Astaxanthin Prevents Lung Injury Due to Hyperoxia and Inflammation

Author(s): Hasan Akduman*, Cüneyt Tayman, Ufuk Çakir, Esra Çakir, Dilek Dilli, Tuğba Taşkin Türkmenoğlu, Ataman Gönel

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 24 , Issue 8 , 2021

Become EABM
Become Reviewer
Call for Editor


Background/Aim: This study aimed to ascertain the effects of astaxanthin on the lungs of rat pups with bronchopulmonary dysplasia (BPD) induced by hyperoxia and lipopolysaccharide (LPS).

Materials and Methods: Forty-two newborn Wistar rats, born to spontaneous pregnant rats, were divided into three groups: Hyperoxia (95% O2) + lipopolysaccharide (LPS) group, hyperoxia + LPS + astaxhantin group, and control: no treatment group (21% O2). Pups in the hyperoxia + LPS + astaxanthin group were given 100 mg/kg/day oral astaxanthin from the first day to the fifth day. Histopathologic and biochemical evaluations, including glutathione (GSH), total anti-oxidant status (TAS), total oxidant status (TOS), lipid hydroperoxide (LPO), 8-hydroxydeoxyguanosine (8-OHdG), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), total thiol, tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and caspase-3 activities, were performed.

Results: Better survival rates and weight gain were demonstrated in the hyperoxia + LPS + astaxanthin group (p <0.001). In the histopathologic evaluation, the severity of lung damage was significantly reduced in the hyperoxia+LPS+astaxanthin group, as well as decreased apoptosis (ELİSA for caspase-3) (p <0.001). The biochemical analyses of lung tissues showed that TAS, GSH, and Total thiol levels were significantly higher in the astaxanthin treated group compared to the hyperoxia + LPS group (p <0.05) while TOS, AOPP, LPO, 8-OHdG, MPO levels were significantly lower (p <0.001). In addition, unlike the hyperoxia + LPS group, TNF-α and IL-1β levels in lung tissue were significantly lower in the astaxanthin-treated group (p <0.001).

Conclusion: Astaxanthin was shown to reduce lung damage caused by inflammation and hyperoxia with its anti-inflammatory, anti-oxidant, anti-apoptotic properties, and to protect the lung from severe destruction.

Keywords: Astaxanthin, bronchopulmonary dysplasia, rat, preterm birth, supplemental oxygen, respiratory morbidity.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 14 September, 2020
Page: [1243 - 1250]
Pages: 8
DOI: 10.2174/1386207323666200915092012
Price: $65

Article Metrics

PDF: 35