Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Strategies of Drug Delivery for Deep Fungal Infection: A Review

Author(s): Zhongyi Ma, Xiaoyou Wang and Chong Li*

Volume 8, Issue 5, 2020

Page: [372 - 390] Pages: 19

DOI: 10.2174/2211738508666200910101923

Price: $65

Abstract

The deep fungal infection poses serious threats to human health, mainly due to the increase in the number of immunocompromised individuals. Current first-line antifungal agents such as Amphotericin B, Fluconazole and Itraconazole, may decrease the severity of fungal infection to some extent, but the poor drug bioavailability, drug toxicity and poor water solubility seriously restrict their clinical utility. This review focuses on the study of drug delivery strategies for the treatment of deep fungal infections. We summarize the drug delivery strategies recently reported for the treatment of deep fungal infection, and explain each part with research examples. We discuss the use of pharmaceutical approaches to improve the physicochemical properties of the antifungal drugs to provide a basis for the clinical application of antifungal drugs. We then highlight the strategies for targeting drug delivery to the infection sites of fungi and fungal surface moieties, which have the potential to get developed as clinically relevant targeted therapies against deep fungal infections. It is worth noting that the current research on fungal infections still lags behind the research on other pathogens, and the drug delivery strategy for the treatment of deep fungal infections is far from meeting the treatment needs. Therefore, we envision the potential strategies inspired by the treatment of diseases with referential pathology or pathophysiology, further enriching the delivery of antifungal agents, providing references for basic research of fungal infections.

Lay Summary: The deep fungal infections pose serious threats to the health of immunodeficiency patients. It is worth noting that the current research on fungi is still lagging behind that on other pathogens. The drug delivery strategies for the treatment of deep fungal infections are far from meeting the treatment needs. We summarize the recently reported drug delivery strategies for treating deep fungal infection, and envision the potential strategies to further enrich the delivery of antifungal agents.

Keywords: Antifungal agents, conditionally pathogenic fungi, deep fungal infection, drug delivery strategies, fungal infection microenvironment, targeted delivery systems.

Graphical Abstract
[1]
Armstrong-James D, Meintjes G, Brown GD. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 2014; 22(3): 120-7.
[http://dx.doi.org/10.1016/j.tim.2014.01.001 ] [PMID: 24530175]
[2]
Kontoyiannis DP, Rubin RH. Infection in the organ transplant recipient. An overview. Infect Dis Clin North Am 1995; 9(4): 811-22.
[PMID: 8747767]
[3]
Samonis G, Bafaloukos D. Fungal infections in cancer patients: an escalating problem. In Vivo 1992; 6(2): 183-93.
[PMID: 1525339]
[4]
Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi (Basel) 2017; 3(4): 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[5]
Armstrong-James D, Bicanic T, Brown GD, Hoving JC, Meintjes G, Nielsen K. Working group from the EMBO workshop on AIDS-related mycoses. Aids-related mycoses: current progress in the field and future priorities. Trends Microbiol 2017; 25(6): 428-30.
[http://dx.doi.org/10.1016/j.tim.2017.02.013] [PMID: 28454846]
[6]
Böhme A, Ruhnke M, Buchheidt D, et al. Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Treatment of invasive fungal infections in cancer patients--recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 2009; 88(2): 97-110.
[http://dx.doi.org/10.1007/s00277-008-0622-5] [PMID: 18853161]
[7]
Nucci M, Schechter M, Spector N, et al. Antibiotic regimen as an independent risk factor for disseminated fungal infections in neutropenic patients in Brazil. Trans R Soc Trop Med Hyg 1995; 89(1): 107-10.
[http://dx.doi.org/10.1016/0035-9203(95)90677-0] [PMID: 7747292]
[8]
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 2012; 36(2): 288-305.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00278.x] [PMID: 21569057]
[9]
Latgé JP, Chamilos G. Aspergillus fumigatus and Aspergillosis in 2019. Clin Microbiol Rev 2019; 33(1): e00140-18.
[http://dx.doi.org/10.1128/CMR.00140-18 ] [PMID: 31722890]
[10]
Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am 2016; 30(1): 179-206.
[http://dx.doi.org/10.1016/j.idc.2015.10.006 ] [PMID: 26897067]
[11]
Pfüller R, Gräser Y, Erhard M, Groenewald M. A novel flucytosine-resistant yeast species, Candida pseudoaaseri, causes disease in a cancer patient. J Clin Microbiol 2011; 49(12): 4195-202.
[http://dx.doi.org/10.1128/JCM.05090-11 ] [PMID: 21976765]
[12]
Sobel JD. Vulvovaginal candidosis. Lancet 2007; 369(9577): 1961-71.
[http://dx.doi.org/10.1016/S0140-6736(07)60917-9] [PMID: 17560449]
[13]
Segal BH, Romani LR. Immunotherapy. In: Latgé JP, Steinbach WJ, eds. Aspergillus fumigatus and aspergillosis. Washington, DC: ASM Press 2009.
[14]
Garcia-Rubio R, Cuenca-Estrella M, Mellado E. Triazole resistance in Aspergillus species: an emerging problem. Drugs 2017; 77(6): 599-613.
[http://dx.doi.org/10.1007/s40265-017-0714-4] [PMID: 28236169]
[15]
Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of Cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009; 23(4): 525-30.
[http://dx.doi.org/10.1097/QAD.0b013e328322ffac] [PMID: 19182676]
[16]
Beardsley J, Sorrell TC, Chen SC. Central nervous system cryptococcal infections in non-HIV infected patients. J Fungi (Basel) 2019; 5(3): 71.
[http://dx.doi.org/10.3390/jof5030071] [PMID: 31382367]
[17]
Vanden Bossche H, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol Ther 1995; 67(1): 79-100.
[http://dx.doi.org/10.1016/0163-7258(95)00011-5] [PMID: 7494862]
[18]
Denning DW. Echinocandins: a new class of antifungal. J Antimicrob Chemother 2002; 49(6): 889-91.
[http://dx.doi.org/10.1093/jac/dkf045 ] [PMID: 12039879]
[19]
Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 2013; 68(11): 2435-44.
[http://dx.doi.org/10.1093/jac/dkt221 ] [PMID: 23788479]
[20]
Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science 2012; 336(6082): 647.
[http://dx.doi.org/10.1126/science.1222236 ] [PMID: 22582229]
[21]
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med 2012; 4(165)165rv13
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[22]
Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci 2001; 90(6): 667-80.
[http://dx.doi.org/10.1002/jps.1023] [PMID: 11357170]
[23]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[24]
Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 2013; 73(9): 919-34.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[25]
Adler-Moore J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother 2002; 49(Suppl. 1): 21-30.
[http://dx.doi.org/10.1093/jac/49.suppl_1.21] [PMID: 11801577]
[26]
Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 1998; 38(7): 583-92.
[http://dx.doi.org/10.1002/j.1552-4604.1998.tb04464.x] [PMID: 9702842]
[27]
van Etten EW, ten Kate MT, Stearne LE, Bakker-Woudenberg IA. Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice. Antimicrob Agents Chemother 1995; 39(9): 1954-8.
[http://dx.doi.org/10.1128/AAC.39.9.1954 ] [PMID: 8540697]
[28]
Lestner J, Hope WW. Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin Drug Metab Toxicol 2013; 9(7): 911-26.
[http://dx.doi.org/10.1517/17425255.2013.794785] [PMID: 23641752]
[29]
Wang J, Huang G. Preparation of itraconazole-loaded liposomes coated by carboxymethyl chitosan and its pharmacokinetics and tissue distribution. Drug Deliv 2011; 18(8): 631-8.
[PMID: 22111976]
[30]
Grant SM, Clissold SP. Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 1990; 39(6): 877-916.
[http://dx.doi.org/10.2165/00003495-199039060-00006] [PMID: 2196167]
[31]
Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol 2010; 88(8): 901-4.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01584.x] [PMID: 19681761]
[32]
Fares AR, ElMeshad AN, Kassem MAA. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv 2018; 25(1): 132-42.
[http://dx.doi.org/10.1080/10717544.2017.1419512] [PMID: 29275642]
[33]
Yu BG, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release 1998; 53(1-3): 131-6.
[http://dx.doi.org/10.1016/S0168-3659(97)00245-9] [PMID: 9741920]
[34]
Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-asparta-mide)-acyl conjugate micelles: effects of acyl chain length. J Control Release 2003; 87(1-3): 23-32.
[http://dx.doi.org/10.1016/S0168-3659(02)00347-4] [PMID: 12618020]
[35]
Lavasanifar A, Samuel J, Sattari S, Kwon GS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res 2002; 19(4): 418-22.
[http://dx.doi.org/10.1023/A:1015127225021] [PMID: 12033373]
[36]
Lavasanifar A, Samuel J, Kwon GS. Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method: effect on the solubilization and haemolytic activity of amphotericin B. J Control Release 2001; 77(1-2): 155-60.
[http://dx.doi.org/10.1016/S0168-3659(01)00477-1] [PMID: 11689268]
[37]
Lavasanifar A, Samuel J, Kwon GS. The effect of fatty acid substitution on the in vitro release of amphotericin B from micelles composed of poly(ethylene oxide)-block-poly(N-hexyl stearate-L-aspartamide). J Control Release 2002; 79(1-3): 165-72.
[http://dx.doi.org/10.1016/S0168-3659(01)00537-5] [PMID: 11853928]
[38]
Li S, Wei W, Jia W, et al. Itraconazole-loaded micelles based on linear-dendritic poly (ethylene glycol)-b-poly (ε-caprolactone). J Biomater Sci Polym Ed 2018; 29(18): 2299-311.
[http://dx.doi.org/10.1080/09205063.2018.1544457] [PMID: 30485754]
[39]
Yi Y, Yoon HJ, Kim BO, et al. A mixed polymeric micellar formulation of itraconazole: characteristics, toxicity and pharmacokinetics. J Control Release 2007; 117(1): 59-67.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.001 ] [PMID: 17097755]
[40]
Van de Ven H, Paulussen C, Feijens PB, et al. PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to fungizone and AmBisome. J Control Release 2012; 161(3): 795-803.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.037 ] [PMID: 22641062]
[41]
Nahar M, Mishra D, Dubey V, Jain NK. Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine (Lond) 2008; 4(3): 252-61.
[http://dx.doi.org/10.1016/j.nano.2008.03.007] [PMID: 18502187]
[42]
Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm 2007; 329(1-2): 142-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.013] [PMID: 17000065]
[43]
Wang Y, Song Y, Zhu G, et al. Highly biocompatible BSA-MnO2, nanoparticles as an efficient near-infrared photothermal agent for cancer therapy. Chin Chem Lett 2017; 29(11): 1685-8.
[44]
Zhang Y, Addison O, Yu F, Troconis BCR, Scully JR, Davenport AJ. Time-dependent enhanced corrosion of Ti6Al4V in the presence of H2O2 and albumin. Sci Rep 2018; 8(1): 3185.
[http://dx.doi.org/10.1038/s41598-018-21332-x ] [PMID: 29453366]
[45]
Chen W, Gu B, Wang H, Pan J, Lu W, Hou H. Development and evaluation of novel itraconazole-loaded intravenous nanoparticles. Int J Pharm 2008; 362(1-2): 133-40.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.039] [PMID: 18585448]
[46]
Casa DM, Karam TK, Alves Ade C, Zgoda AA, Khalil NM, Mainardes RM. Bovine serum albumin nanoparticles containing amphotericin B: characterization, cytotoxicity and in vitro antifungal evaluation. J Nanosci Nanotechnol 2015; 15(12): 10183-8.
[http://dx.doi.org/10.1166/jnn.2015.11694 ] [PMID: 26682465]
[47]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0 ] [PMID: 21174180]
[48]
Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci 2012; 47(1): 139-51.
[http://dx.doi.org/10.1016/j.ejps.2012.05.010 ] [PMID: 22664358]
[49]
Campos JR, Severino P, Santini A, et al. Solid lipid nanoparticles (SLN). In: Shegokar R, ed. Nanopharmaceuticals. Netherlands: Elsevier 2020; pp. 1-15.
[50]
Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol 2014; 174(4): 1309-30.
[http://dx.doi.org/10.1007/s12010-014-1084-y] [PMID: 25106894]
[51]
Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm 2019; 45(4): 560-7.
[http://dx.doi.org/10.1080/03639045.2019.1569023] [PMID: 30632399]
[52]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[53]
Tripathi P, Verma A, Dwivedi P, et al. Formulation and characterization of amphotericin B loaded nanostructured lipid carriers using microfluidizer. J Biomater Tissue Eng 2014; 4(3): 194-7.
[http://dx.doi.org/10.1166/jbt.2014.1159]
[54]
Lim WM, Rajinikanth PS, Mallikarjun C, Kang YB. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. Int J Nanomedicine 2014; 9: 2117-26.
[http://dx.doi.org/10.2147/IJN.S57565 ] [PMID: 24833900]
[55]
Li Z, Lu G, Meng G. Pathogenic fungal infection in the lung. Front Immunol 2019; 10: 1524.
[http://dx.doi.org/10.3389/fimmu.2019.01524] [PMID: 31333658]
[56]
Aoun V, Duval C, Pagniez F, et al. Enhanced pulmonary administration of amphotericin B loaded in PEG-g-PLA nanoparticles: in vitro proof-of-concept and susceptibility against Candida spp. and Aspergillus spp. J Nanopharm Drug Deliv 2014; 2(4): 294-304.
[http://dx.doi.org/10.1166/jnd.2014.1064]
[57]
Vaughn JM, McConville JT, Burgess D, et al. Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm 2006; 63(2): 95-102.
[http://dx.doi.org/10.1016/j.ejpb.2006.01.006] [PMID: 16516450]
[58]
Ozkan Y, Dikmen N, Işimer A, Günhan O, Aboul-Enein HY. Clarithromycin targeting to lung: characterization, size distribution and in vivo evaluation of the human serum albumin microspheres. Farmaco 2000; 55(4): 303-7.
[http://dx.doi.org/10.1016/S0014-827X(00)00044-6] [PMID: 10966162]
[59]
Ramaiah B, Nagaraja SH, Kapanigowda UG, Boggarapu PR, Subramanian R. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: lung targeting efficiency in albino mice. Daru 2016; 24(1): 14.
[http://dx.doi.org/10.1186/s40199-016-0153-x] [PMID: 27150818]
[60]
Góralska K, Blaszkowska J, Dzikowiec M. Neuroinfections caused by fungi. Infection 2018; 46(4): 443-59.
[http://dx.doi.org/10.1007/s15010-018-1152-2] [PMID: 29785613]
[61]
Hallam KA, Emelianov SY. Toward optimization of blood brain barrier opening induced by laser-activated perfluorocarbon nanodroplets. Biomed Opt Express 2019; 10(7): 3139-51.
[http://dx.doi.org/10.1364/BOE.10.003139 ] [PMID: 31360596]
[62]
Goa KL, Barradell LB. Fluconazole. An update of its pharmacodynamic and pharmacokinetic properties and therapeutic use in major superficial and systemic mycoses in immunocompromised patients. Drugs 1995; 50(4): 658-90.
[http://dx.doi.org/10.2165/00003495-199550040-00007] [PMID: 8536553]
[63]
Prieto Garcia L, Janzén D, Kanebratt KP, Ericsson H, Lennernäs H, Lundahl A. Physiologically based pharmacokinetic model of itraconazole and two of its metabolites to improve the predictions and the mechanistic understanding of cyp3a4 drug-drug interactions. Drug Metab Dispos 2018; 46(10): 1420-33.
[http://dx.doi.org/10.1124/dmd.118.081364] [PMID: 30068519]
[64]
Miyama T, Takanaga H, Matsuo H, et al. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother 1998; 42(7): 1738-44.
[http://dx.doi.org/10.1128/AAC.42.7.1738] [PMID: 9661014]
[65]
Zhang QL, Fu BM, Zhang ZJ. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv 2017; 24(1): 1037-44.
[http://dx.doi.org/10.1080/10717544.2017.1346002] [PMID: 28687052]
[66]
Ren J, Zou M, Gao P, Wang Y, Cheng G. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur J Pharm Biopharm 2013; 83(2): 141-8.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.018] [PMID: 23201052]
[67]
Guo X, Wu G, Wang H, Chen L. Pep-1&borneol-bifunctionalized carmustine-loaded micelles enhance anti-glioma efficacy through tumor-targeting and BBB-penetrating. J Pharm Sci 2019; 108(5): 1726-35.
[http://dx.doi.org/10.1016/j.xphs.2018.11.046] [PMID: 30537472]
[68]
Fan X, Chai L, Zhang H, Wang Y, Zhang B, Gao X. Borneol depresses p-glycoprotein function by a nf-κb signaling mediated mechanism in a blood brain barrier in vitro model. Int J Mol Sci 2015; 16(11): 27576-88.
[http://dx.doi.org/10.3390/ijms161126051 ] [PMID: 26593909]
[69]
Zhang S, Asghar S, Yang L, et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2020; 575119002
[http://dx.doi.org/10.1016/j.ijpharm.2019.119002] [PMID: 31893546]
[70]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254 ] [PMID: 29556336]
[71]
Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007; 448(7149): 39-43.
[http://dx.doi.org/10.1038/nature05901 ] [PMID: 17572664]
[72]
Liu Y, Huang R, Han L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 2009; 30(25): 4195-202.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.051] [PMID: 19467700]
[73]
Chen W, Zhan C, Gu B, et al. Targeted brain delivery of itraconazole via RVG29 anchored nanoparticles. J Drug Target 2011; 19(3): 228-34.
[http://dx.doi.org/10.3109/1061186X.2010.492523] [PMID: 20540685]
[74]
Murone C, Paxinos G, McKinley MJ, et al. Distribution of bradykinin B2 receptors in sheep brain and spinal cord visualized by in vitro autoradiography. J Comp Neurol 1997; 381(2): 203-18.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970505)381:2<203:AID-CNE7>3.0.CO;2-7] [PMID: 9130669]
[75]
Bartus RT, Elliott PJ, Dean RL, et al. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 1996; 142(1): 14-28.
[http://dx.doi.org/10.1006/exnr.1996.0175] [PMID: 8912895]
[76]
Doctrow SR, Abelleira SM, Curry LA, et al. The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. J Pharmacol Exp Ther 1994; 271(1): 229-37.
[PMID: 7965719]
[77]
Zhang X, Xie J, Li S, Wang X, Hou X. The study on brain targeting of the amphotericin B liposomes. J Drug Target 2003; 11(2): 117-22.
[http://dx.doi.org/10.1080/1061186031000115150] [PMID: 12881198]
[78]
Demeule M, Régina A, Ché C, et al. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2008; 324(3): 1064-72.
[http://dx.doi.org/10.1124/jpet.107.131318] [PMID: 18156463]
[79]
Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem 2008; 106(4): 1534-44.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05492.x] [PMID: 18489712]
[80]
Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 2009; 30(36): 6976-85.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.049] [PMID: 19765819]
[81]
Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 2010; 147(1): 118-26.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.018] [PMID: 20609375]
[82]
Shao K, Wu J, Chen Z, et al. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials 2012; 33(28): 6898-907.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.050] [PMID: 22789719]
[83]
Pantanowitz L, Omar T, Sonnendecker H, Karstaedt AS. Bone marrow cryptococcal infection in the acquired immunodeficiency syndrome. J Infect 2000; 41(1): 92-4.
[http://dx.doi.org/10.1053/jinf.2000.0667 ] [PMID: 11041711]
[84]
Schiappa D, Gueyikian A, Kakar S, Alspaugh JA, Perfect JR, Williamson PR. An auxotrophic pigmented Cryptococcus neoformans strain causing infection of the bone marrow. Med Mycol 2002; 40(1): 1-5.
[http://dx.doi.org/10.1080/mmy.40.1.1.5 ] [PMID: 11860008]
[85]
Brembilla C, Lanterna LA, Risso A, et al. Cervical bone graft Candida albicans osteomyelitis: management strategies for an uncommon infection. Case Rep Orthop 2014; 2014986393
[http://dx.doi.org/10.1155/2014/986393 ] [PMID: 25295206]
[86]
Wang D, Miller SC, Kopecková P, Kopecek J. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev 2005; 57(7): 1049-76.
[http://dx.doi.org/10.1016/j.addr.2004.12.011] [PMID: 15876403]
[87]
Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem Int Ed Engl 2009; 48(16): 2949-54.
[http://dx.doi.org/10.1002/anie.200805133] [PMID: 19294707]
[88]
Zhang S, Gangal G, Uludağ H. ‘Magic bullets’ for bone diseases: progress in rational design of bone-seeking medicinal agents. Chem Soc Rev 2007; 36(3): 507-31.
[http://dx.doi.org/10.1039/B512310K ] [PMID: 17325789]
[89]
Chen C, Li Y, et al. Bone-targeting melphalan prodrug with tumor-microenvironment sensitivity: synthesis, in vitro and in vivo evaluation. Chin Chem Lett 2018; 29(11): 77-80.
[http://dx.doi.org/10.1016/j.cclet.2018.02.010]
[90]
Ouyang L, He D, Zhang J, et al. Selective bone targeting 5-fluorouracil prodrugs: synthesis and preliminary biological evaluation. Bioorg Med Chem 2011; 19(12): 3750-6.
[http://dx.doi.org/10.1016/j.bmc.2011.05.004] [PMID: 21612935]
[91]
Murphy MB, Hartgerink JD, Goepferich A, Mikos AG. Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties. Biomacromolecules 2007; 8(7): 2237-43.
[http://dx.doi.org/10.1021/bm070121s ] [PMID: 17530891]
[92]
Yokogawa K, Toshima K, Yamoto K, Nishioka T, Sakura N, Miyamoto K. Pharmacokinetic advantage of an intranasal preparation of a novel anti-osteoporosis drug, L-Asp-hexapeptide-conjugated estradiol. Biol Pharm Bull 2006; 29(6): 1229-33.
[http://dx.doi.org/10.1248/bpb.29.1229 ] [PMID: 16755022]
[93]
Takahashi T, Yokogawa K, Sakura N, Nomura M, Kobayashi S, Miyamoto K. Bone-targeting of quinolones conjugated with an acidic oligopeptide. Pharm Res 2008; 25(12): 2881-8.
[http://dx.doi.org/10.1007/s11095-008-9605-4] [PMID: 18663412]
[94]
Pan JZ, Wen M, Yin DQ, et al. Design and synthesis of novel amphiphilic Janus dendrimers for bone-targeted drug delivery. Tetrahedron 2012; 68(14): 2943-9.
[http://dx.doi.org/10.1016/j.tet.2012.02.040]
[95]
Ambati S, Ferarro AR, Kang SE, et al. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere. MSphere 2019; 4(1): e00025-19.
[http://dx.doi.org/10.1128/mSphere.00025-19] [PMID: 30760610]
[96]
Ambati S, Ellis EC, Lin J, Lin X, Lewis ZA, Meagher RB. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy. MSphere 2019; 4(5): e00715-9.
[http://dx.doi.org/10.1128/mSphere.00715-19] [PMID: 31666315]
[97]
Almeida RS, Brunke S, Albrecht A, et al. the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 2008; 4(11)e1000217
[http://dx.doi.org/10.1371/journal.ppat.1000217] [PMID: 19023418]
[98]
Moragues MD, Omaetxebarria MJ, Elguezabal N, et al. A monoclonal antibody directed against a Candida albicans cell wall mannoprotein exerts three anti-C. albicans activities. Infect Immun 2003; 71(9): 5273-9.
[http://dx.doi.org/10.1128/IAI.71.9.5273-5279.2003] [PMID: 12933874]
[99]
Sevilla MJ, Robledo B, Rementeria A, Moragues MD, Pontón J. A fungicidal monoclonal antibody protects against murine invasive candidiasis. Infect Immun 2006; 74(5): 3042-5.
[http://dx.doi.org/10.1128/IAI.74.5.3042-3045.2006] [PMID: 16622248]
[100]
Brena S, Omaetxebarría MJ, Elguezabal N, Cabezas J, Moragues MD, Pontón J. Fungicidal monoclonal antibody C7 binds to Candida albicans Als3. Infect Immun 2007; 75(7): 3680-2.
[http://dx.doi.org/10.1128/IAI.01840-06 ] [PMID: 17452471]
[101]
Brena S, Cabezas-Olcoz J, Moragues MD, et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob Agents Chemother 2011; 55(7): 3156-63.
[http://dx.doi.org/10.1128/AAC.00892-10 ] [PMID: 21518848]
[102]
Heidenreich F, Dierich MP. Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b. Infect Immun 1985; 50(2): 598-600.
[http://dx.doi.org/10.1128/IAI.50.2.598-600.1985] [PMID: 2932390]
[103]
Calderone RA, Linehan L, Wadsworth E, Sandberg AL. Identification of C3d receptors on Candida albicans. Infect Immun 1988; 56(1): 252-8.
[http://dx.doi.org/10.1128/IAI.56.1.252-258.1988] [PMID: 2961702]
[104]
Xie J, Shen Q, Huang K, et al. Oriented assembly of cell-mimicking nanoparticles via a molecular affinity strategy for targeted drug delivery. ACS Nano 2019; 13(5): 5268-77.
[http://dx.doi.org/10.1021/acsnano.8b09681] [PMID: 31022341]
[105]
Benhar I. Biotechnological applications of phage and cell display. Biotechnol Adv 2001; 19(1): 1-33.
[http://dx.doi.org/10.1016/S0734-9750(00)00054-9] [PMID: 14538090]
[106]
Baker LG, Specht CA, Donlin MJ, Lodge JK. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 2007; 6(5): 855-67.
[http://dx.doi.org/10.1128/EC.00399-06 ] [PMID: 17400891]
[107]
Tang Y, Wu S, Lin J, et al. Nanoparticles targeted against Cryptococcal pneumonia by interactions between chitosan and its peptide ligand. Nano Lett 2018; 18(10): 6207-13.
[http://dx.doi.org/10.1021/acs.nanolett.8b02229 ] [PMID: 30260652]
[108]
Casadevall A. Evolution of intracellular pathogens. Annu Rev Microbiol 2008; 62: 19-33.
[http://dx.doi.org/10.1146/annurev.micro.61.080706.093305] [PMID: 18785836]
[109]
Hayes JB, Sircy LM, Heusinkveld LE, et al. Modulation of macrophage inflammatory nuclear factor κb (nf-κb) signaling by intracellular Cryptococcus neoformans. J Biol Chem 2016; 291(30): 15614-27.
[http://dx.doi.org/10.1074/jbc.M116.738187 ] [PMID: 27231343]
[110]
Camacho E, Casadevall A. Cryptococcal traits mediating adherence to biotic and abiotic surfaces. J Fungi (Basel) 2018; 4(3): 4225-37.
[http://dx.doi.org/10.3390/jof4030088 ] [PMID: 30060601]
[111]
Seider K, Brunke S, Schild L, et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 2011; 187(6): 3072-86.
[http://dx.doi.org/10.4049/jimmunol.1003730 ] [PMID: 21849684]
[112]
Newman SL, Gootee L, Hilty J, Morris RE. Human macrophages do not require phagosome acidification to mediate fungistatic/fungicidal activity against Histoplasma capsulatum. J Immunol 2006; 176(3): 1806-13.
[http://dx.doi.org/10.4049/jimmunol.176.3.1806 ] [PMID: 16424211]
[113]
Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 2000; 68(7): 4225-37.
[http://dx.doi.org/10.1128/IAI.68.7.4225-4237.2000] [PMID: 10858240]
[114]
Tucker SC, Casadevall A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 2002; 99(5): 3165-70.
[http://dx.doi.org/10.1073/pnas.052702799 ] [PMID: 11880650]
[115]
Mukhopadhyay A, Basu SK. Intracellular delivery of drugs to macrophages. Adv Biochem Eng Biotechnol 2003; 84: 183-209.
[http://dx.doi.org/10.1007/3-540-36488-9_6 ] [PMID: 12934937]
[116]
Xiong MH, Li YJ, Bao Y, Yang XZ, Hu B, Wang J. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater 2012; 24(46): 6175-80.
[http://dx.doi.org/10.1002/adma.201202847] [PMID: 22961974]
[117]
Barratt GM, Nolibé D, Yapo A, Petit JF, Tenu JP. Use of mannosylated liposomes for in vivo targeting of a macrophage activator and control of artificial pulmonary metastases. Ann Inst Pasteur Immunol 1987; 138(3): 437-50.
[http://dx.doi.org/10.1016/S0769-2625(87)80054-5] [PMID: 3651240]
[118]
Park KH, Sung WJ, Kim S, Kim DH, Akaike T, Chung HM. Specific interaction of mannosylated glycopolymers with macrophage cells mediated by mannose receptor. J Biosci Bioeng 2005; 99(3): 285-9.
[http://dx.doi.org/10.1263/jbb.99.285 ] [PMID: 16233790]
[119]
Vyas SP, Katare YK, Mishra V, Sihorkar V. Ligand directed macrophage targeting of amphotericin B loaded liposomes. Int J Pharm 2000; 210(1-2): 1-14.
[http://dx.doi.org/10.1016/S0378-5173(00)00522-6] [PMID: 11163983]
[120]
Schlegel RA, Williamson P. Phosphatidylserine, a death knell. Cell Death Differ 2001; 8(6): 551-63.
[http://dx.doi.org/10.1038/sj.cdd.4400817 ] [PMID: 11536005]
[121]
Singh PK, Jaiswal AK, Pawar VK, et al. Fabrication of 3-o-sn-phosphatidyl-l-serine anchored plga nanoparticle bearing amphotericin B for macrophage targeting. Pharm Res 2018; 35(3): 60.
[http://dx.doi.org/10.1007/s11095-017-2293-1 ] [PMID: 29427248]
[122]
Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med 2011; 364(7): 656-65.
[http://dx.doi.org/10.1056/NEJMra0910283 ] [PMID: 21323543]
[123]
Hall LA, Denning DW. Oxygen requirements of Aspergillus species. J Med Microbiol 1994; 41(5): 311-5.
[http://dx.doi.org/10.1099/00222615-41-5-311 ] [PMID: 7966201]
[124]
Grahl N, Puttikamonkul S, Macdonald JM, et al. In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 2011; 7(7)e1002145
[http://dx.doi.org/10.1371/journal.ppat.1002145] [PMID: 21811407]
[125]
Brock M, Jouvion G, Droin-Bergère S, Dussurget O, Nicola MA, Ibrahim-Granet O. Bioluminescent Aspergillus fumigatus, a new tool for drug efficiency testing and in vivo monitoring of invasive aspergillosis. Appl Environ Microbiol 2008; 74(22): 7023-35.
[http://dx.doi.org/10.1128/AEM.01288-08 ] [PMID: 18820063]
[126]
Lin Q, Bao C, Yang Y, et al. Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv Mater 2013; 25(14): 1981-6.
[http://dx.doi.org/10.1002/adma.201204455 ] [PMID: 23401259]
[127]
Lee Y, Lee H, Kim YB, et al. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 2008; 20(21): 4154-7.
[http://dx.doi.org/10.1002/adma.200800756] [PMID: 19606262]
[128]
Lenka B, Dzianis S, et al. Discovery and characteristic of hyaluronidases from filamentous fungi. Curr Biotechnol 2018; 7(1): 2-9.
[http://dx.doi.org/10.2174/2211550105666160213002658]
[129]
Li J, Hu Y, Yang J, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 2015; 38: 10-21.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.065] [PMID: 25457979]
[130]
Ji H, Dong K, Yan Z, et al. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small 2016; 12(45): 6200-6.
[http://dx.doi.org/10.1002/smll.201601729 ] [PMID: 27690183]
[131]
Ait-Oufella H, Mallat Z, Tedgui A. Lp-PLA2 et sPLA2 - Biomarqueurs cardiovasculaires. Med Sci (Paris) 2014; 30(5): 526-31.
[http://dx.doi.org/10.1051/medsci/20143005015] [PMID: 24939539]
[132]
Leidy C, Linderoth L, Andresen TL, Mouritsen OG, Jørgensen K, Peters GH. Domain-induced activation of human phospholipase A2 type IIA: local versus global lipid composition. Biophys J 2006; 90(9): 3165-75.
[http://dx.doi.org/10.1529/biophysj.105.070987] [PMID: 16461407]
[133]
Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S. Phospholipase A2 and phospholipase B activities in fungi. Biochim Biophys Acta 2006; 1761(11): 1391-9.
[http://dx.doi.org/10.1016/j.bbalip.2006.09.011] [PMID: 17081801]
[134]
Suram S, Gangelhoff TA, Taylor PR, et al. Pathways regulating cytosolic phospholipase A2 activation and eicosanoid production in macrophages by Candida albicans. J Biol Chem 2010; 285(40): 30676-85.
[http://dx.doi.org/10.1074/jbc.M110.143800] [PMID: 20643646]
[135]
Andresen TL, Jensen SS, Kaasgaard T, Jørgensen K. Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Curr Drug Deliv 2005; 2(4): 353-62.
[http://dx.doi.org/10.2174/156720105774370203] [PMID: 16305438]
[136]
Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jørgensen K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 2004; 47(7): 1694-703.
[http://dx.doi.org/10.1021/jm031029r ] [PMID: 15027860]
[137]
Wang H, Lee TJ, Fites SJ, et al. Ligation of Dectin-2 with a novel microbial ligand promotes adjuvant activity for vaccination. PLoS Pathog 2017; 13(8)e1006568
[http://dx.doi.org/10.1371/journal.ppat.1006568] [PMID: 28793349]
[138]
Xiaoling L, Tingyu T, Caibao H, Tian Z, Changqin C. Diagnostic efficacy of serum 1,3-β-d-glucan for invasive fungal infection: an update meta-analysis based on 37 case or cohort studies. Open Med (Wars) 2018; 13: 329-37.
[http://dx.doi.org/10.1515/med-2018-0050] [PMID: 30211316]
[139]
Pasqualini R, Ruoslahti E. Organ targeting In vivo using phage display peptide libraries nature 1996; 380(6572): 364-6.
[140]
Newman MR, Benoit DSW. In vivo translation of peptide-targeted drug delivery systems discovered by phage display. Bioconjug Chem 2018; 29(7): 2161-9.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00285] [PMID: 29889510]
[141]
Chen Z, Jin W, Liu H, Zhao Z, Cheng K. Discovery of peptide ligands for hepatic stellate cells using phage display. Mol Pharm 2015; 12(6): 2180-8.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00177] [PMID: 25955351]
[142]
Sugahara KN, Teesalu T, Karmali PP, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009; 16(6): 510-20.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[143]
Liu C, Yao S, Li X, Wang F, Jiang Y. iRGD-mediated core-shell nanoparticles loading carmustine and O6-benzylguanine for glioma therapy. J Drug Target 2017; 25(3): 235-46.
[http://dx.doi.org/10.1080/1061186X.2016.1238091] [PMID: 27646474]
[144]
Hussain S, Joo J, Kang J, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng 2018; 2(2): 95-103.
[http://dx.doi.org/10.1038/s41551-017-0187-5] [PMID: 29955439]
[145]
Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 2012; 33(32): 8167-76.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.046] [PMID: 22889488]
[146]
Xin H, Jiang X, Gu J, et al. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials 2011; 32(18): 4293-305.
[http://dx.doi.org/10.1016/j.biomaterials.2011.02.044] [PMID: 21427009]
[147]
Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials 2014; 35(1): 518-29.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.094] [PMID: 24125772]
[148]
Kullberg BJ, van de Veerdonk F, Netea MG. Immunotherapy: a potential adjunctive treatment for fungal infection. Curr Opin Infect Dis 2014; 27(6): 511-6.
[http://dx.doi.org/10.1097/QCO.0000000000000105] [PMID: 25304393]
[149]
Swartz MA, Hirosue S, Hubbell JA. Engineering approaches to immunotherapy. Sci Transl Med 2012; 4(148)148rv9
[http://dx.doi.org/10.1126/scitranslmed.3003763] [PMID: 22914624]
[150]
Irvine DJ, Swartz MA, Szeto GL. Engineering synthetic vaccines using cues from natural immunity. Nat Mater 2013; 12(11): 978-90.
[http://dx.doi.org/10.1038/nmat3775] [PMID: 24150416]
[151]
Leleux J, Roy K. Micro and nanoparticle-based delivery systems for vaccine immunotherapy: an immunological and materials perspective. Adv Healthc Mater 2013; 2(1): 72-94.
[http://dx.doi.org/10.1002/adhm.201200268] [PMID: 23225517]
[152]
Gao W, Fang RH, Thamphiwatana S, et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett 2015; 15(2): 1403-9.
[http://dx.doi.org/10.1021/nl504798g ] [PMID: 25615236]
[153]
Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 2010; 78(4): 1601-9.
[http://dx.doi.org/10.1128/IAI.01171-09 ] [PMID: 20145096]
[154]
Vargas G, Rocha JD, Oliveira DL, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2015; 17(3): 389-407.
[http://dx.doi.org/10.1111/cmi.12374 ] [PMID: 25287304]
[155]
Bielska E, Sisquella MA, Aldeieg M, Birch C, O’Donoghue EJ, May RC. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii Nat Commun 2018; 9(1): 1556.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy