Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

General Research Article

Mesoporous Bioactive Glass Scaffold Delivers Salvianolic Acid B to Promote Bone Regeneration in a Rat Cranial Defect Model

Author(s): Lin Wu, Zhanying Wei, Siyu He, Yunlong Bi, Yang Cao* and Wei Wang*

Volume 18, Issue 3, 2021

Published on: 16 September, 2020

Page: [323 - 333] Pages: 11

DOI: 10.2174/1567201817666200916091253

Price: $65

Abstract

Background: Mesoporous Bioactive Glass (MBG) has been widely studied because of its excellent histocompatibility and degradability. However, due to the lack of good osteoinductive activity, the pure MBG scaffold is not effective in repairing large-scale bone defects.

Objective: To observe the repair effect of MBG scaffolds delivering Salvianolic acid B (SB) on critical bone defects in rats.

Methods: In this study, MBG scaffolds were used as delivery vehicle. SB, a small molecular active drug with good osteogenic differentiation ability, was loaded into the MBG scaffolds at low, medium and high doses. The effect of SB released from the MBG scaffolds on osteogenic differentiation of rat Bone Marrow Mesenchymal Stem Cells (rBMSCs) was investigated using alkaline phosphatase staining, alizarin red staining and real-time quantitative polymerase chain reaction. Moreover, 8 weeks after implantation of the scaffolds, the bone regeneration was evaluated by micro- CT, sequential fluorescence labeling and histological staining analysis.

Results: The in vitro results showed that different doses of SB had similar release rate from scaffolds and could be released from scaffolds continuously. The middle dose (MBG/MSB) and high dose (MBG/HSB) groups significantly promoted the osteogenic differentiation of rBMSCs when compared with a low dose (MBG/LSB) group. Moreover, SB produced significant increases in newly formed bone of calvarial bone defects in rats.

Conclusion: It is concluded that the use of MBG scffolds delivering SB is an effective strategy for the treatment of bone defects.

Keywords: Mesoporous bioactive glass, Salvianolic acid B, osteogenic differentiation, bone regeneration, orthopedic, bone graft.

Graphical Abstract
[1]
Balogh, Z.J.; Reumann, M.K.; Gruen, R.L.; Mayer-Kuckuk, P.; Schuetz, M.A.; Harris, I.A.; Gabbe, B.J.; Bhandari, M. Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet, 2012, 380(9847), 1109-1119.
[http://dx.doi.org/10.1016/S0140-6736(12)60991-X] [PMID: 22998720]
[2]
Campana, V.; Milano, G.; Pagano, E.; Barba, M.; Cicione, C.; Salonna, G.; Lattanzi, W.; Logroscino, G. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J. Mater. Sci. Mater. Med., 2014, 25(10), 2445-2461.
[http://dx.doi.org/10.1007/s10856-014-5240-2] [PMID: 24865980]
[3]
Sen, M.K.; Miclau, T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury, 2007, 38(Suppl. 1), S75-S80.
[http://dx.doi.org/10.1016/j.injury.2007.02.012] [PMID: 17383488]
[4]
Eftekhari, H.; Jahandideh, A.; Asghari, A.; Akbarzadeh, A.; Hesaraki, S. Assessment of Polycaprolacton (PCL) nanocomposite scaffold compared with Hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artif. Cells Nanomed. Biotechnol., 2017, 45(5), 961-968.
[http://dx.doi.org/10.1080/21691401.2016.1198360] [PMID: 27356956]
[5]
Anita-Lett, J.; Sundareswari, M.; Ravichandran, K.; Latha, B.; Sagadevan, S. Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth. Mater. Sci. Eng. C, 2019, 96, 487-495.
[http://dx.doi.org/10.1016/j.msec.2018.11.082] [PMID: 30606558]
[6]
Lin, D.; Chai, Y.; Ma, Y.; Duan, B.; Yuan, Y.; Liu, C. Rapid initiation of guided bone regeneration driven by spatiotemporal delivery of IL-8 and BMP-2 from hierarchical MBG-based scaffold. Biomaterials, 2019, 196, 122-137.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.011] [PMID: 29449015]
[7]
Yan, X.; Yu, C.; Zhou, X.; Tang, J.; Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl., 2004, 43(44), 5980-5984.
[http://dx.doi.org/10.1002/anie.200460598] [PMID: 15547911]
[8]
Wang, W.; Liu, Y.; Yang, C.; Qi, X.; Li, S.; Liu, C.; Li, X. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int. J. Biol. Sci., 2019, 15(10), 2156-2169.
[http://dx.doi.org/10.7150/ijbs.35670] [PMID: 31592233]
[9]
Sui, B.; Zhong, G.; Sun, J. Evolution of a mesoporous bioactive glass scaffold implanted in rat femur evaluated by (45)Ca labeling, tracing, and histological analysis. ACS Appl. Mater. Interfaces, 2014, 6(5), 3528-3535.
[http://dx.doi.org/10.1021/am4056886] [PMID: 24444694]
[10]
Gerhardt, L.C.; Widdows, K.L.; Erol, M.M.; Burch, C.W.; Sanz-Herrera, J.A.; Ochoa, I.; Stämpfli, R.; Roqan, I.S.; Gabe, S.; Ansari, T.; Boccaccini, A.R. The pro-angiogenic properties of multi- functional bioactive glass composite scaffolds. Biomaterials, 2011, 32(17), 4096-4108.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.032] [PMID: 21411138]
[11]
Mao, L.; Xia, L.; Chang, J.; Liu, J.; Jiang, L.; Wu, C.; Fang, B. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater., 2017, 61, 217-232.
[http://dx.doi.org/10.1016/j.actbio.2017.08.015] [PMID: 28807800]
[12]
Qi, X.; Liu, Y.; Ding, Z.Y.; Cao, J.Q.; Huang, J.H.; Zhang, J.Y.; Jia, W.T.; Wang, J.; Liu, C.S.; Li, X.L. Synergistic effects of dimethyloxallyl glycine and recombinant human bone morphogenetic protein-2 on repair of critical-sized bone defects in rats. Sci. Rep., 2017, 7, 42820.
[http://dx.doi.org/10.1038/srep42820] [PMID: 28230059]
[13]
Zhang, Q.; Zhang, Y.; Chen, W.; Zhang, B.; Wang, S. Long-term controlled release of 125I-tagged BMP-2 by mesoporous bioactive glass with ordered nanopores. Exp. Ther. Med., 2013, 6(6), 1443-1448.
[http://dx.doi.org/10.3892/etm.2013.1323] [PMID: 24250724]
[14]
Wu, C.; Chang, J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Controlled Release Soc., 2014, 193, 282-295.
[15]
Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater., 2009, 8(6), 457-470.
[http://dx.doi.org/10.1038/nmat2441] [PMID: 19458646]
[16]
Gautschi, O.P.; Frey, S.P.; Zellweger, R. Bone morphogenetic proteins in clinical applications. ANZ J. Surg., 2007, 77(8), 626-631.
[http://dx.doi.org/10.1111/j.1445-2197.2007.04175.x] [PMID: 17635273]
[17]
Hao, D.; Danbin, W.; Maojuan, G.; Chun, S.; Bin, L.; Lin, Y.; Yingxin, S.; Guanwei, F.; Yefei, C.; Qing, G.; Xijuan, J. Ethanol extracts of danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent. Pharmacol. Res., 2019, 146, 104306.
[http://dx.doi.org/10.1016/j.phrs.2019.104306] [PMID: 31181336]
[18]
Zhou, L.; Zuo, Z.; Chow, M.S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol., 2005, 45(12), 1345-1359.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[19]
Orgah, J.O.; He, S.; Wang, Y.; Jiang, M.; Wang, Y.; Orgah, E.A.; Duan, Y.; Zhao, B.; Zhang, B.; Han, J.; Zhu, Y. Pharmacological potential of the combination of salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol. Res., 2020, 153, 104654.
[http://dx.doi.org/10.1016/j.phrs.2020.104654] [PMID: 31945473]
[20]
Chae, H.J.; Chae, S.W.; Yun, D.H.; Keum, K.S.; Yoo, S.K.; Kim, H.R. Prevention of bone loss in ovariectomized rats: the effect of salvia miltiorrhiza extracts. Immunopharmacol. Immunotoxicol., 2004, 26(1), 135-144.
[http://dx.doi.org/10.1081/IPH-120029951] [PMID: 15106738]
[21]
Cui, Y.; Bhandary, B.; Marahatta, A.; Lee, G.H.; Li, B.; Kim, D.S.; Chae, S.W.; Kim, H.R.; Chae, H.J. Characterization of salvia miltiorrhiza ethanol extract as an anti-osteoporotic agent. BMC Complement. Altern. Med., 2011, 11, 120.
[http://dx.doi.org/10.1186/1472-6882-11-120] [PMID: 22118263]
[22]
Xu, D.; Xu, L.; Zhou, C.; Lee, W.Y.; Wu, T.; Cui, L.; Li, G. Salvianolic acid B promotes osteogenesis of human mesenchymal stem cells through activating ERK signaling pathway. Int. J. Biochem. Cell Biol., 2014, 51, 1-9.
[http://dx.doi.org/10.1016/j.biocel.2014.03.005] [PMID: 24657587]
[23]
Li, X.; Shi, J.; Dong, X.; Zhang, L.; Zeng, H. A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. J. Biomed. Mater. Res. A, 2008, 84(1), 84-91.
[http://dx.doi.org/10.1002/jbm.a.31371] [PMID: 17600329]
[24]
Yan, Y.; Chen, H.; Zhang, H.; Guo, C.; Yang, K.; Chen, K.; Cheng, R.; Qian, N.; Sandler, N.; Zhang, Y.S.; Shen, H.; Qi, J.; Cui, W.; Deng, L. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191, 97-110.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.033] [PMID: 30415019]
[25]
Liu, W.; Li, J.; Cheng, M.; Wang, Q.; Yeung, K.W.K.; Chu, P.K.; Zhang, X. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv. Sci. (Weinheim, Baden-Wurttemberg, Germany), 2018, 5(10), 1800749.
[http://dx.doi.org/10.1002/advs.201800749]
[26]
Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27), 5474-5491.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.002] [PMID: 15860204]
[27]
Zhao, S.; Zhang, J.; Zhu, M.; Zhang, Y.; Liu, Z.; Tao, C.; Zhu, Y.; Zhang, C. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater., 2015, 12, 270-280.
[http://dx.doi.org/10.1016/j.actbio.2014.10.015] [PMID: 25449915]
[28]
Barabaschi, G.D.; Manoharan, V.; Li, Q.; Bertassoni, L.E. Engineering pre-vascularized scaffolds for bone regeneration. Adv. Exp. Med. Biol., 2015, 881, 79-94.
[http://dx.doi.org/10.1007/978-3-319-22345-2_5] [PMID: 26545745]
[29]
Mao, C.; Xiang, Y.; Liu, X.; Cui, Z.; Yang, X.; Li, Z.; Zhu, S.; Zheng, Y.; Yeung, K.W.K.; Wu, S. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano, 2018, 12(2), 1747-1759.
[http://dx.doi.org/10.1021/acsnano.7b08500] [PMID: 29376340]
[30]
Kang, M.H.; Lee, H.; Jang, T.S.; Seong, Y.J.; Kim, H.E.; Koh, Y.H.; Song, J.; Jung, H.D. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater., 2019, 84, 453-467.
[http://dx.doi.org/10.1016/j.actbio.2018.11.045] [PMID: 30500444]
[31]
Schumacher, M.; Reither, L.; Thomas, J.; Kampschulte, M.; Gbureck, U.; Lode, A.; Gelinsky, M. Calcium phosphate bone cement/mesoporous bioactive glass composites for controlled growth factor delivery. Biomater. Sci., 2017, 5(3), 578-588.
[http://dx.doi.org/10.1039/C6BM00903D] [PMID: 28154869]
[32]
Zhang, X.; Lin, X.; Liu, T.; Deng, L.; Huang, Y.; Liu, Y. Osteogenic Enhancement between icariin and bone morphogenetic protein 2: a potential osteogenic compound for bone tissue engineering. Front. Pharmacol., 2019, 10, 201.
[http://dx.doi.org/10.3389/fphar.2019.00201] [PMID: 30914948]
[33]
Lin, S.; Cui, L.; Chen, G.; Huang, J.; Yang, Y.; Zou, K.; Lai, Y.; Wang, X.; Zou, L.; Wu, T.; Cheng, J.C.Y.; Li, G.; Wei, B.; Lee, W.Y.W. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Biomaterials, 2019, 196, 109-121.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.004] [PMID: 29655516]
[34]
Jaiswal, R.K.; Jaiswal, N.; Bruder, S.P.; Mbalaviele, G.; Marshak, D.R.; Pittenger, M.F. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J. Biol. Chem., 2000, 275(13), 9645-9652.
[http://dx.doi.org/10.1074/jbc.275.13.9645] [PMID: 10734116]
[35]
Park, D.; Xiang, A.P.; Mao, F.F.; Zhang, L.; Di, C.G.; Liu, X.M.; Shao, Y.; Ma, B.F.; Lee, J.H.; Ha, K.S.; Walton, N.; Lahn, B.T. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells, 2010, 28(12), 2162-2171.
[http://dx.doi.org/10.1002/stem.541] [PMID: 20963821]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy