Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Antiproliferative and Genotoxic Action of an Underexploited Organoteluran Derivative on Sarcoma 180 Cells

Author(s): Maria L.L. Barreto do Nascimento, Antonielly Campinho dos Reis, José V.O. Santos, Helber A. Negreiros, Felipe C. Carneiro da Silva, Paulo M.P. Ferreira, Juan C.R. Gonçalves, Dalton Dittz, Débora C. Braz, Adriana M.V. Nunes, Rodrigo L.O.R. Cunha, Ana A.C. Melo-Cavalcante and João Marcelo de Castro e Sousa*

Volume 21, Issue 8, 2021

Published on: 18 September, 2020

Page: [1019 - 1026] Pages: 8

DOI: 10.2174/1871520620666200918110152

Price: $65

Abstract

Background: The search for novel metallic chemical compounds with toxicogenic effects has been of great importance for more efficient cancer treatment.

Objective: The study evaluated the cytotoxic, genotoxic and mutagenic activity of organoteluran RF07 in the S-180 cell line.

Methods: The bioassays used were cell viability with 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, evaluation of apoptosis and necrosis using fluorescence and flow cytometry, cytokinesisblock micronucleus test and comet assay. The compound was tested at 1; 2.5 and 5μM.

Results: The results showed the cytotoxicity of RF07 at concentrations of 2.5, 5, 10 and 20μM when compared to the negative control. For genotoxicity tests, RF07 showed effects in all concentrations assessed by increased index and frequencies of damage and mutagenic alterations. The compound was also cytotoxic due to the significant decrease in the nuclear division index, with significant values of apoptosis and necrosis. The results of fluorescence and flow cytometry showed apoptosis as the main type of cell death caused by RF07 at 5μM, which is thought to avoid an aggressive immune response of the organism.

Conclusion: In addition to cytotoxic and genotoxic effects, RF07 creates good perspectives for future antitumor formulations.

Keywords: Chemotherapy, organometals, antitumor activity, DNA damages, MTT, RF07.

Next »
Graphical Abstract
[1]
Riggi, N.; Cironi, L.; Suvà, M.L.; Stamenkovic, I. Sarcomas: Genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J. Pathol., 2007, 213(1), 4-20.
[http://dx.doi.org/10.1002/path.2209] [PMID: 17691072]
[2]
Chen, W.; Hilton, I.B.; Staudt, M.R.; Burd, C.E.; Dittmer, D.P. Distinct p53, p53: LANA, and LANA complexes in Kaposi’s sarcoma-associated herpesvirus lymphomas. J. Virol., 2010, 84(8), 3898-3908.
[http://dx.doi.org/10.1128/JVI.01321-09] [PMID: 20130056]
[3]
Ballinger, M.L.; Goode, D.L.; Ray-Coquard, I.; James, P.A.; Mitchell, G.; Niedermayr, E.; Puri, A.; Schiffman, J.D.; Dite, G.S.; Cipponi, A.; Maki, R.G.; Brohl, A.S.; Myklebost, O.; Stratford, E.W.; Lorenz, S.; Ahn, S.M.; Ahn, J.H.; Kim, J.E.; Shanley, S.; Beshay, V.; Randall, R.L.; Judson, I.; Seddon, B.; Campbell, I.G.; Young, M.A.; Sarin, R.; Blay, J.Y.; O’Donoghue, S.I.; Thomas, D.M. International Sarcoma Kindred Study. Monogenic and polygenic determinants of sarcoma risk: An international genetic study. Lancet Oncol., 2016, 17(9), 1261-1271.
[http://dx.doi.org/10.1016/S1470-2045(16)30147-4] [PMID: 27498913]
[4]
Levi, F.; Randimbison, L.; Maspoli-Conconi, M.; Blanc-Moya, R.; La Vecchia, C. Incidence of second sarcomas: A cancer registry-based study. Cancer Causes Control, 2014, 25(4), 473-477.
[http://dx.doi.org/10.1007/s10552-014-0349-7] [PMID: 24463790]
[5]
Instituto nacional do cancer Estimativa 2018-Incidência de câncer no Brasil/Instituto Nacional de Câncer 2018.
[6]
Steen, S.; Stephenson, G. Current treatment of soft tissue sarcoma. In:Baylor University Medical Center Proceedings; Taylor & Francis: UK, 2008.
[http://dx.doi.org/10.1080/08998280.2008.11928435]
[7]
Kaushal, A.; Citrin, D. The role of radiation therapy in the management of sarcomas. Surg. Clin. North Am., 2008, 88(3), 629-646.
[http://dx.doi.org/10.1016/j.suc.2008.03.005] [PMID: 18514703]
[8]
Sheng, J.Y.; Movva, S. Systemic therapy for advanced soft tissue sarcoma. Surg. Clin. North Am., 2016, 96(5), 1141-1156.
[http://dx.doi.org/10.1016/j.suc.2016.06.006] [PMID: 27542647]
[9]
Kasper, B.; Gil, T.; D’Hondt, V.; Gebhart, M.; Awada, A. Novel treatment strategies for soft tissue sarcoma. Crit. Rev. Oncol. Hematol., 2007, 62(1), 9-15.
[http://dx.doi.org/10.1016/j.critrevonc.2006.11.008] [PMID: 17141519]
[10]
Gielen, M.; Tiekink, E.R.T. Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine; John Wiley & Sons: UK, 2005.
[http://dx.doi.org/10.1002/0470864052]
[11]
Hannon, M.J. Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem., 2007, 79, 2243-2261.
[http://dx.doi.org/10.1351/pac200779122243]
[12]
Meggers, E. Targeting proteins with metal complexes. Chem. Commun. (Camb.), 2009, 1001-1010.
[http://dx.doi.org/10.1039/b813568a] [PMID: 19225621]
[13]
Zhang, C.X.; Lippard, S.J. New metal complexes as potential therapeutics. Curr. Opin. Chem. Biol., 2003, 7(4), 481-489.
[http://dx.doi.org/10.1016/S1367-5931(03)00081-4] [PMID: 12941423]
[14]
Williams, N.H.; Takasaki, B.; Wall, M.; Chin, J. Structure and nuclease activity of simple dinuclear metal complexes: Quantitative dissection of the role of metal ions. Acc. Chem. Res., 1999, 32, 485-493.
[http://dx.doi.org/10.1021/ar9500877]
[15]
Jiang, Q.; Xiao, N.; Shi, P.; Zhu, Y.; Guo, Z. Design of artificial metallonucleases with oxidative mechanism. Coord. Chem. Rev., 2007, 251, 1951-1972.
[http://dx.doi.org/10.1016/j.ccr.2007.02.013]
[16]
Zeglis, B.M.; Pierre, V.C.; Barton, J.K. Metallo-intercalators and metallo-insertors. Chem. Commun. (Camb.), 2007, 4565-4579.
[http://dx.doi.org/10.1039/b710949k] [PMID: 17989802]
[17]
Tremaroli, V.; Fedi, S.; Zannoni, D. Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch. Microbiol., 2007, 187(2), 127-135.
[http://dx.doi.org/10.1007/s00203-006-0179-4] [PMID: 17013634]
[18]
Salerno Pimentel, I.A.; Paladi, C.S.; Katz, S.; de Souza Júdice, W.A.; Cunha, R.L.O.R.; Barbiéri, C.L. In vitro and in vivo activity of an organic tellurium compound on Leishmania (Leishmania) chagasi. PLoS One, 2012, 7(11)e48780
[http://dx.doi.org/10.1371/journal.pone.0048780] [PMID: 23144968]
[19]
Cunha, R.L.O.R.; Gouvea, I.E.; Juliano, L. A glimpse on biological activities of tellurium compounds. An. Acad. Bras. Cienc., 2009, 81(3), 393-407.
[http://dx.doi.org/10.1590/S0001-37652009000300006] [PMID: 19722011]
[20]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[21]
Tveden-Nyborg, P.; Bergmann, T.K.; Lykkesfeldt, J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin. Pharmacol. Toxicol., 2018, 123(3), 233-235.
[http://dx.doi.org/10.1111/bcpt.13059] [PMID: 29931751]
[22]
Zeni, G.; Braga, A.L.; Stefani, H.A. Palladium-catalyzed coupling of sp(2)-hybridized tellurides. Acc. Chem. Res., 2003, 36(10), 731-738.
[http://dx.doi.org/10.1021/ar0202621] [PMID: 14567706]
[23]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[24]
Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc., 2007, 2(5), 1084-1104.
[http://dx.doi.org/10.1038/nprot.2007.77] [PMID: 17546000]
[25]
Speit, G.; Rothfuss, A. The comet assay: A sensitive genotoxicity test for the detection of DNA damage and repair. In:DNA Repair Protocols; Humana Press: Totowa, NJ, 2012, pp. 79-90.
[http://dx.doi.org/10.1007/978-1-61779-998-3_6]
[26]
Markowska, A.; Kasprzak, B.; Jaszczyńska-Nowinka, K.; Lubin, J.; Markowska, J. Noble metals in oncology. Contemp. Oncol. (Pozn.), 2015, 19(4), 271-275.
[http://dx.doi.org/10.5114/wo.2015.54386] [PMID: 26557773]
[27]
Heras, B.L.; Amesty, Á.; Estévez-Braun, A.; Hortelano, S. Metal complexes of natural product like-compounds with antitumor activity. Anticancer. Agents Med. Chem., 2019, 19(1), 48-65.
[http://dx.doi.org/10.2174/1871520618666180420165821] [PMID: 29692264]
[28]
Kong, D.; Guo, L.; Tian, M.; Zhang, S.; Tian, Z.; Yang, H. Lysosome‐targeted potent half‐sandwich iridium (III) α-diimine antitumor complexes. Appl. Organomet. Chem., 2019, 33e4633
[http://dx.doi.org/10.1002/aoc.4633]
[29]
Abondanza, T.S.; Oliveira, C.R.; Barbosa, C.M.V.; Pereira, F.E.G.; Cunha, R.L.O.R.; Caires, A.C.F.; Comasseto, J.V.; Queiroz, M.L.; Valadares, M.C.; Bincoletto, C. Bcl-2 expression and apoptosis induction in human HL60 leukaemic cells treated with a novel organotellurium(IV) compound RT-04. Food Chem. Toxicol., 2008, 46(7), 2540-2545.
[http://dx.doi.org/10.1016/j.fct.2008.04.010] [PMID: 18495315]
[30]
Roy, S.; Hardej, D. Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes. Food Chem. Toxicol., 2011, 49(10), 2564-2574.
[http://dx.doi.org/10.1016/j.fct.2011.06.072] [PMID: 21742007]
[31]
Vij, P.; Hardej, D. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells. Environ. Toxicol. Pharmacol., 2012, 34(3), 768-782.
[http://dx.doi.org/10.1016/j.etap.2012.09.009] [PMID: 23068156]
[32]
Santos, D.B.; Schiar, V.P.P.; Paixão, M.W.; Meinerz, D.F.; Nogueira, C.W.; Aschner, M.; Rocha, J.B.; Barbosa, N.B. Hemolytic and genotoxic evaluation of organochalcogens in human blood cells in vitro. Toxicol. In Vitro, 2009, 23(6), 1195-1204.
[http://dx.doi.org/10.1016/j.tiv.2009.05.010] [PMID: 19477262]
[33]
Sredni, B. Immunomodulating tellurium compounds as anti-cancer agents. Semin. Cancer Biol., 2012, 22(1), 60-69.
[http://dx.doi.org/10.1016/j.semcancer.2011.12.003] [PMID: 22202556]
[34]
Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. 2-Tellurium-bridged β-cyclodextrin, a thioredoxin reductase inhibitor, sensitizes human breast cancer cells to TRAIL-induced apoptosis through DR5 induction and NF-κB suppression. Carcinogenesis, 2011, 32(2), 154-167.
[http://dx.doi.org/10.1093/carcin/bgq234] [PMID: 21081474]
[35]
Sailer, B.L.; Liles, N.; Dickerson, S.; Chasteen, T.G. Cytometric determination of novel organotellurium compound toxicity in a promyelocytic (HL-60) cell line. Arch. Toxicol., 2003, 77(1), 30-36.
[http://dx.doi.org/10.1007/s00204-002-0407-x] [PMID: 12491038]
[36]
Lai, L.; Jin, J.C.; Xu, Z.Q.; Mei, P.; Jiang, F.L.; Liu, Y. Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. Chemosphere, 2015, 135, 240-249.
[http://dx.doi.org/10.1016/j.chemosphere.2015.04.044] [PMID: 25965003]
[37]
Sailer, B.L.; Liles, N.; Dickerson, S.; Sumners, S.; Chasteen, T.G. Organotellurium compound toxicity in a promyelocytic cell line compared to non-tellurium-containing organic analog. Toxicol. In Vitro, 2004, 18(4), 475-482.
[http://dx.doi.org/10.1016/j.tiv.2003.11.001] [PMID: 15130605]
[38]
Caeran Bueno, D.; Meinerz, D.F.; Allebrandt, J.; Waczul, E.P.; Santos, D.B.; Mariano, D.O.C. Cytotoxicity and genotoxicity evaluation of organochalcogens in human leucocytes: A comparative study between ebselen, diphenyl diselenide, and diphenyl ditelluride. BioMed Res. Int., 2013, 2013Article ID 537279
[http://dx.doi.org/10.1155/2013/537279]
[39]
Kanematsu, N.; Hara, M.; Kada, T. Rec assay and mutagenicity studies on metal compounds. Mutat. Res. Genetic Toxicol., 1980, 77, 109-116.
[http://dx.doi.org/10.1016/0165-1218(80)90127-5]
[40]
Meinerz, D.F.; Allebrandt, J.; Mariano, D.O.C.; Waczuk, E.P.; Soares, F.A.; Hassan, W.; Rocha, J.B. Differential genotoxicity of diphenyl diselenide (PhSe)2 and diphenyl ditelluride (PhTe)2. PeerJ, 2014, 2e290
[http://dx.doi.org/10.7717/peerj.290] [PMID: 24711962]
[41]
Villarini, M.; Gianfredi, V.; Levorato, S.; Vannini, S.; Salvatori, T.; Moretti, M. Occupational exposure to cytostatic/antineoplastic drugs and cytogenetic damage measured using the lymphocyte cytokinesis-block micronucleus assay: A systematic review of the literature and meta-analysis. Mutat. Res., 2016, 770(Pt A), 35-45.
[http://dx.doi.org/10.1016/j.mrrev.2016.05.001] [PMID: 27894689]
[42]
Khan, H.Y.; Ansari, M.O.; Shadab, G.G.H.A.; Tabassum, S.; Arjmand, F. Evaluation of cytotoxic activity and genotoxicity of structurally well characterized potent cobalt(II) phen-based antitumor drug entities: An in vitro and in vivo approach. Bioorg. Chem., 2019, 88102963
[http://dx.doi.org/10.1016/j.bioorg.2019.102963] [PMID: 31071506]
[43]
Schmid, W. The micronucleus test for cytogenetic analysis. In:Chemical Mutagens; Springer: Boston, MA, 1976, pp. 31-53.
[http://dx.doi.org/10.1007/978-1-4684-0892-8_2]
[44]
Wang, Y.; An, R.; Umanah, G.K.; Park, H.; Nambiar, K.; Eacker, S.M.; Kim, B.; Bao, L.; Harraz, M.M.; Chang, C.; Chen, R.; Wang, J.E.; Kam, T.I.; Jeong, J.S.; Xie, Z.; Neifert, S.; Qian, J.; Andrabi, S.A.; Blackshaw, S.; Zhu, H.; Song, H.; Ming, G.L.; Dawson, V.L.; Dawson, T.M. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science, 2016, 354(6308), 6308.
[http://dx.doi.org/10.1126/science.aad6872] [PMID: 27846469]
[45]
Jamin, N.; Miller, L.; Moncuit, J.; Fridman, W.H.; Dumas, P.; Teillaud, J.L. Chemical heterogeneity in cell death: Combined synchrotron IR and fluorescence microscopy studies of single apoptotic and necrotic cells. Biopolymers, 2003, 72(5), 366-373.
[http://dx.doi.org/10.1002/bip.10435] [PMID: 12949827]
[46]
Vij, P. Evaluation of alterations in antioxidant/oxidant gene expression and proteins following treatment of transformed and normal colon cells with tellurium compounds. Dissertation, St. John’s University: New York. 2016.
[47]
Wu, W.S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev., 2006, 25(4), 695-705.
[http://dx.doi.org/10.1007/s10555-006-9037-8] [PMID: 17160708]
[48]
Ji, Q.; Ding, Y.H.; Sun, Y.; Zhang, Y.; Gao, H.E.; Song, H.N.; Yang, M.; Liu, X.L.; Zhang, Z.X.; Li, Y.H.; Gao, Y.D. Antineoplastic effects and mechanisms of micheliolide in acute myelogenous leukemia stem cells. Oncotarget, 2016, 7(40), 65012-65023.
[http://dx.doi.org/10.18632/oncotarget.11342] [PMID: 27542251]
[49]
Peng, J.; Lv, Y.C.; He, P.P.; Tang, Y.Y.; Xie, W.; Liu, X.Y.; Li, Y.; Lan, G.; Zhang, M.; Zhang, C.; Shi, J.F.; Zheng, X.L.; Yin, W.D.; Tang, C.K. Betulinic acid downregulates expression of oxidative stress-induced lipoprotein lipase via the PKC/ERK/c-Fos pathway in RAW264.7 macrophages. Biochimie, 2015, 119, 192-203.
[http://dx.doi.org/10.1016/j.biochi.2015.10.020] [PMID: 26542288]
[50]
Nicco, C.; Batteux, F. ROS modulator molecules with therapeutic potential in cancers treatments. Molecules, 2017, 23(1), 84.
[http://dx.doi.org/10.3390/molecules23010084] [PMID: 29301225]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy