschlager, T.; Holzmann, J.; Huber, C.G. A Generic HPLC method for absolute quantification of oxidation in monoclonal antibodies and fc-fusion proteins using UV and MS detection. Anal. Chem., 2017, 89(16), 8391-8398.
[http://dx.doi.org/10.1021/acs.analchem.7b01755] [PMID: 28657729]
[28]
Anderson, A.B.; Robertson, C.R. Absorption spectra indicate conformational alteration of myoglobin adsorbed on polydimethylsiloxane. Biophys. J., 1995, 68(5), 2091-2097.
[http://dx.doi.org/10.1016/S0006-3495(95)80388-7] [PMID: 7612852]
[29]
Lata, K.; Janardhanan, R. Methemoglobinemia: a diagnosis not to be missed. Am. J. Med., 2015, 128(10), e45-e46.
[http://dx.doi.org/10.1016/j.amjmed.2015.04.031] [PMID: 26026842]
[30]
Sawicki, K.T.; Chang, H.C.; Ardehali, H. Role of heme in cardiovascular physiology and disease. J. Am. Heart Assoc., 2015, 4(1), e001138.
[http://dx.doi.org/10.1161/JAHA.114.001138] [PMID: 25559010]
[31]
Sautin, Y.Y.; Johnson, R.J. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 608-619.
[http://dx.doi.org/10.1080/15257770802138558] [PMID: 18600514]
[32]
Cui, S.; Li, W.; Lv, X.; Wang, P.; Huang, G.; Gao, Y. Folic acid attenuates homocysteine and enhances antioxidative capacity in atherosclerotic rats. Appl. Physiol. Nutr. Metab., 2017, 42(10), 1015-1022.
[http://dx.doi.org/10.1139/apnm-2017-0158] [PMID: 28575637]
[33]
Gaucher, C.; Boudier, A.; Bonetti, J.; Clarot, I.; Leroy, P.; Parent, M. Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants, 2018, 7(5), 62.
[http://dx.doi.org/10.3390/antiox7050062] [PMID: 29702624]
[34]
Arrigoni, O.; De Tullio, M.C. Ascorbic acid: much more than just an antioxidant. Biochim. Biophys. Acta, 2002, 1569(1-3), 1-9.
[http://dx.doi.org/10.1016/S0304-4165(01)00235-5] [PMID: 11853951]
[35]
Reeder, B.J.; Cutruzzola, F.; Bigotti, M.G.; Hider, R.C.; Wilson, M.T. Tyrosine as a redox-active center in electron transfer to ferryl heme in globins. Free Radic. Biol. Med., 2008, 44(3), 274-283.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.030] [PMID: 18215736]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 28
ISSUE: 3
Year: 2021
Published on: 07 May, 2021
Page: [282 - 289]
Pages: 8
DOI: 10.2174/0929866527666200921165312
Price: $65

Article Metrics

PDF: 17
HTML: 2