Title:Recent Advances in the Development of Selective Mcl-1 Inhibitors for the Treatment of Cancer (2017-Present)
VOLUME: 15 ISSUE: 4
Author(s):Ying Fan, Xuben Hou* and Hao Fang*
Affiliation:Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong, Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, 250012, Jinan, Shandong
Keywords:Anticancer, apoptosis, drug design, Mcl-1, patent, selective inhibitor.
Abstract:Background: Myeloid cell leukemia-1 (Mcl-1) protein, as a critical pro-survival member
of the B-cell lymphoma 2 (Bcl-2) protein family, plays an important role in apoptosis, carcinogenesis
and resistance to chemotherapies. Hence, potently and selectively inhibiting Mcl-1 to induce
apoptosis has become a widely accepted anticancer strategy.
Objective: This review intends to provide a comprehensive overview of patents and primary literature,
published from 2017 to present, on small molecule Mcl-1 inhibitors with various scaffolds.
By analyzing the modes of compound-protein interactions, the similarities and differences of those
structures are discussed, which could provide guidance for future drug design.
Methods: The primary accesses for patent searching are SciFinder and Espacenet®. Besides the data
disclosed in patents, some results published in the follow-up research papers will be included in
this review.
Results: The review covers dozens of patents on Mcl-1 inhibitors in the past three years, and the
scaffolds of compounds are mainly divided into indole scaffolds and non-indole scaffolds. The
compounds described here are compared with the relevant inhibitors disclosed in previous patents,
and representative compounds, especially those launched in clinical trials, are emphasized in this review.
Conclusion: For most of the compounds in these patents, analyses of the binding affinity to Mcl-1
and studies in multiple cell lines were conducted, wherein some compounds were tested in preclinical
cancer models or were included in other biological studies. Some compounds showed promising
results and potential for further study.