Is Immune Response Relevant in Interstitial Lung Disease?

Author(s): Manzoor M. Khan*

Journal Name: Current Immunology Reviews (Discontinued)

Volume 16 , Issue 1 , 2020


Graphical Abstract:


Abstract:

Interstitial lung disease, a term for a group of disorders, causes lung fibrosis, is mostly refractory to treatments and has a high death rate. After diagnosis the survival is up to 3 years but in some cases the patients live much longer. It involves a heterogenous group of lung diseases that exhibit progressive and irreversible destruction of the lung due to the formation of scars. This results in lung malfunction, disruption of gas exchange, and eventual death because of respiratory failure. The etiology of lung fibrosis is mostly unknown with a few exceptions. The major characteristics of the disease are comprised of injury of epithelial type II cells, increased apoptosis, chronic inflammation, monocytic and lymphocytic infiltration, accumulation of myofibroblasts, and inability to repair damaged tissue properly. These events result in abnormal collagen deposition and scarring. The inflammation process is mild, and the disease is primarily fibrotic driven. Immunosuppressants do not treat the disease but the evidence is evolving that both innate and acquired immune responses a well as the cytokines contribute to at least early progression of the disease. Furthermore, mediators of inflammation including cytokines are involved throughout the process of lung fibrosis. The diverse clinical outcome of the disease is due to different pattern of inflammatory markers. Nonetheless, the development of novel therapeutic strategies requires better understanding of the role of the immune response. This review highlights the role of the immune response in interstitial lung disease and considers the therapeutic strategies based on these observations. For this review several literature data sources were used to assess the role of the immune response in interstitial lung disease and to evaluate the possible therapeutic strategies for the disease.

Keywords: Interstitial lung disease, macrophages, dendritic cells, neutrophils, CD4+ cells, CD8+ cells, B cells, innate lymphoid cells, TH1/TH2/TH17 cells, cytokines, chemokines, IL-1, IL-25, IL-33, STAT-3.

[1]
Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 2018; 378(19): 1811-23.
[http://dx.doi.org/10.1056/NEJMra1705751] [PMID: 29742380]
[2]
Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Res 2018; 19(1): 32.
[http://dx.doi.org/10.1186/s12931-018-0730-2] [PMID: 29471816]
[3]
Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med 2011; 208(7): 1339-50.
[http://dx.doi.org/10.1084/jem.20110551] [PMID: 21727191]
[4]
Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 2015; 46(3): 795-806.
[http://dx.doi.org/10.1183/09031936.00185114] [PMID: 25976683]
[5]
Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2011; 183(4): 431-40.
[http://dx.doi.org/10.1164/rccm.201006-0894CI] [PMID: 20935110]
[6]
Raghu G, Chen SY, Hou Q, Yeh WS, Collard HR. Incidence and prevalence of idiopathic pulmonary fibrosis in US adults 18-64 years old. Eur Respir J 2016; 48(1): 179-86.
[http://dx.doi.org/10.1183/13993003.01653-2015] [PMID: 27126689]
[7]
Raghu G, Chen SY, Yeh WS, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-11. Lancet Respir Med 2014; 2(7): 566-72.
[http://dx.doi.org/10.1016/S2213-2600(14)70101-8] [PMID: 24875841]
[8]
Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med 2001; 345(7): 517-25.
[http://dx.doi.org/10.1056/NEJMra003200] [PMID: 11519507]
[9]
American-Thoracic-Society. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 2000; 161(2 Pt 1): 646-64.
[PMID: 10673212]
[10]
Huang Y, Ma SF, Espindola MS, et al. COMET-IPF Investigators. Microbes are associated with host innate immune response in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2017; 196(2): 208-19.
[http://dx.doi.org/10.1164/rccm.201607-1525OC] [PMID: 28157391]
[11]
Molyneaux PL, Willis-Owen SAG, Cox MJ, et al. Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2017; 195(12): 1640-50.
[http://dx.doi.org/10.1164/rccm.201607-1408OC] [PMID: 28085486]
[12]
Baumgartner KB, Samet JM, Stidley CA, Colby TV, Waldron JA. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997; 155(1): 242-8.
[http://dx.doi.org/10.1164/ajrccm.155.1.9001319] [PMID: 9001319]
[13]
Baumgartner KB, Samet JM, Coultas DB, et al. Collaborating Centers. Occupational and environmental risk factors for idiopathic pulmonary fibrosis: a multicenter case-control study. Am J Epidemiol 2000; 152(4): 307-15.
[http://dx.doi.org/10.1093/aje/152.4.307] [PMID: 10968375]
[14]
Lee SH, Kim DS, Kim YW, et al. Association between occupational dust exposure and prognosis of idiopathic pulmonary fibrosis: a Korean national survey. Chest 2015; 147(2): 465-74.
[http://dx.doi.org/10.1378/chest.14-0994] [PMID: 25275573]
[15]
Hoyne GF, Elliott H, Mutsaers SE, Prêle CM. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol Cell Biol 2017; 95(7): 577-83.
[http://dx.doi.org/10.1038/icb.2017.22] [PMID: 28356570]
[16]
Abid SH, Malhotra V, Perry MC. Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 2001; 13(4): 242-8.
[http://dx.doi.org/10.1097/00001622-200107000-00006] [PMID: 11429481]
[17]
Wootton SC, Kim DS, Kondoh Y, et al. Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2011; 183(12): 1698-702.
[http://dx.doi.org/10.1164/rccm.201010-1752OC] [PMID: 21471095]
[18]
Moore BB, Moore TA. Viruses in idiopathic pulmonary fibrosis, etiology and exacerbation. Ann Am Thorac Soc 2015; 12(Suppl. 2): S186-92.
[PMID: 26595738]
[19]
Arase Y, Suzuki F, Suzuki Y, et al. Hepatitis C virus enhances incidence of idiopathic pulmonary fibrosis. World J Gastroenterol 2008; 14(38): 5880-6.
[http://dx.doi.org/10.3748/wjg.14.5880] [PMID: 18855988]
[20]
Manika K, Alexiou-Daniel S, Papakosta D, et al. Epstein-Barr virus DNA in bronchoalveolar lavage fluid from patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 2007; 24(2): 134-40.
[PMID: 18496984]
[21]
Kropski JA, Pritchett JM, Zoz DF, et al. Extensive phenotyping of individuals at risk for familial interstitial pneumonia reveals clues to the pathogenesis of interstitial lung disease. Am J Respir Crit Care Med 2015; 191(4): 417-26.
[http://dx.doi.org/10.1164/rccm.201406-1162OC] [PMID: 25389906]
[22]
Noth I, Zhang Y, Ma SF, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir Med 2013; 1(4): 309-17.
[http://dx.doi.org/10.1016/S2213-2600(13)70045-6] [PMID: 24429156]
[23]
Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014; 189(10): 1161-72.
[http://dx.doi.org/10.1164/rccm.201312-2221PP] [PMID: 24641682]
[24]
Alder JK, Chen JJ, Lancaster L, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA 2008; 105(35): 13051-6.
[http://dx.doi.org/10.1073/pnas.0804280105] [PMID: 18753630]
[25]
Seibold MA, Wise AL, Speer MC, et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N Engl J Med 2011; 364(16): 1503-12.
[http://dx.doi.org/10.1056/NEJMoa1013660] [PMID: 21506741]
[26]
Nakano Y, Yang IV, Walts AD, et al. MUC5B promoter variant rs35705950 affects MUC5B expression in the distal airways in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2016; 193(4): 464-6.
[http://dx.doi.org/10.1164/rccm.201509-1872LE] [PMID: 26871673]
[27]
Desai O, Winkler J, Minasyan M, Herzog EL. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med (Lausanne) 2018; 5: 43.
[http://dx.doi.org/10.3389/fmed.2018.00043] [PMID: 29616220]
[28]
Byrne AJ, Maher TM, Lloyd CM. Pulmonary macrophages: A new therapeutic pathway in fibrosing lung disease. Trends Mol Med 2016; 22(4): 303-16.
[http://dx.doi.org/10.1016/j.molmed.2016.02.004] [PMID: 26979628]
[29]
Zemans RL, Henson PM, Henson JE, Janssen WJ. Conceptual approaches to lung injury and repair. Ann Am Thorac Soc 2015; 12(Suppl. 1): S9-S15.
[http://dx.doi.org/10.1513/AnnalsATS.201408-402MG] [PMID: 25830855]
[30]
Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res 2009; 2: 1-11.
[PMID: 22096348]
[31]
Balestro E, Calabrese F, Turato G, et al. Immune Inflammation and Disease Progression in Idiopathic Pulmonary Fibrosis. PLoS One 2016; 11(5)e0154516
[http://dx.doi.org/10.1371/journal.pone.0154516] [PMID: 27159038]
[32]
Boon K, Bailey NW, Yang J, et al. Molecular phenotypes distinguish patients with relatively stable from progressive idiopathic pulmonary fibrosis (IPF). PLoS One 2009; 4(4)e5134
[http://dx.doi.org/10.1371/journal.pone.0005134] [PMID: 19347046]
[33]
Bringardner BD, Baran CP, Eubank TD, Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 2008; 10: 287-301.
[http://dx.doi.org/10.1089/ars.2007.1897]
[34]
Marinari S, De Iuliis V, Dadorante V, et al. Cytokine modulation in patients with idiopathic pulmonary fibrosis undergoing treatment with steroids, immunosuppressants, and IFN-γ 1b. J Biol Regul Homeost Agents 2017; 31(1): 59-69.
[PMID: 28337871]
[35]
Xu L, Bian W, Gu XH, Shen C. Differing Expression of Cytokines and Tumor Markers in Combined Pulmonary Fibrosis and Emphysema Compared to Emphysema and Pulmonary Fibrosis. COPD 2017; 14(2): 245-50.
[http://dx.doi.org/10.1080/15412555.2017.1278753] [PMID: 28128990]
[36]
Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331(19): 1286-92.
[http://dx.doi.org/10.1056/NEJM199411103311907] [PMID: 7935686]
[37]
Blackwell TS, Tager AM, Borok Z, et al. Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report. Am J Respir Crit Care Med 2014; 189(2): 214-22.
[http://dx.doi.org/10.1164/rccm.201306-1141WS] [PMID: 24160862]
[38]
Wick G, Backovic A, Rabensteiner E, Plank N, Schwentner C, Sgonc R. The immunology of fibrosis: innate and adaptive responses. Trends Immunol 2010; 31(3): 110-9.
[http://dx.doi.org/10.1016/j.it.2009.12.001] [PMID: 20106721]
[39]
Misharin AV, Morales-Nebreda L, Reyfman PA, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med 2017; 214(8): 2387-404.
[http://dx.doi.org/10.1084/jem.20162152] [PMID: 28694385]
[40]
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016; 44(3): 450-62.
[http://dx.doi.org/10.1016/j.immuni.2016.02.015] [PMID: 26982353]
[41]
Gordon S, Plüddemann A, Martinez Estrada F. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 2014; 262(1): 36-55.
[http://dx.doi.org/10.1111/imr.12223] [PMID: 25319326]
[42]
Schupp JC, Binder H, Jäger B, et al. Macrophage activation in acute exacerbation of idiopathic pulmonary fibrosis. PLoS One 2015; 10(1)e0116775
[http://dx.doi.org/10.1371/journal.pone.0116775] [PMID: 25590613]
[43]
Oishi Y, Manabe I. Macrophages in inflammation, repair and regeneration. Int Immunol 2018; 30(11): 511-28.
[PMID: 30165385]
[44]
Ellson CD, Dunmore R, Hogaboam CM, Sleeman MA, Murray LA. Danger-associated molecular patterns and danger signals in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2014; 51(2): 163-8.
[PMID: 24749648]
[45]
Young LR, Gulleman PM, Short CW, et al. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 2016; 1(17): e88947.
[http://dx.doi.org/10.1172/jci.insight.88947] [PMID: 27777976]
[46]
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5: 491.
[http://dx.doi.org/10.3389/fimmu.2014.00491] [PMID: 25339958]
[47]
Rohani MG, McMahan RS, Razumova MV, et al. MMP-10 regulates collenolytic activity of alternatively activity resident macrophages. J Invest Dermatol 2015; 135(10): 2377-84.
[http://dx.doi.org/10.1038/jid.2015.167] [PMID: 25927164]
[48]
Peng X, Moore M, Mathur A, et al. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. FASEB J 2016; 30(12): 4056-70.
[http://dx.doi.org/10.1096/fj.201600373R] [PMID: 27609773]
[49]
Xaubet A, Agustí C, Luburich P, et al. Interleukin-8 expression in bronchoalveolar lavage cells in the evaluation of alveolitis in idiopathic pulmonary fibrosis. Respir Med 1998; 92(2): 338-44.
[http://dx.doi.org/10.1016/S0954-6111(98)90118-4] [PMID: 9616535]
[50]
Gregory AD, Kliment CR, Metz HE, et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 2015; 98(2): 143-52.
[http://dx.doi.org/10.1189/jlb.3HI1014-493R] [PMID: 25743626]
[51]
Takemasa A, Ishii Y, Fukuda T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur Respir J 2012; 40(6): 1475-82.
[http://dx.doi.org/10.1183/09031936.00127011] [PMID: 22441751]
[52]
Keir GJ, Maher TM, Ming D, et al. Rituximab in severe, treatment-refractory interstitial lung disease. Respirology 2014; 19(3): 353-9.
[http://dx.doi.org/10.1111/resp.12214] [PMID: 24286447]
[53]
Donahoe M, Valentine VG, Chien N, et al. Autoantibody-targeted treatments for acute exacerbations of idiopathic pulmonary fibrosis. PLoS One 2015; 10(6): e0127771.
[http://dx.doi.org/10.1371/journal.pone.0127771] [PMID: 26083430]
[54]
Arras M, Louahed J, Simoen V, et al. B lymphocytes are critical for lung fibrosis control and prostaglandin E2 regulation in IL-9 transgenic mice. Am J Respir Cell Mol Biol 2006; 34(5): 573-80.
[http://dx.doi.org/10.1165/rcmb.2004-0383OC] [PMID: 16424385]
[55]
Kotsianidis I, Nakou E, Bouchliou I, et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179(12): 1121-30.
[http://dx.doi.org/10.1164/rccm.200812-1936OC] [PMID: 19342412]
[56]
Galati D, De Martino M, Trotta A, et al. Peripheral depletion of NK cells and imbalance of the Treg/Th17 axis in idiopathic pulmonary fibrosis patients. Cytokine 2014; 66(2): 119-26.
[http://dx.doi.org/10.1016/j.cyto.2013.12.003] [PMID: 24418172]
[57]
Boveda-Ruiz D, D’Alessandro-Gabazza CN, Toda M, et al. Differential role of regulatory T cells in early and late stages of pulmonary fibrosis. Immunobiology 2013; 218(2): 245-54.
[http://dx.doi.org/10.1016/j.imbio.2012.05.020] [PMID: 22739236]
[58]
Todd NW, Scheraga RG, Galvin JR, et al. Lymphocyte aggregates persist and accumulate in the lungs of patients with idiopathic pulmonary fibrosis. J Inflamm Res 2013; 6: 63-70.
[http://dx.doi.org/10.2147/JIR.S40673] [PMID: 23576879]
[59]
Nuovo GJ, Hagood JS, Magro CM, et al. The distribution of immunomodulatory cells in the lungs of patients with idiopathic pulmonary fibrosis. Mod Pathol 2012; 25(3): 416-33.
[http://dx.doi.org/10.1038/modpathol.2011.166] [PMID: 22037258]
[60]
Herazo-Maya JD, Noth I, Duncan SR, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med 2013; 5(205): 205ra136.
[http://dx.doi.org/10.1126/scitranslmed.3005964] [PMID: 24089408]
[61]
Parker JM, Glaspole IN, Lancaster LH, et al. A phase 2 randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2018; 197(1): 94-103.
[http://dx.doi.org/10.1164/rccm.201704-0784OC] [PMID: 28787186]
[62]
Lee JU, Chang HS, Lee HJ, Jung CA, et al. Upregulation of interleukin-33 and thymic stromal lymphopoietin levels in the lungs of idiopathic pulmonary fibrosis. BMC Pulmo Med 2017; 17: 39-52.
[http://dx.doi.org/10.1186/s12890-017-0380-z]
[63]
Han M, Rajput C, Hong JY, et al. The Innate Cytokines IL-25, IL-33, and TSLP cooperate in the induction of Type 2 Innate Lymphoid Cell expansion and mucous metaplasia in Rhinovirus-Infected immature mice. J Immunol 2017; 199(4): 1308-18.
[http://dx.doi.org/10.4049/jimmunol.1700216] [PMID: 28701507]
[64]
Kotsiou OS, Gourgoulianis KI, Zarogiannis SG. IL33/ST2 Axis in organic fibrosis. Front Immunol 2018; 9: 2432.
[http://dx.doi.org/10.3389/fimmu.2018.02432] [PMID: 30405626]
[65]
Fanny M, Nascimento M, Baron L, et al. The IL-33 receptor ST2 regulates pulmonary inflammation and fibrosis to Bleomycin. Front Immunol 2018; 9: 1476.
[http://dx.doi.org/10.3389/fimmu.2018.01476] [PMID: 29988569]
[66]
Li D, Guabiraba R, Besnard AG, et al. IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 2014; 134(6): 1422-1432.e11.
[http://dx.doi.org/10.1016/j.jaci.2014.05.011] [PMID: 24985397]
[67]
Fernando MR, Reyes JL, Iannuzzi J, Leung G, McKay DM. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages. PLoS One 2014; 9(4): e94188.
[http://dx.doi.org/10.1371/journal.pone.0094188] [PMID: 24736635]
[68]
Shieh J-M, Tseng H-Y, Jung F, Yang S-H, Lin J-C. Elevation of IL-6 and IL-33 levels in serum associated with lung fibrosis and skeletal muscle wasting in a bleomycin-induced lung injury mouse model. Mediators Inflamm 2019; 2019: 7947596.
[http://dx.doi.org/10.1155/2019/7947596] [PMID: 31049028]
[69]
Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med 2010; 207(3): 535-52.
[http://dx.doi.org/10.1084/jem.20092121] [PMID: 20176803]
[70]
Gasse P, Riteau N, Vacher R, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One 2011; 6(8): e23185.
[http://dx.doi.org/10.1371/journal.pone.0023185] [PMID: 21858022]
[71]
Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP. γδ T cells protect against lung fibrosis via IL-22. J Exp Med 2010; 207(10): 2239-53.
[http://dx.doi.org/10.1084/jem.20100061] [PMID: 20855496]
[72]
Dong Z, Lu X, Yang Y, et al. IL-27 alleviates the bleomycin-induced pulmonary fibrosis by regulating the Th17 cell differentiation. BMC Pulm Med 2015; 15: 13.
[http://dx.doi.org/10.1186/s12890-015-0012-4] [PMID: 25888222]
[73]
Celada LI, Kropski JA, Herazo-Maya JD, et al. PD-1 up regulation of CD4+ T cells promotes pulmonary fibrosis through STAT-3-mediated IL-17A and TGFβ1 production. Sci Transl Med 2018; 10(46): caar8356.
[74]
Luzina IG, Todd NW, Iacono AT, Atamas SP. Roles of T lymphocytes in pulmonary fibrosis. J Leukoc Biol 2008; 83(2): 237-44.
[http://dx.doi.org/10.1189/jlb.0707504] [PMID: 17962367]
[75]
Prior C, Haslam PL. In vivo levels and in vitro production of interferon-gamma in fibrosing interstitial lung diseases. Clin Exp Immunol 1992; 88(2): 280-7.
[http://dx.doi.org/10.1111/j.1365-2249.1992.tb03074.x] [PMID: 1572093]
[76]
Xu J, Mora AL, LaVoy J, Brigham KL, Rojas M. Increased bleomycin-induced lung injury in mice deficient in the transcription factor T-bet. Am J Physiol Lung Cell Mol Physiol 2006; 291(4): L658-67.
[http://dx.doi.org/10.1152/ajplung.00006.2006] [PMID: 16648243]
[77]
Raghu G, Brown KK, Bradford WZ, et al. Idiopathic Pulmonary Fibrosis Study Group. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med 2004; 350(2): 125-33.
[http://dx.doi.org/10.1056/NEJMoa030511] [PMID: 14711911]
[78]
Apter AJ. The tralokinumab story: Nothing is ever simple. J Allergy Clin Immunol 2019; 143(4): 1336-8.
[http://dx.doi.org/10.1016/j.jaci.2018.12.1005] [PMID: 30659852]
[79]
Upparahalli Venkateshaiah S, Niranjan R, Manohar M, et al. Attenuation of allergen-, IL-13-, and TGF-α-induced lung fibrosis after treatment of rIL-15 in mine. Am J Respir Cell Mol Biol 2019; 61(1): 97-109.
[http://dx.doi.org/10.1165/rcmb.2018-0254OC] [PMID: 30702923]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 1
Year: 2020
Page: [18 - 27]
Pages: 10
DOI: 10.2174/1573395516999200914143054
Price: $65

Article Metrics

PDF: 426