Designing Short Peptides: A Sisyphean Task?

Author(s): Héctor M. Pineda-Castañeda, Diego S. Insuasty-Cepeda, Víctor A. Niño-Ramírez, Hernando Curtidor, Zuly J. Rivera-Monroy*

Journal Name: Current Organic Chemistry

Volume 24 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Over the last few years, short peptides have become a powerful tool in basic and applied research, with different uses like diagnostic, antimicrobial peptides, human health promoters or bioactive peptides, therapeutic treatments, templates for peptidomimetic design, and peptide-based vaccines. In this endeavor, different approaches and technologies have been explored, such as bioinformatics, large-scale peptide synthesis, omics sciences, structure-activity relationship studies, and a biophysical approach, among others, seeking to obtain the shortest sequence with the best activity. The advantage of short peptides lies in their stability, ease of production, safety, and low cost. There are many strategies for designing short peptides with biomedical and industrial applications (targeting the structure, length, charge, or polarity) or as a starting point for improving their properties (sequence data base, de novo sequences, templates, or organic scaffolds). In peptide design, it is necessary to keep in mind factors such as the application (peptidomimetic, immunogen, antimicrobial, bioactive, or protein-protein interaction inhibitor), the expected target (membrane cell, nucleus, receptor proteins, or immune system), and particular characteristics (shorter, conformationally constrained, cycled, charged, flexible, polymerized, or pseudopeptides). This review summarizes the different synthetic approaches and strategies used to design new peptide analogs, highlighting the achievements, constraints, and advantages of each.

Keywords: Short peptides, non-natural amino acid, click chemistry, cyclic peptide, tetrameric peptide, dimeric peptide.

[1]
Derakhshankhah, H.; Jafari, S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed. Pharmacother., 2018, 108, 1090-1096.
[http://dx.doi.org/10.1016/j.biopha.2018.09.097] [PMID: 30372809]
[2]
Ball, L.J.; Kühne, R.; Schneider-Mergener, J.; Oschkinat, H. Recognition of proline-rich motifs by protein-protein-interaction domains. Angew. Chem. Int. Ed. Engl., 2005, 44(19), 2852-2869.
[http://dx.doi.org/10.1002/anie.200400618] [PMID: 15880548]
[3]
Vivet, B.; Cavelier, F.; Martinez, J.; Aubry, A. A silaproline-containing dipeptide. Acta Crystallogr. C, 2000, 56, 1452-1454.
[http://dx.doi.org/10.1107/s0108270100012294 ]
[4]
Cavelier, F.; Vivet, B.; Martinez, J.; Aubry, A.; Didierjean, C.; Vicherat, A.; Marraud, M. Influence of silaproline on peptide conformation and bioactivity. J. Am. Chem. Soc., 2002, 124(12), 2917-2923.
[http://dx.doi.org/10.1021/ja017440q] [PMID: 11902882]
[5]
Vivet, B.; Cavelier, F.; Martinez, J. Synthesis of silaproline, a new proline surrogate. Eur. J. Org. Chem., 2000, 2000, 807-811.
[http://dx.doi.org/10.1002/(SICI)1099-0690(200003)2000:5<807:AID-EJOC807>3.0.CO;2-E]
[6]
Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Silicon-containing amino acids: synthetic aspects, conformational studies, and applications to bioactive peptides. Chem. Rev., 2016, 116(19), 11654-11684.
[http://dx.doi.org/10.1021/acs.chemrev.6b00122] [PMID: 27529497]
[7]
Pujals, S.; Sabidó, E.; Tarragó, T.; Giralt, E. all-D proline-rich cell-penetrating peptides: a preliminary in vivo internalization study. Biochem. Soc. Trans., 2007, 35(Pt 4), 794-796.
[http://dx.doi.org/10.1042/BST0350794] [PMID: 17635150]
[8]
Debaene, F.; Da Silva, J.A.; Pianowski, Z.; Duran, F.J.; Winssinger, N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metallo-proteases as well as tyrosine phosphatases. Tetrahedron, 2007, 63, 6577-6586.
[http://dx.doi.org/10.1016/j.tet.2007.03.033]
[9]
Patch, J.A.; Barron, A.E. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Curr. Opin. Chem. Biol., 2002, 6(6), 872-877.
[http://dx.doi.org/10.1016/S1367-5931(02)00385-X] [PMID: 12470744]
[10]
Niu, Y.; Hu, Y.; Li, X.; Chen, J.; Cai, J. γ- AApeptides: design, synthesis and evaluation. New J. Chem., 2011, 35, 542-545.
[http://dx.doi.org/10.1039/C0NJ00943A ]
[11]
Shi, Y.; Teng, P.; Sang, P.; She, F.; Wei, L.; Cai, J. γ-AApeptides: design, structure, and applications. Acc. Chem. Res., 2016, 49(3), 428-441.
[http://dx.doi.org/10.1021/acs.accounts.5b00492] [PMID: 26900964]
[12]
Davie, E.A.C.; Mennen, S.M.; Xu, Y.; Miller, S.J. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev., 2007, 107(12), 5759-5812.
[http://dx.doi.org/10.1021/cr068377w] [PMID: 18072809]
[13]
Wang, X.; Reisinger, C.M.; List, B. Catalytic asymmetric epoxidation of cyclic enones. J. Am. Chem. Soc., 2008, 130(19), 6070-6071.
[http://dx.doi.org/10.1021/ja801181u] [PMID: 18422314]
[14]
Akagawa, K.; Kudo, K. Asymmetric epoxidation of α,β-unsaturated aldehydes in aqueous media catalyzed by resin-supported peptide-containing unnatural amino acids. Adv. Synth. Catal., 2011, 353, 843-847.
[http://dx.doi.org/10.1002/adsc.201000805]
[15]
Navo, C.D.; Mazo, N.; Oroz, P.; Gutiérrez-Jiménez, M.I.; Marín, J.; Asenjo, J.; Avenoza, A.; Busto, J.H.; Corzana, F.; Zurbano, M.M.; Jiménez-Osés, G.; Peregrina, J.M. Synthesis of Nβ-substituted α,β-diamino acids via stereoselective N-Michael additions to a chiral bicyclic dehydroalanine. J. Org. Chem., 2020, 85(5), 3134-3145.
[http://dx.doi.org/10.1021/acs.joc.9b03020] [PMID: 32040912]
[16]
Aycock, R.A.; Pratt, C.J.; Jui, N.T. Aminoalkyl radicals as powerful intermediates for the synthesis of unnatural amino acids and peptides. ACS Catal., 2018, 8, 9115-9119.
[http://dx.doi.org/10.1021/acscatal.8b03031]
[17]
Cui, H.K.; Guo, Y.; He, Y.; Wang, F.L.; Chang, H.N.; Wang, Y.J.; Wu, F.M.; Tian, C.L.; Liu, L. Diaminodiacid-based solid-phase synthesis of peptide disulfide bond mimics. Angew. Chem. Int. Ed. Engl., 2013, 52(36), 9558-9562.
[http://dx.doi.org/10.1002/anie.201302197] [PMID: 23804284]
[18]
Sun, S.S.; Chen, J.; Zhao, R.; Bierer, D.; Wang, J.; Fang, G.M. Efficient synthesis of a side-chain extended diaminodiacid for solid-phase synthesis of peptide disulfide bond mimics. Tetrahedron Lett., 2019, 60, 1197-1201.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.061]
[19]
Xu, Y.; Wang, T.; Guan, C.J.; Li, Y.M.; Liu, L.; Shi, J. Dmab/ivDde protected diaminodiacids for solid-phase synthesis of peptide disulfide-bond mimics. Tetrahedron Lett., 2017, 58, 1677-1680.
[http://dx.doi.org/10.1016/j.tetlet.2017.03.024]
[20]
Rodríguez, V.; Pineda, H.; Ardila, N.; Insuasty, D.; Cárdenas, K.; Román, J. Efficient Fmoc group removal using diluted 4-methylpiperidine: an alternative for a less-polluting SPPS-Fmoc/tBu protocol. Int. J. Pept. Res. Ther., 2019, 26, 585-587.
[http://dx.doi.org/10.1007/s10989-019-09865-9]
[21]
Van Lysebetten, D.; Felissati, S.; Antonatou, E.; Carrette, L.L.G.; Espeel, P.; Focquet, E.; Du Prez, F.E.; Madder, A. A thiolactone strategy for straightforward synthesis of disulfide-linked side-chain-to-tail cyclic peptides featuring an N-terminal modification handle. ChemBioChem, 2018, 19(6), 641-646.
[http://dx.doi.org/10.1002/cbic.201700323] [PMID: 29314620]
[22]
Fang, G.M.; Chen, X.X.; Yang, Q.Q.; Zhu, L.J.; Li, N.N.; Yu, H.Z. Discovery, structure, and chemical synthesis of disulfide-rich peptide toxins and their analogs. Chin. Chem. Lett., 2018, 29, 1033-1042.
[http://dx.doi.org/10.1016/j.cclet.2018.02.002]
[23]
Hussein, W.; Skwarczynski, M.; Tot, H.I. Peptide Synthesis Methods and Protocols; Springer Science, 2020.
[24]
Qi, Y.K.; Tang, S.; Huang, Y.C.; Pan, M.; Zheng, J.S.; Liu, L. Hmb(off/on) as a switchable thiol protecting group for native chemical ligation. Org. Biomol. Chem., 2016, 14(18), 4194-4198.
[http://dx.doi.org/10.1039/C6OB00450D] [PMID: 27102373]
[25]
Tang, S.; Si, Y.Y.; Wang, Z.P.; Mei, K.R.; Chen, X.; Cheng, J.Y.; Zheng, J.S.; Liu, L. An efficient one-pot four-segment condensation method for protein chemical synthesis. Angew. Chem. Int. Ed. Engl., 2015, 54(19), 5713-5717.
[http://dx.doi.org/10.1002/anie.201500051] [PMID: 25772600]
[26]
Pentelute, B.L.; Kent, S.B.H. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation. Org. Lett., 2007, 9(4), 687-690.
[http://dx.doi.org/10.1021/ol0630144] [PMID: 17286375]
[27]
Jbara, M.; Maity, S.K.; Brik, A. Palladium in the chemical synthesis and modification of proteins. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10644-10655.
[http://dx.doi.org/10.1002/anie.201702370] [PMID: 28383786]
[28]
Postma, T.M.; Giraud, M.; Albericio, F. Trimethoxyphenylthio as a highly labile replacement for tert-butylthio cysteine protection in Fmoc solid phase synthesis. Org. Lett., 2012, 14(21), 5468-5471.
[http://dx.doi.org/10.1021/ol3025499] [PMID: 23075145]
[29]
Rei, M.; Takahide, K.; Thomas, K.E.; Gary, M.R. 3-Nitro-2-pyridinesulfenyl group for protection and activation of the thiol function of cysteine. Chem. Lett., 1981, 10, 737-740.
[http://dx.doi.org/10.1246/cl.1981.737]
[30]
Muttenthaler, M.; Ramos, Y.G.; Feytens, D.; de Araujo, A.D.; Alewood, P.F. p-Nitrobenzyl protection for cysteine and selenocysteine: a more stable alternative to the acetamidomethyl group. Biopolymers, 2010, 94(4), 423-432.
[http://dx.doi.org/10.1002/bip.21502] [PMID: 20593464]
[31]
Postma, T.M.; Albericio, F. Disulfide formation strategies in peptide synthesis. Eur. J. Org. Chem., 2014, 2014, 3519-3530.
[http://dx.doi.org/10.1002/ejoc.201402149]
[32]
Dekan, Z.; Mobli, M.; Pennington, M.W.; Fung, E.; Nemeth, E.; Alewood, P.F. Total synthesis of human hepcidin through regioselective disulfide-bond formation by using the safety-catch cysteine protecting group 4,4′-dimethylsulfinylbenzhydryl. Angew. Chem. Int. Ed. Engl., 2014, 53(11), 2931-2934.
[http://dx.doi.org/10.1002/anie.201310103] [PMID: 24604812]
[33]
Thalluri, K.; Kou, B.; Yang, X.; Zaykov, A.N.; Mayer, J.P.; Gelfanov, V.M.; Liu, F.; DiMarchi, R.D. Synthesis of relaxin-2 and insulin-like peptide 5 enabled by novel tethering and traceless chemical excision. J. Pept. Sci., 2017, 23(6), 455-465.
[http://dx.doi.org/10.1002/psc.3010] [PMID: 28466571]
[34]
Sadler, K.; Tam, J.P. Peptide dendrimers: applications and synthesis. J. Biotechnol., 2002, 90(3-4), 195-229.
[http://dx.doi.org/10.1016/S1389-0352(01)00061-7] [PMID: 12071226]
[35]
Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio, F. Peptide and amide bond-containing dendrimers. Chem. Rev., 2005, 105(5), 1663-1681.
[http://dx.doi.org/10.1021/cr030449l] [PMID: 15884786]
[36]
León-Calvijo, M.A.; Leal-Castro, A.L.; Almanzar-Reina, G.A.; Rosas-Pérez, J.E.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. BioMed Res. Int., 2015, 2015453826
[http://dx.doi.org/10.1155/2015/453826] [PMID: 25815317]
[37]
Huertas, N.J.; Monroy, Z.J.R.; Medina, R.F.; Castañeda, J.E.G. Antimicrobial activity of truncated and polyvalent peptides derived from the FKCRRQWQWRMKKGLA sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules, 2017, 22(6)e987
[http://dx.doi.org/10.3390/molecules22060987] [PMID: 28613262]
[38]
Casanova, Y.V.; Guerra, J.A.R.; Pérez, Y.A.U.; Castro, A.L.L.; Reina, G.A.; Castañeda, J.E.G.; Monroy, Z.J.R. Antibacterial synthetic peptides derived from bovine lactoferricin exhibit cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Molecules, 2017, 22(10), 1-11.
[http://dx.doi.org/10.3390/molecules22101641] [PMID: 28961215]
[39]
Solarte, V.A.; Rosas, J.E.; Rivera, Z.J.; Arango-Rodríguez, M.L.; García, J.E.; Vernot, J.P. A tetrameric peptide derived from bovine lactoferricin exhibits specific cytotoxic effects against oral squamous-cell carcinoma cell lines. BioMed Res. Int., 2015, 2015630179
[http://dx.doi.org/10.1155/2015/630179] [PMID: 26609531]
[40]
Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B. Synthesis of proteins by native chemical ligation. Science, 1994, 266, 776-779.
[http://dx.doi.org/10.1126/science.7973629]
[41]
Pasunooti, K.K.; Yang, R.; Vedachalam, S.; Gorityala, B.K.; Liu, C.F.; Liu, X.W. Synthesis of 4-mercapto-L-lysine derivatives: potential building blocks for sequential native chemical ligation. Bioorg. Med. Chem. Lett., 2009, 19(22), 6268-6271.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.107] [PMID: 19833511]
[42]
Pu, Y.J.; Yuan, H.; Yang, M.; He, B.; Gu, Z.W. Synthesis of peptide dendrimers with polyhedral oligomeric silsesquioxane cores via Click chemistry. Chin. Chem. Lett., 2013, 24, 917-920.
[http://dx.doi.org/10.1016/j.cclet.2013.06.015]
[43]
Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. A novel poly(l-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions. Mol. Pharm., 2010, 7(4), 953-962.
[http://dx.doi.org/10.1021/mp1000923] [PMID: 20481567]
[44]
Zhu, R.; Jiang, W.; Pu, Y.; Luo, K.; Wu, Y.; He, B. Functionalization of magnetic nanoparticles with peptide dendrimers. J. Mater. Chem., 2011, 21, 5464-5474.
[http://dx.doi.org/10.1039/c0jm02752a]
[45]
Feni, L.; Jütten, L.; Parente, S.; Piarulli, U.; Neundorf, I.; Diaz, D. Cell-penetrating peptides containing 2,5-diketopiperazine (DKP) scaffolds as shuttles for anti-cancer drugs: conformational studies and biological activity. Chem. Commun. (Camb.), 2020, 56(42), 5685-5688.
[http://dx.doi.org/10.1039/D0CC01490G] [PMID: 32319458]
[46]
Jing, X.; Jin, K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med. Res. Rev., 2020, 40(2), 753-810.
[http://dx.doi.org/10.1002/med.21639] [PMID: 31599007]
[47]
Zorzi, A.; Deyle, K.; Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol., 2017, 38, 24-29.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[48]
Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J. Pept. Sci., 2016, 22(7), 438-451.
[http://dx.doi.org/10.1002/psc.2894] [PMID: 27352996]
[49]
Ermert, P.; Luther, A.; Zbinden, P.; Obrecht, D. Frontier between cyclic peptides and macrocycles. Methods Mol. Biol., 2019, 2001, 147-202.
[http://dx.doi.org/10.1007/978-1-4939-9504-2_9] [PMID: 31134572]
[50]
D’Amato, A.; Della Sala, G.; Izzo, I.; Costabile, C.; Masuda, Y.; De Riccardis, F. Cyclic octamer peptoids: simplified isosters of bioactive fungal cyclodepsipeptides. Molecules, 2018, 23(7), 20-23.
[http://dx.doi.org/10.3390/molecules23071779] [PMID: 30029532]
[51]
Butler, S.J.; Jolliffe, K.A.; Lee, W.Y.G.; McDonough, M.J.; Reynolds, A.J. Synthesis of backbone modified cyclic peptides bearing dipicolylamino sidearms. Tetrahedron, 2011, 67, 1019-1029.
[http://dx.doi.org/10.1016/j.tet.2010.11.100]
[52]
Tonelli, A.E. Cyclic Peptides; Royal Society of Chemistry: Cambridge, 2017.
[53]
Gang, D.; Kim, D.W.; Park, H.S. Cyclic peptides: promising scaffolds for biopharmaceuticals. Genes (Basel), 2018, 9(11)e557
[http://dx.doi.org/10.3390/genes9110557] [PMID: 30453533]
[54]
Joo, S.H. Cyclic peptides as therapeutic agents and biochemical tools. Biomol. Ther. (Seoul), 2012, 20(1), 19-26.
[http://dx.doi.org/10.4062/biomolther.2012.20.1.019] [PMID: 24116270]
[55]
Demmer, O.; Frank, A.O.; Kessler, H. Design of cyclic peptides.Peptide and Protein Design for Biopharmaceutical Applications; John Wiley and Sons, 2009.
[http://dx.doi.org/10.1002/9780470749708.ch4]
[56]
Bérubé, C.; Borgia, A.; Voyer, N. A novel route towards cycle-tail peptides using oxime resin: teaching an old dog a new trick. Org. Biomol. Chem., 2018, 16(47), 9117-9123.
[http://dx.doi.org/10.1039/C8OB01868E] [PMID: 30270392]
[57]
Streefkerk, D.E.; Schmidt, M.; Ippel, J.H.; Hackeng, T.M.; Nuijens, T.; Timmerman, P.; van Maarseveen, J.H. Synthesis of constrained tetracyclic peptides by consecutive CEPS, CLIPS, and oxime ligation. Org. Lett., 2019, 21(7), 2095-2100.
[http://dx.doi.org/10.1021/acs.orglett.9b00378] [PMID: 30912446]
[58]
Chow, H.Y.; Zhang, Y.; Matheson, E.; Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev., 2019, 119, 9971-10001.
[http://dx.doi.org/10.1021/acs.chemrev.8b00657] [PMID: 31318534]
[59]
Angell, Y.; Burgess, K. Ring closure to β-turn mimics via copper-catalyzed azide/alkyne cycloadditions. J. Org. Chem., 2005, 70(23), 9595-9598.
[http://dx.doi.org/10.1021/jo0516180] [PMID: 16268639]
[60]
White, A.M.; de Veer, S.J.; Wu, G.; Harvey, P.J.; Yap, K.; King, G.J.; Swedberg, J.E.; Wang, C.K.; Law, R.H.P.; Durek, T.; Craik, D.J. Application and structural analysis of triazole-bridged disulfide mimetics in cyclic peptides. Angew. Chem. Int. Ed. Engl., 2020, 59(28), 11273-11277.
[http://dx.doi.org/10.1002/anie.202003435] [PMID: 32270580]
[61]
Malins, L.R.; deGruyter, J.N.; Robbins, K.J.; Scola, P.M.; Eastgate, M.D.; Ghadiri, M.R.; Baran, P.S. Peptide macrocyclization inspired by non-ribosomal imine natural products. J. Am. Chem. Soc., 2017, 139(14), 5233-5241.
[http://dx.doi.org/10.1021/jacs.7b01624] [PMID: 28326777]
[62]
Hili, R.; Rai, V.; Yudin, A.K. Macrocyclization of linear peptides enabled by amphoteric molecules. J. Am. Chem. Soc., 2010, 132(9), 2889-2891.
[http://dx.doi.org/10.1021/ja910544p] [PMID: 20155938]
[63]
Macmillan, D.; De Cecco, M.; Reynolds, N.L.; Santos, L.F.A.; Barran, P.E.; Dorin, J.R. Synthesis of cyclic peptides through an intramolecular amide bond rearrangement. ChemBioChem, 2011, 12(14), 2133-2136.
[http://dx.doi.org/10.1002/cbic.201100364] [PMID: 21805553]
[64]
Acosta, G.A.; Murray, L.; Royo, M.; de la Torre, B.G.; Albericio, F. Solid-phase synthesis of head to side-chain tyr-cyclodepsipeptides through a cyclative cleavage from Fmoc-MeDbz/MeNbz-resins. Front Chem., 2020, 8, 298.
[http://dx.doi.org/10.3389/fchem.2020.00298] [PMID: 32391324]
[65]
Nefzi, A.; Fenwick, J.E. N-terminus 4-chloromethyl thiazole peptide as a macrocyclization tool in the synthesis of cyclic peptides: application to the synthesis of conformationally constrained RGD-containing integrin ligands. Tetrahedron Lett., 2011, 52(7), 817-819.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.043] [PMID: 21423849]
[66]
Rivera, D.G.; Ojeda-Carralero, G.M.; Reguera, L.; Van der Eycken, E.V. Peptide macrocyclization by transition metal catalysis. Chem. Soc. Rev., 2020, 49(7), 2039-2059.
[http://dx.doi.org/10.1039/C9CS00366E] [PMID: 32142086]
[67]
LeValley, P.J.; Ovadia, E.M.; Bresette, C.A.; Sawicki, L.A.; Maverakis, E.; Bai, S.; Kloxin, A.M. Design of functionalized cyclic peptides through orthogonal Click reactions for cell culture and targeting applications. Chem. Commun. (Camb.), 2018, 54(50), 6923-6926.
[http://dx.doi.org/10.1039/C8CC03218A] [PMID: 29863200]
[68]
Kogon, Y.; Goren, L.; Pappo, D.; Rudi, A.; Kashman, Y. Cyclic endiamino peptides: A new synthesis of imidazopyrazines. Eur. J. Org. Chem., 2009, 2009, 1852-1854.
[http://dx.doi.org/10.1002/ejoc.200900008]
[69]
Claro, B.; Bastos, M.; Garcia-Fandino, R. Design and Applications of Cyclic Peptides; Elsevier Ltd., 2018.
[http://dx.doi.org/10.1016/B978-0-08-100736-5.00004-1]
[70]
Pineda-Castañeda, H.M.; Bonilla-Velásquez, L.D.; Castro, A.L.L.; Fierro-Medina, R.; García-Castañeda, J.E.; Rivera-Monroy, Z.J. Use of Click chemistry for obtaining an antimicrobial chimeric peptide containing the LfcinB and Buforin II minimal antimicrobial motifs. ChemistrySelect, 2020, 5, 1655-1657.
[http://dx.doi.org/10.1002/slct.201903834]
[71]
Collet, C.; Maskali, F.; Clément, A.; Chrétien, F.; Poussier, S.; Karcher, G.; Marie, P.Y.; Chapleur, Y.; Lamandé-Langle, S. Development of 6-[(18) F]fluoro-carbohydrate-based prosthetic groups and their conjugation to peptides via Click chemistry. J. Labelled Comp. Radiopharm., 2016, 59(2), 54-62.
[http://dx.doi.org/10.1002/jlcr.3362] [PMID: 26708055]
[72]
Kumar, S.; Hause, G.; Binder, W.H. Thio-bromo “Click” reaction derived polymer-peptide conjugates for their self-assembled fibrillar nanostructures. Macromol. Biosci., 2020, 20(6)e2000048
[http://dx.doi.org/10.1002/mabi.202000048] [PMID: 32285651]
[73]
Liu, B.; Huang, H.; Yang, Z.; Liu, B.; Gou, S.; Zhong, C.; Han, X.; Zhang, Y.; Ni, J.; Wang, R. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Peptides, 2017, 88, 115-125.
[http://dx.doi.org/10.1016/j.peptides.2016.12.016] [PMID: 28040477]
[74]
Masri, E. Ahsanullah; Accorsi, M.; Rademann, J. Side-chain modification of peptides using a phosphoranylidene amino acid. Org. Lett., 2020, 22(8), 2976-2980.
[http://dx.doi.org/10.1021/acs.orglett.0c00713] [PMID: 32223201]
[75]
Quigley, N.G.; Tomassi, S.; Di Leva, F.S.; Di Maro, S.; Richter, F.; Steiger, K. Click‐chemistry (CuAAC) trimerization of an αvβ6‐integrin targeting Ga‐68‐peptide: enhanced contrast for in‐vivo PET imaging of human lung adenocarcinoma xenografts. ChemBioChem, 2020, 2020, 2836-2843.
[http://dx.doi.org/10.1002/cbic.202000200 ]
[76]
Bock, V.D.; Speijer, D.; Hiemstra, H.; van Maarseveen, J.H. 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org. Biomol. Chem., 2007, 5(6), 971-975.
[http://dx.doi.org/10.1039/b616751a] [PMID: 17340013]
[77]
Ptaszyńska, N.; Olkiewicz, K.; Okońska, J.; Gucwa, K.; Łęgowska, A.; Gitlin-Domagalska, A.; Dębowski, D.; Lica, J.; Heldt, M.; Milewski, S.; Ng, T.B.; Rolka, K. Peptide conjugates of lactoferricin analogues and antimicrobials-Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides, 2019, 117170079
[http://dx.doi.org/10.1016/j.peptides.2019.04.006] [PMID: 30959143]
[78]
Kluba, C.A.; Bauman, A.; Valverde, I.E.; Vomstein, S.; Mindt, T.L. Dual-targeting conjugates designed to improve the efficacy of radiolabeled peptides. Org. Biomol. Chem., 2012, 10(37), 7594-7602.
[http://dx.doi.org/10.1039/c2ob26127h] [PMID: 22898743]
[79]
Hausner, S.H.; Marik, J.; Gagnon, M.K.J.; Sutcliffe, J.L. In vivo positron emission tomography (PET) imaging with an alphavbeta6 specific peptide radiolabeled using 18F-“Click” chemistry: evaluation and comparison with the corresponding 4-[18F]fluorobenzoyl- and 2-[18F]fluoropropionyl-peptides. J. Med. Chem., 2008, 51(19), 5901-5904.
[http://dx.doi.org/10.1021/jm800608s] [PMID: 18785727]
[80]
Tzokova, N.; Fernyhough, C.M.; Butler, M.F.; Armes, S.P.; Ryan, A.J.; Topham, P.D.; Adams, D.J. The effect of PEO length on the self-assembly of poly(ethylene oxide)-tetrapeptide conjugates prepared by “Click” chemistry. Langmuir, 2009, 25(18), 11082-11089.
[http://dx.doi.org/10.1021/la901413n] [PMID: 19685857]
[81]
Govdi, A.I.; Vasilevsky, S.F.; Nenajdenko, V.G.; Sokolova, N.V.; Tolstikov, G.A. 1,3-Cycloaddition synthesis of 1,2,3-triazole conjugates of betulonic acid with peptides. Russ. Chem. Bull., 2011, 60, 2401-2405.
[http://dx.doi.org/10.1007/s11172-011-0369-3]
[82]
Artyushin, O.I.; Sharova, E.V.; Yarkevich, A.N.; Genkina, G.K.; Vinogradova, N.V.; Brel, V.K. Design of phosphonate analogs of short peptides by “Click” chemistry. Russ. Chem. Bull., 2015, 64, 2172-2177.
[http://dx.doi.org/10.1007/s11172-015-1134-9]
[83]
Sokolova, N.V.; Vorobyeva, D.V.; Osipov, S.N.; Vasilyeva, T.P.; Nenajdenko, V.G. Synthesis of α-trifluoromethyl-α-hydroxy acid-peptide conjugates via Click chemistry. Synthesis (Stuttg), 2012, 44, 130-136.
[http://dx.doi.org/10.1055/s-0031-1289609]
[84]
Vats, K.; Sharma, R.; Kameswaran, M.; Sarma, H.D.; Satpati, D.; Dash, A. Design, synthesis, and comparative evaluation of 99mTc(CO)3 -labeled N-terminal and C-terminal modified asparagine-glycine-arginine peptide constructs. J. Pept. Sci., 2019, 25(7)e3192
[http://dx.doi.org/10.1002/psc.3192] [PMID: 31309677]
[85]
Zhang, W.Y.; Banerjee, S.; Imberti, C.; Clarkson, G.J.; Wang, Q.; Zhong, Q. Strategies for conjugating iridium(III) anticancer complexes to targeting peptides via copper-free Click chemistry. Inorg. Chim. Acta, 2020, 503119396
[http://dx.doi.org/10.1016/j.ica.2019.119396]
[86]
Wang, X.; Gobbo, P.; Suchy, M.; Workentin, M.S.; Hudson, R.H.E. Peptide-decorated gold nanoparticles via strain-promoted azide-alkyne cycloaddition and post assembly deprotection. RSC Advances, 2014, 4, 43087-43091.
[http://dx.doi.org/10.1039/C4RA07574A]
[87]
Sachin, K.; Jadhav, V.H.; Kim, E.M.; Kim, H.L.; Lee, S.B.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, D.W. F-18 labeling protocol of peptides based on chemically orthogonal strain-promoted cycloaddition under physiologically friendly reaction conditions. Bioconjug. Chem., 2012, 23(8), 1680-1686.
[http://dx.doi.org/10.1021/bc3002425] [PMID: 22770524]
[88]
DeForest, C.A.; Polizzotti, B.D.; Anseth, K.S. Sequential Click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat. Mater., 2009, 8(8), 659-664.
[http://dx.doi.org/10.1038/nmat2473] [PMID: 19543279]
[89]
Slagle, C.J.; Thamm, D.H.; Randall, E.K.; Borden, M.A. Click conjugation of cloaked peptide ligands to microbubbles. Bioconjug. Chem., 2018, 29(5), 1534-1543.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00084] [PMID: 29614859]
[90]
Hoyle, C.E.; Bowman, C.N. Thiol-ene Click chemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(9), 1540-1573.
[http://dx.doi.org/10.1002/anie.200903924] [PMID: 20166107]
[91]
Williams, E.T.; Harris, P.W.R.; Jamaluddin, M.A.; Loomes, K.M.; Hay, D.L.; Brimble, M.A. Solid-phase thiol-ene lipidation of peptides for the synthesis of a potent CGRP receptor antagonist. Angew. Chem. Int. Ed. Engl., 2018, 57(36), 11640-11643.
[http://dx.doi.org/10.1002/anie.201805208] [PMID: 29978532]
[92]
Stewart, J.M. Peptide Synthesis; Springer: New York, 2020.
[93]
Forner, M.; Defaus, S.; Andreu, D. Peptide-based multiepitopic vaccine platforms via Click reactions. J. Org. Chem., 2020, 85(3), 1626-1634.
[http://dx.doi.org/10.1021/acs.joc.9b02798] [PMID: 31782300]
[94]
Wang, Y.; Bruno, B.J.; Cornillie, S.; Nogieira, J.M.; Chen, D.; Cheatham, T.E., III; Lim, C.S.; Chou, D.H. Application of thiol-yne/thiol-ene reactions for peptide and protein macrocyclizations. Chemistry, 2017, 23(29), 7087-7092.
[http://dx.doi.org/10.1002/chem.201700572] [PMID: 28345248]
[95]
Wängler, C.; Maschauer, S.; Prante, O.; Schäfer, M.; Schirrmacher, R.; Bartenstein, P.; Eisenhut, M.; Wängler, B. Multimerization of cRGD peptides by Click chemistry: synthetic strategies, chemical limitations, and influence on biological properties. ChemBioChem, 2010, 11(15), 2168-2181.
[http://dx.doi.org/10.1002/cbic.201000386] [PMID: 20827791]
[96]
Sun, Y.; Liu, H.; Cheng, L.; Zhu, S.; Cai, C.; Yang, T. Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. Polym. Int., 2018, 67, 25-31.
[http://dx.doi.org/10.1002/pi.5490]
[97]
Elbert, D.L.; Hubbell, J.A. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules, 2001, 2(2), 430-441.
[http://dx.doi.org/10.1021/bm0056299] [PMID: 11749203]
[98]
de Araújo, A.D.; Palomo, J.M.; Cramer, J.; Seitz, O.; Alexandrov, K.; Waldmann, H. Diels-Alder ligation of peptides and proteins. Chemistry, 2006, 12(23), 6095-6109.
[http://dx.doi.org/10.1002/chem.200600148] [PMID: 16807971]
[99]
Montgomery, J.E.; Donnelly, J.A.; Fanning, S.W.; Speltz, T.E.; Shangguan, X.; Coukos, J.S.; Greene, G.L.; Moellering, R.E. Versatile peptide macrocyclization with Diels-Alder cycloadditions. J. Am. Chem. Soc., 2019, 141(41), 16374-16381.
[http://dx.doi.org/10.1021/jacs.9b07578] [PMID: 31523967]
[100]
Schilling, C.I.; Jung, N.; Biskup, M.; Schepers, U.; Bräse, S. Bioconjugation via azide-Staudinger ligation: an overview. Chem. Soc. Rev., 2011, 40(9), 4840-4871.
[http://dx.doi.org/10.1039/c0cs00123f] [PMID: 21687844]
[101]
Soellner, M.B.; Tam, A.; Raines, R.T. Staudinger ligation of peptides at non-glycyl residues. J. Org. Chem., 2006, 71(26), 9824-9830.
[http://dx.doi.org/10.1021/jo0620056] [PMID: 17168602]
[102]
Kim, H.; Cho, J.K.; Aimoto, S.; Lee, Y.S. Solid-phase staudinger ligation from a novel core-shell-type resin: a tool for facile condensation of small peptide fragments. Org. Lett., 2006, 8(6), 1149-1151.
[http://dx.doi.org/10.1021/ol0530629] [PMID: 16524290]
[103]
Guthrie, Q.A.E.; Proulx, C. Oxime ligation via in situ oxidation of N-phenylglycinyl peptides. Org. Lett., 2018, 20(9), 2564-2567.
[http://dx.doi.org/10.1021/acs.orglett.8b00713] [PMID: 29694052]
[104]
Decostaire, I.E.; Lelièvre, D.; Aucagne, V.; Delmas, A.F. Solid phase oxime ligations for the iterative synthesis of polypeptide conjugates. Org. Biomol. Chem., 2014, 12(29), 5536-5543.
[http://dx.doi.org/10.1039/C4OB00760C] [PMID: 24953534]
[105]
Guthrie, Q.A.E.; Young, H.A.; Proulx, C. Ketoxime peptide ligations: oxidative couplings of alkoxyamines to N-aryl peptides. Chem. Sci. (Camb.), 2019, 10(41), 9506-9512.
[http://dx.doi.org/10.1039/C9SC04028E] [PMID: 32110307]
[106]
Agouridas, V.; El Mahdi, O.; Diemer, V.; Cargoët, M.; Monbaliu, J.M.; Melnyk, O. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chem. Rev., 2019, 119(12), 7328-7443.
[http://dx.doi.org/10.1021/acs.chemrev.8b00712] [PMID: 31050890]
[107]
Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S.J. Native chemical ligation at valine: a contribution to peptide and glycopeptide synthesis. Angew. Chem. Int. Ed. Engl, 2008, 47(44), 8521-8524.
[http://dx.doi.org/10.1002/anie.200803523] [PMID: 18833563]
[108]
Ingale, S.; Buskas, T.; Boons, G.J. Synthesis of glyco(lipo)peptides by liposome- mediated native chemical ligation. Org. Lett 2006, 8(25), 5785-5788.
[http://dx.doi.org/10.1021/ol062423x] [PMID: 17134272]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 24
ISSUE: 21
Year: 2020
Published on: 09 September, 2020
Page: [2448 - 2474]
Pages: 27
DOI: 10.2174/1385272824999200910094034
Price: $65

Article Metrics

PDF: 30
HTML: 2