RNA Splicing: Basic Aspects Underlie Antitumor Targeting

Author(s): Alzahraa A.M. Fergany*, Victor V. Tatarskiy

Journal Name: Recent Patents on Anti-Cancer Drug Discovery

Volume 15 , Issue 4 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: RNA splicing, a fundamental step in gene expression, is aimed at intron removal and ordering of exons to form the protein’s reading frame.

Objective: This review is focused on the role of RNA splicing in cancer biology; the splicing abnormalities that lead to tumor progression emerge as targets for therapeutic intervention.

Methods: We discuss the role of aberrant mRNA splicing in carcinogenesis and drug response.

Results and Conclusion: Pharmacological modulation of RNA splicing sets the stage for treatment approaches in situations where mRNA splicing is a clinically meaningful mechanism of the disease.

Keywords: Cancer, molecular drug targets, RNA splicing, therapy, protein kinase inhibitors.

[1]
Braun JE, Friedman LJ, Gelles J, Moore MJ. Synergistic assembly of human pre-spliceosomes across introns and exons. eLife 2018; 7e37751
[http://dx.doi.org/10.7554/eLife.37751] [PMID: 29932423]
[2]
Nagai K, Muto Y, Pomeranz Krummel DA, Kambach C, Ignjatovic T, Walke S, et al. structure and assembly of the spliceosomal snRNPs. Biochem Soc 2001; 29(2)
[http://dx.doi.org/10.1042/bst0290015]
[3]
Will CL, Lührmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol 2001; 13(3): 290-301.
[http://dx.doi.org/10.1016/S0955-0674(00)00211-8] [PMID: 11343899]
[4]
Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000; 6(9): 1197-211.
[http://dx.doi.org/10.1017/S1355838200000960] [PMID: 10999598]
[5]
Zhang J, Manley JL. Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 2013; 3(11): 1228-37.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0253] [PMID: 24145039]
[6]
Wessagowit V, Nalla VK, Rogan PK, McGrath JA. Normal and abnormal mechanisms of gene splicing and relevance to inherited skin diseases. J Dermatol Sci 2005; 40(2): 73-84.
[http://dx.doi.org/10.1016/j.jdermsci.2005.05.006] [PMID: 16054339]
[7]
Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 1987; 15(17): 7155-74.
[http://dx.doi.org/10.1093/nar/15.17.7155] [PMID: 3658675]
[8]
Brett D, Pospisil H, Valcárcel J, Reich J, Bork P. Alternative splicing and genome complexity. Nat Genet 2002; 30(1): 29-30.
[http://dx.doi.org/10.1038/ng803] [PMID: 11743582]
[9]
Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotechnol 2004; 22(5): 535-46.
[http://dx.doi.org/10.1038/nbt964] [PMID: 15122293]
[10]
Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet 2002; 30(1): 13-9.
[http://dx.doi.org/10.1038/ng0102-13] [PMID: 11753382]
[11]
Srebrow A, Kornblihtt AR. The connection between splicing and cancer. J Cell Sci 2006; 119(Pt 13): 2635-41.
[http://dx.doi.org/10.1242/jcs.03053] [PMID: 16787944]
[12]
Brow DA. Allosteric cascade of spliceosome activation. Annu Rev Genet 2002; 36: 333-60.
[http://dx.doi.org/10.1146/annurev.genet.36.043002.091635] [PMID: 12429696]
[13]
Will CL, Lűhrmann R. Spliceosome structure and function.The RNA World. 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 2006; pp. 369-400.
[14]
Burge CB, Tuschl TH, Sharp PA. Splicing of precursors to mRNAs by the spliceosomes.The RNA World. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 1999; pp. 525-60.
[15]
Tycowski KT, Kolev NG, Conard NK, Fok V, Steitz JA. The ever-growing world of small nuclear ribonucleoproteins.The RNA World. 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 2006; pp. 327-68.
[16]
Nilsen TW. RNA-RNA interactions in nuclear pre-mRNA splicing.RNA structure and function. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 1998; pp. 279-307.
[17]
Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure 2008; 16(11): 1605-15.
[http://dx.doi.org/10.1016/j.str.2008.08.011] [PMID: 19000813]
[18]
Grosso AR, Martins S, Carmo-Fonseca M. The emerging role of splicing factors in cancer. EMBO Rep 2008; 9(11): 1087-93.
[http://dx.doi.org/10.1038/embor.2008.189] [PMID: 18846105]
[19]
Ghigna C, Giordano S, Shen H, et al. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol Cell 2005; 20(6): 881-90.
[http://dx.doi.org/10.1016/j.molcel.2005.10.026] [PMID: 16364913]
[20]
Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14(3): 185-93.
[http://dx.doi.org/10.1038/nsmb1209] [PMID: 17310252]
[21]
Kędzierska H, Piekiełko-Witkowska A. Splicing factors of SR and hnRNP families as regulators of apoptosis in cancer. Cancer Lett 2017; 396: 53-65.
[http://dx.doi.org/10.1016/j.canlet.2017.03.013] [PMID: 28315432]
[22]
Fischer DC, Noack K, Runnebaum IB, et al. Expression of splicing factors in human ovarian cancer. Oncol Rep 2004; 11(5): 1085-90.
[http://dx.doi.org/10.3892/or.11.5.1085] [PMID: 15069551]
[23]
Sharma S, Liao W, Zhou X, Wong DT, Lichtenstein A. Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Mol Cancer Ther 2011; 10(9): 1751-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0248] [PMID: 21764905]
[24]
Xiao R, Sun Y, Ding JH, et al. Splicing regulator SC35 is essential for genomic stability and cell proliferation during mammalian organogenesis. Mol Cell Biol 2007; 27(15): 5393-402.
[http://dx.doi.org/10.1128/MCB.00288-07] [PMID: 17526736]
[25]
Jia R, Li C, McCoy JP, Deng CX, Zheng ZM. SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int J Biol Sci 2010; 6(7): 806-26.
[http://dx.doi.org/10.7150/ijbs.6.806] [PMID: 21179588]
[26]
Jensen MA, Wilkinson JE, Krainer AR. Splicing factor SRSF6 promotes hyperplasia of sensitized skin. Nat Struct Mol Biol 2014; 21(2): 189-97.
[http://dx.doi.org/10.1038/nsmb.2756] [PMID: 24440982]
[27]
He X, Ee PL, Coon JS, Beck WT. Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res 2004; 10(14): 4652-60.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0439] [PMID: 15269137]
[28]
Cohen-Eliav M, Golan-Gerstl R, Siegfried Z, et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J Pathol 2013; 229(4): 630-9.
[http://dx.doi.org/10.1002/path.4129] [PMID: 23132731]
[29]
Tang Y, Horikawa I, Ajiro M, et al. Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 2013; 32(22): 2792-8.
[http://dx.doi.org/10.1038/onc.2012.288] [PMID: 22777358]
[30]
Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 2016; 16(7): 413-30.
[http://dx.doi.org/10.1038/nrc.2016.51] [PMID: 27282250]
[31]
David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010; 463(7279): 364-8.
[http://dx.doi.org/10.1038/nature08697] [PMID: 20010808]
[32]
Golan-Gerstl R, Cohen M, Shilo A, et al. Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma. Cancer Res 2011; 71(13): 4464-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4410] [PMID: 21586613]
[33]
Patry C, Bouchard L, Labrecque P, et al. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 2003; 63(22): 7679-88.
[PMID: 14633690]
[34]
Chen M, Zhang J, Manley JL. Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res 2010; 70(22): 8977-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2513] [PMID: 20978194]
[35]
Balasubramani M, Day BW, Schoen RE, Getzenberg RH. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer. Cancer Res 2006; 66(2): 763-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3771] [PMID: 16424007]
[36]
Ri M, Tashiro E, Oikawa D, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J 2012; 2(7)e79
[http://dx.doi.org/10.1038/bcj.2012.26] [PMID: 22852048]
[37]
Jarmin S, Kymalainen H, Popplewell L, Dickson G. New developments in the use of gene therapy to treat Duchenne muscular dystrophy. Expert Opin Biol Ther 2014; 14(2): 209-30.
[http://dx.doi.org/10.1517/14712598.2014.866087] [PMID: 24308293]
[38]
Goyenvalle A, Griffith G, Babbs A, et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 2015; 21(3): 270-5.
[http://dx.doi.org/10.1038/nm.3765] [PMID: 25642938]
[39]
Salton M, Misteli T. Small molecule modulators of pre-mRNA splicing in Cancer therapy. Trends Mol Med 2016; 22(1): 28-37.
[http://dx.doi.org/10.1016/j.molmed.2015.11.005] [PMID: 26700537]
[40]
Convertini P, Shen M, Potter PM, et al. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res 2014; 42(8): 4947-61.
[http://dx.doi.org/10.1093/nar/gku151] [PMID: 24623796]
[41]
Corrionero A, Miñana B, Valcárcel J. Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 2011; 25(5): 445-59.
[http://dx.doi.org/10.1101/gad.2014311] [PMID: 21363963]
[42]
Fan L, Lagisetti C, Edwards CC, Webb TR, Potter PM. Sudemycins, novel small molecule analogues of FR901464, induce alternative gene splicing. ACS Chem Biol 2011; 6(6): 582-9.
[http://dx.doi.org/10.1021/cb100356k] [PMID: 21344922]
[43]
Kashyap MK, Kumar D, Villa R, et al. Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica 2015; 100(7): 945-54.
[http://dx.doi.org/10.3324/haematol.2014.122069] [PMID: 25862704]
[44]
Kim E, Ilagan JO, Liang Y, et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 2015; 27(5): 617-30.
[http://dx.doi.org/10.1016/j.ccell.2015.04.006] [PMID: 25965569]
[45]
Obeng EA, Chappell RJ, Seiler M, et al. Physiologic expression of Sf3b1 (K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 2016; 30(3): 404-17.
[http://dx.doi.org/10.1016/j.ccell.2016.08.006] [PMID: 27622333]
[46]
O’Brien K, Matlin AJ, Lowell AM, Moore MJ. The biflavonoid isoginkgetin is a general inhibitor of Pre-mRNA splicing. J Biol Chem 2008; 283(48): 33147-54.
[http://dx.doi.org/10.1074/jbc.M805556200] [PMID: 18826947]
[47]
Pilch B, Allemand E, Facompré M, et al. Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res 2001; 61(18): 6876-84.
[PMID: 11559564]
[48]
Tazi J, Bakkour N, Soret J, et al. Selective inhibition of topoisomerase I and various steps of spliceosome assembly by diospyrin derivatives. Mol Pharmacol 2005; 67(4): 1186-94.
[http://dx.doi.org/10.1124/mol.104.007633] [PMID: 15625279]
[49]
Han T, Goralski M, Gaskill N, et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Sci 2017; 356(6336)
[http://dx.doi.org/10.1126/science.aal3755]
[50]
Uehara T, Minoshima Y, Sagane K, et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat Chem Biol 2017; 13(6): 675-80.
[http://dx.doi.org/10.1038/nchembio.2363] [PMID: 28437394]
[51]
Agrawal AA, Yu L, Smith PG, Buonamici S. Targeting splicing abnormalities in cancer. Curr Opin Genet Dev 2018; 48: 67-74.
[http://dx.doi.org/10.1016/j.gde.2017.10.010] [PMID: 29136527]
[52]
Lee SC, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med 2016; 22(9): 976-86.
[http://dx.doi.org/10.1038/nm.4165] [PMID: 27603132]
[53]
Wan L, Yu W, Shen E, et al. SRSF6-regulated alternative splicing that promotes tumour progression offers a therapy target for colorectal cancer. Gut 2019; 68(1): 118-29.
[http://dx.doi.org/10.1136/gutjnl-2017-314983] [PMID: 29114070]
[54]
Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355(23): 2408-17.
[http://dx.doi.org/10.1056/NEJMoa062867] [PMID: 17151364]
[55]
Hughes TP, Hochhaus A, Branford S, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood 2010; 116(19): 3758-65.
[http://dx.doi.org/10.1182/blood-2010-03-273979] [PMID: 20679528]
[56]
Itonaga H, Tsushima H, Imanishi D, et al. Molecular analysis of the BCR-ABL1 kinase domain in chronic-phase chronic myelogenous leukemia treated with tyrosine kinase inhibitors in practice: study by the Nagasaki CML Study Group. Leuk Res 2014; 38(1): 76-83.
[http://dx.doi.org/10.1016/j.leukres.2013.10.022] [PMID: 24262285]
[57]
Gaillard JB, Arnould C, Bravo S, et al. Exon 7 deletion in the bcr-abl gene is frequent in chronic myeloid leukemia patients and is not correlated with resistance against imatinib. Mol Cancer Ther 2010; 9(11): 3083-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0595] [PMID: 21045136]
[58]
Laudadio J, Deininger MW, Mauro MJ, Druker BJ, Press RD. An intron-derived insertion/truncation mutation in the BCR-ABL kinase domain in chronic myeloid leukemia patients undergoing kinase inhibitor therapy. J Mol Diagn 2008; 10(2): 177-80.
[http://dx.doi.org/10.2353/jmoldx.2008.070128] [PMID: 18276770]
[59]
O’Hare T, Zabriskie MS, Eide CA, et al. The BCR-ABL35INS insertion/truncation mutant is kinase-inactive and does not contribute to tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Blood 2011; 118(19): 5250-4.
[http://dx.doi.org/10.1182/blood-2011-05-349191] [PMID: 21908430]
[60]
Lee TS, Ma W, Zhang X, et al. BCR-ABL alternative splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations. Mol Cancer Ther 2008; 7(12): 3834-41.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0482] [PMID: 19056677]
[61]
Kuroda J, Puthalakath H, Cragg MS, et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103(40): 14907-12.
[http://dx.doi.org/10.1073/pnas.0606176103] [PMID: 16997913]
[62]
Ng KP, Hillmer AM, Chuah CT, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18(4): 521-8.
[http://dx.doi.org/10.1038/nm.2713] [PMID: 22426421]
[63]
Liu J, Bhadra M, Sinnakannu JR, et al. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 2017; 8(44): 77567-85.
[http://dx.doi.org/10.18632/oncotarget.20658] [PMID: 29100409]
[64]
Moynahan ME, Cui TY, Jasin M. Homology-directed dna repair, mitomycin-c resistance, and chromosome stability is restored with correction of a Brca1 mutation. Cancer Res 2001; 61(12): 4842-50.
[PMID: 11406561]
[65]
Scully R, Chen J, Ochs RL, et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90(3): 425-35.
[http://dx.doi.org/10.1016/S0092-8674(00)80503-6] [PMID: 9267023]
[66]
Friedman LS, Ostermeyer EA, Szabo CI, et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet 1994; 8(4): 399-404.
[http://dx.doi.org/10.1038/ng1294-399] [PMID: 7894493]
[67]
Szabo CI, King MC. Inherited breast and ovarian cancer. Hum Mol Genet 1995; 4(Spec No): 1811-7.
[http://dx.doi.org/10.1093/hmg/4.suppl_1.1811] [PMID: 8541881]
[68]
Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913-7.
[http://dx.doi.org/10.1038/nature03443] [PMID: 15829966]
[69]
Liu C, Srihari S, Cao KA, et al. A fine-scale dissection of the DNA double-strand break repair machinery and its implications for breast cancer therapy. Nucleic Acids Res 2014; 42(10): 6106-27.
[http://dx.doi.org/10.1093/nar/gku284] [PMID: 24792170]
[70]
Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 2014; 15(8): 852-61.
[http://dx.doi.org/10.1016/S1470-2045(14)70228-1] [PMID: 24882434]
[71]
Kim Y, Kim A, Sharip A, et al. Reverse the Resistance to PARP Inhibitors. Int J Biol Sci 2017; 13(2): 198-208.
[http://dx.doi.org/10.7150/ijbs.17240] [PMID: 28255272]
[72]
Thompson D, Easton D. Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev 2002; 11(4): 329-36.
[PMID: 11927492]
[73]
Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 2001; 68(3): 700-10.
[http://dx.doi.org/10.1086/318787] [PMID: 11179017]
[74]
Wang Y, Bernhardy AJ, Cruz C, et al. The BRCA1-Delta11q alternative splice isoform bypasses germline mutations and promotes therapeutic resistance to PARP inhibition and cisplatin. Cancer Res 2016; 76(9): 2778-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0186] [PMID: 27197267]
[75]
Meyer S, Stevens A, Paredes R, et al. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis 2017; 8(6)e2875
[http://dx.doi.org/10.1038/cddis.2017.264] [PMID: 28617445]
[76]
Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. OncoTargets Ther 2013; 7: 57-68.
[PMID: 24379683]
[77]
Bourdon JC, Khoury MP, Diot A, et al. p53 mutant breast cancer patients expressing p53γ have as good a prognosis as wild-type p53 breast cancer patients. Breast Cancer Res 2011; 13(1): R7.
[http://dx.doi.org/10.1186/bcr2811] [PMID: 21251329]
[78]
Avery-Kiejda KA, Zhang XD, Adams LJ, et al. Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res 2008; 14(6): 1659-68.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1422] [PMID: 18310316]
[79]
Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417(6892): 949-54.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[80]
Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 2001; 61(9): 3595-8.
[PMID: 11325826]
[81]
Wellbrock C, Karasarides M, Marais R. The RAF proteins take centre stage. Nat Rev Mol Cell Biol 2004; 5(11): 875-85.
[http://dx.doi.org/10.1038/nrm1498] [PMID: 15520807]
[82]
Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363(9): 809-19.
[http://dx.doi.org/10.1056/NEJMoa1002011] [PMID: 20818844]
[83]
Poulikakos PI, Persaud Y, Janakiraman M, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480(7377): 387-90.
[http://dx.doi.org/10.1038/nature10662] [PMID: 22113612]
[84]
Seitz AK, Thoene S, Bietenbeck A, et al. AR-V7 in peripheral whole blood of patients with castration-resistant prostate cancer: association with treatment-specific outcome under abiraterone and enzalutamide. Eur Urol 2017; 72(5): 828-34.
[http://dx.doi.org/10.1016/j.eururo.2017.07.024] [PMID: 28818355]
[85]
Van Etten JL, Nyquist M, Li Y, et al. Targeting a single alternative polyadenylation site coordinately blocks expression of androgen receptor mRNA splice variants in prostate cancer. Cancer Res 2017; 77(19): 5228-35.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0320] [PMID: 28928128]
[86]
Hu R, Dunn TA, Wei S, et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69(1): 16-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2764] [PMID: 19117982]
[87]
Hu R, Lu C, Mostaghel EA, et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72(14): 3457-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-3892] [PMID: 22710436]
[88]
Guo Z, Yang X, Sun F, et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69(6): 2305-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3795] [PMID: 19244107]
[89]
Di C, Syafrizayanti , Zhang Q, et al. Function, clinical application, and strategies of Pre-mRNA splicing in cancer. Cell Death Differ 2019; 26(7): 1181-94.
[http://dx.doi.org/10.1038/s41418-018-0231-3] [PMID: 30464224]
[90]
Tummala R, Lou W, Gao AC, Nadiminty N. Quercetin targets hnRNPA1 to overcome enzalutamide resistance in prostate cancer cells. Mol Cancer Ther 2017; 16(12): 2770-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0030] [PMID: 28729398]
[91]
Nadiminty N, Tummala R, Liu C, Lou W, Evans CP, Gao AC. NF-kappaB2/p52:c-Myc: hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther 2015; 14(8): 1884-95.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-1057] [PMID: 26056150]
[92]
Thomas C, Gustafsson JA. Estrogen receptor mutations and functional consequences for breast cancer. Trends Endocrinol Metab 2015; 26(9): 467-76.
[http://dx.doi.org/10.1016/j.tem.2015.06.007] [PMID: 26183887]
[93]
Inoue K, Fry EA. Aberrant splicing of estrogen receptor, HER2, and CD44 genes in breast cancer. Genet Epigenet 2015; 7: 19-32.
[http://dx.doi.org/10.4137/GEG.S35500] [PMID: 26692764]
[94]
Barone I, Brusco L, Fuqua SA. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res 2010; 16(10): 2702-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1753] [PMID: 20427689]
[95]
Shi L, Dong B, Li Z, et al. Expression of ER-alpha36, a novel variant of estrogen receptor alpha, and resistance to tamoxifen treatment in breast cancer. J Clin Oncol 2009; 27(21): 3423-9.
[http://dx.doi.org/10.1200/JCO.2008.17.2254] [PMID: 19487384]
[96]
Wang ZY, Yin L. Estrogen receptor alpha-36 (ER-α36): A new player in human breast cancer. Mol Cell Endocrinol 2015; 418(Pt 3): 193-206.
[http://dx.doi.org/10.1016/j.mce.2015.04.017] [PMID: 25917453]
[97]
Wang Q, Jiang J, Ying G, et al. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res 2018; 28(3): 336-58.
[http://dx.doi.org/10.1038/cr.2018.15] [PMID: 29393296]
[98]
Zhang X, Wang ZY. Estrogen receptor-α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity. Endocrinology 2013; 154(6): 1990-8.
[http://dx.doi.org/10.1210/en.2013-1116] [PMID: 23546601]
[99]
Fruman DA, Rommel C. PI3K and cancer: Lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13(2): 140-56.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[100]
Wang BD, Ceniccola K, Hwang S, et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. US2014364483A1 2017.
[101]
Yang Q, Modi P, Newcomb T, Quéva C, Gandhi V. Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 2015; 21(7): 1537-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2034] [PMID: 25670221]
[102]
Gopal AK, Kahl BS, de Vos S, et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370(11): 1008-18.
[http://dx.doi.org/10.1056/NEJMoa1314583] [PMID: 24450858]
[103]
Shah A, Mangaonkar A. Idelalisib: A novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann Pharmacother 2015; 49(10): 1162-70.
[http://dx.doi.org/10.1177/1060028015594813] [PMID: 26185276]
[104]
Boutz PL, Bhutkar A, Sharp PA. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 2015; 29(1): 63-80.
[http://dx.doi.org/10.1101/gad.247361.114] [PMID: 25561496]
[105]
Dutertre M, Sanchez G, De Cian MC, et al. Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol 2010; 17(11): 1358-66.
[http://dx.doi.org/10.1038/nsmb.1912] [PMID: 20972445]
[106]
Gabriel M, Delforge Y, Deward A, et al. Role of the splicing factor SRSF4 in cisplatin-induced modifications of pre-mRNA splicing and apoptosis. BMC Cancer 2015; 15: 227.
[http://dx.doi.org/10.1186/s12885-015-1259-0] [PMID: 25884497]
[107]
Lambert CA, Garbacki N, Colige AC. Chemotherapy induces alternative transcription and splicing: Facts and hopes for cancer treatment. Int J Biochem Cell Biol 2017; 91(Pt B): 84-97.
[108]
Calabretta S, Bielli P, Passacantilli I, et al. Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene 2016; 35(16): 2031-9.
[http://dx.doi.org/10.1038/onc.2015.270] [PMID: 26234680]
[109]
Kano Y, Akutsu M, Tsunoda S, et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97(7): 1999-2007.
[http://dx.doi.org/10.1182/blood.V97.7.1999] [PMID: 11264164]
[110]
Chang WH, Liu TC, Yang WK, et al. Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib. Cancer Res 2011; 71(2): 383-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1037] [PMID: 21224352]
[111]
Havens MA, Hastings ML. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44(14): 6549-63.
[http://dx.doi.org/10.1093/nar/gkw533] [PMID: 27288447]
[112]
Sarkaria JN, Kitange GJ, James CD, et al. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 2008; 14(10): 2900-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1719] [PMID: 18483356]
[113]
Benhar M, Engelberg D, Levitzki A. Cisplatin-induced activation of the EGF receptor. Oncogene 2002; 21(57): 8723-31.
[http://dx.doi.org/10.1038/sj.onc.1205980] [PMID: 12483525]
[114]
Mogilevsky M, Shimshon O, Kumar S, et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res 2018; 46(21): 11396-404.
[http://dx.doi.org/10.1093/nar/gky921] [PMID: 30329087]
[115]
Jacobs SS, Fox E, Dennie C, Morgan LB, McCully CL, Balis FM. Plasma and cerebrospinal fluid pharmacokinetics of intravenous oxaliplatin, cisplatin, and carboplatin in nonhuman primates. Clin Cancer Res 2005; 11(4): 1669-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1807] [PMID: 15746072]
[116]
Jarhad DB, Mashelkar KK, Kim HR, Noh M, Jeong LS. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors as potential therapeutics. J Med Chem 2018; 61(22): 9791-810.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00185] [PMID: 29985601]
[117]
Tazarki H, Zeinyeh W, Esvan YJ, et al. New pyrido[3,4-g]quinazoline derivatives as CLK1 and DYRK1A inhibitors: Synthesis, biological evaluation and binding mode analysis. Eur J Med Chem 2019; 166: 304-17.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.052] [PMID: 30731399]
[118]
Nayler O, Schnorrer F, Stamm S, Ullrich A. The cellular localization of the murine serine/arginine-rich protein kinase CLK2 is regulated by serine 141 autophosphorylation. J Biol Chem 1998; 273(51): 34341-8.
[http://dx.doi.org/10.1074/jbc.273.51.34341] [PMID: 9852100]
[119]
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271(43): 27176-83.
[http://dx.doi.org/10.1074/jbc.271.43.27176] [PMID: 8900211]
[120]
Muraki M, Ohkawara B, Hosoya T, et al. Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 2004; 279(23): 24246-54.
[http://dx.doi.org/10.1074/jbc.M314298200] [PMID: 15010457]
[121]
Coombs TC, Tanega C, Shen M, et al. Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315. Bioorg Med Chem Lett 2013; 23(12): 3654-61.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.096] [PMID: 23642479]
[122]
Fedorov O, Huber K, Eisenreich A, et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem Biol 2011; 18(1): 67-76.
[http://dx.doi.org/10.1016/j.chembiol.2010.11.009] [PMID: 21276940]
[123]
Debdab M, Carreaux F, Renault S, et al. Leucettines, a class of potent inhibitors of CDC2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: Modulation of alternative pre-RNA splicing. J Med Chem 2011; 54(12): 4172-86.
[http://dx.doi.org/10.1021/jm200274d] [PMID: 21615147]
[124]
Haferkamp B, Zhang H, Lin Y, et al. Bax∆2 is a novel bax isoform unique to microsatellite unstable tumors. US20170108504, 2012.
[125]
Sun Y, Harada M, Shimozato O, et al. Cancer-type OATP1B3 mRNA has the potential to become a detection and prognostic biomarker for human colorectal cancer. US2016333426, 2017.
[126]
Aljada A, Doria J, Saleh AM, et al. Lamin A/C splice variant expression as a possible diagnostic marker in breast cancer. US20160208337, 2016.
[127]
Tang X, Kane VD, Morré DM, Morré DJ. hnRNP F directs formation of an exon 4 minus variant of tumor-associated NADH oxidase (ENOX2). US20060292577, 2011.
[128]
Young JS, Hyun KJ, Wook LS. Allosteric trans-splicing group I ribozyme whose activity of target-specificrna replacement is controlled by theophylline. US2011003883, 2011.
[129]
Bieberich CJ, Joglekar T, Li X. PIM kinase inhibitors in combination with RNA splicing modulators/inhibitors for treatment of cancers. US2019076416, 2019.
[130]
Volker P, Sushmita P. Trans-splicing RNA (tsRNA). US2019111072, 2019.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 4
Year: 2020
Page: [293 - 305]
Pages: 13
DOI: 10.2174/1574892815666200908122402
Price: $65

Article Metrics

PDF: 29
HTML: 2
EPUB: 1
PRC: 1