Microsatellite Marker: Importance and Implications of Cross-genome Analysis for Finger Millet (Eleusine coracana (L.) Gaertn)

Author(s): Thumadath P.A. Krishna, Maharajan Theivanayagam, Gurusunathan V. Roch, Veeramuthu Duraipandiyan*, Savarimuthu Ignacimuthu

Journal Name: Current Biotechnology

Volume 9 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Finger millet is a superior staple food for human beings. Microsatellite or Simple Sequence Repeat (SSR) marker is a powerful tool for genetic mapping, diversity analysis and plant breeding. In finger millet, microsatellites show a higher level of polymorphism than other molecular marker systems. The identification and development of microsatellite markers are extremely expensive and time-consuming. Only less than 50% of SSR markers have been developed from microsatellite sequences for finger millet. Therefore, it is important to transfer SSR markers developed for related species/genus to finger millet. Cross-genome transferability is the easiest and cheapest method to develop SSR markers. Many comparative mapping studies using microsatellite markers clearly revealed the presence of synteny within the genomes of closely related species/ genus. Sufficient homology exists among several crop plant genomes in the sequences flanking the SSR loci. Thus, the SSR markers are beneficial to amplify the target regions in the finger millet genome. Many SSR markers were used for the analysis of cross-genome amplification in various plants such as Setaria italica, Pennisetum glaucum, Oryza sativa, Triticum aestivum, Zea mays and Hordeum vulgare. However, there is very little information available about cross-genome amplification of these markers in finger millet. The only limited report is available for the utilization of cross-genome amplified microsatellite markers in genetic analysis, gene mapping and other applications in finger millet. This review highlights the importance and implication of microsatellite markers such as genomic SSR (gSSR) and Expressed Sequence Tag (EST)-SSR in cross-genome analysis in finger millet. Nowadays, crop improvement has been one of the major priority areas of research in agriculture. The genome assisted breeding and genetic engineering plays a very crucial role in enhancing crop productivity. The rapid advance in molecular marker technology is helpful for crop improvement. Therefore, this review will be very helpful to the researchers for understanding the importance and implication of SSR markers in closely related species.

Keywords: Finger millet, microsatellite marker, synteny, cross-genome transferability, SSR marker, Eleusine coracana.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 21 December, 2020
Page: [160 - 170]
Pages: 11
DOI: 10.2174/2211550109999200908090745
Price: $65

Article Metrics

PDF: 6