Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications

Author(s): Fan Li, Chao Bian, Daiqin Li*, Qiong Shi*

Journal Name: Protein & Peptide Letters

Volume 28 , Issue 3 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.

Keywords: Spider silk, component protein, nomenclature, hydrophobicity, antimicrobial peptides, biomaterial.

Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk materials-a road to sustainable high technology. Adv. Mater., 2012, 24(21), 2824-2837.
[http://dx.doi.org/10.1002/adma.201104477] [PMID: 22553118]
Kucharczyk, K.; Rybka, J.D.; Hilgendorff, M.; Krupinski, M.; Slachcinski, M.; Mackiewicz, A.; Giersig, M.; Dams-Kozlowska, H. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS One, 2019, 14(7), e0219790.
[http://dx.doi.org/10.1371/journal.pone.0219790] [PMID: 31306458]
Salehi, S.; Scheibel, T. Biomimetic spider silk fibres: From vision to reality. Biochemist (Lond.), 2018, 40(1), 4-7.
Xu, J.; Dong, Q.; Yu, Y.; Niu, B.; Ji, D.; Li, M.; Huang, Y.; Chen, X.; Tan, A. Mass spider silk production through targeted gene replacement in Bombyx mori. Proc. Natl. Acad. Sci. USA, 2018, 115(35), 8757-8762.
[http://dx.doi.org/10.1073/pnas.1806805115] [PMID: 30082397]
http://wsc.nmbe.ch World Spider Catalog. World spider catalog, version 21.5. Natural History Museum Bern. Available from: (Accessed on 11 June 2020).
Wheeler, W.C.; Coddington, J.A.; Crowley, L.M.; Dimitrov, D.; Goloboff, P.A.; Griswold, C.E.; Hormiga, G.; Prendini, L.; Ramírez, M.J.; Sierwald, P.; Almeida-Silva, L.; Alvarez-Padilla, F.; Arnedo, M.A.; Benavides Silva, L.R.; Benjamin, S.P.; Bond, J.E.; Grismado, C.J.; Hasan, E.; Hedin, M.; Izquierdo, M.A.; Labarque, F.M.; Ledford, J.; Lopardo, L.; Maddison, W.P.; Miller, J.A.; Piacentini, L.N.; Platnick, N.I.; Polotow, D.; Silva-Dávila, D.; Scharff, N.; Szűts, T.; Ubick, D.; Vink, C.J.; Wood, H.M.; Zhang, J. The spider tree of life: Phylogeny of araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 2016, 33(6), 574-616.
Huang, D.; Hormiga, G.; Cai, C.; Su, Y.; Yin, Z.; Xia, F.; Giribet, G. Origin of spiders and their spinning organs illuminated by mid-Cretaceous amber fossils. Nat. Ecol. Evol., 2018, 2(4), 623-627.
[http://dx.doi.org/10.1038/s41559-018-0475-9] [PMID: 29403076]
Mammola, S.; Michalik, P.; Hebets, E.A.; Isaia, M. Record breaking achievements by spiders and the scientists who study them. PeerJ, 2017, 5, e3972.
[http://dx.doi.org/10.7717/peerj.3972] [PMID: 29104823]
Selden, P.A.; Shear, W.A.; Bonamo, P.M. A spider and other arachnids from the devonian of New York, and reinterpretations of devonian araneae. Palaeontology, 1991, 34, 241-281.
Vollrath, F.; Selden, P. The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst., 2007, 38(1), 819-846.
Magalhaes, I.L.F.; Azevedo, G.H.F.; Michalik, P.; Ramírez, M.J. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the Mesozoic. Biol. Rev. Camb. Philos. Soc., 2019, 95(1), 184-217.
[http://dx.doi.org/10.1111/brv.12559] [PMID: 31713947]
Selden, P.A.; Shear, W.A.; Sutton, M.D. Fossil evidence for the origin of spider spinnerets, and a proposed arachnid order. Proc. Natl. Acad. Sci. USA, 2008, 105(52), 20781-20785.
[http://dx.doi.org/10.1073/pnas.0809174106] [PMID: 19104044]
Han, S.I.; Astley, H.C.; Maksuta, D.D.; Blackledge, T.A. External power amplification drives prey capture in a spider web. Proc. Natl. Acad. Sci. USA, 2019, 116(24), 12060-12065.
[http://dx.doi.org/10.1073/pnas.1821419116] [PMID: 31085643]
Morley, E.L.; Robert, D. Electric fields elicit ballooning in spiders. Curr. Biol., 2018, 28(14), 2324-2330.e2.
[http://dx.doi.org/10.1016/j.cub.2018.05.057] [PMID: 29983315]
Zhang, S.; Koh, T.H.; Seah, W.K.; Lai, Y.H.; Elgar, M.A.; Li, D. A novel property of spider silk: chemical defence against ants. Proc. Biol. Sci., 2012, 279(1734), 1824-1830.
[http://dx.doi.org/10.1098/rspb.2011.2193] [PMID: 22113027]
Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature, 2001, 410(6828), 541-548.
[http://dx.doi.org/10.1038/35069000] [PMID: 11279484]
Zhang, S.; Piorkowski, D.; Lin, W-R.; Lee, Y-R.; Liao, C-P.; Wang, P-H.; Tso, I-M. Nitrogen inaccessibility protects spider silk from bacterial growth. J. Exp. Biol., 2019, 222(Pt 20), jeb214981.
[http://dx.doi.org/10.1242/jeb.214981] [PMID: 31562186]
Garb, J.E.; Haney, R.A.; Schwager, E.E.; Gregorič, M.; Kuntner, M.; Agnarsson, I.; Blackledge, T.A. The transcriptome of Darwin’s bark spider silk glands predicts proteins contributing to dragline silk toughness. Commun. Biol., 2019, 2(1), 275.
[http://dx.doi.org/10.1038/s42003-019-0496-1] [PMID: 31372514]
Agnarsson, I.; Kuntner, M.; Blackledge, T.A. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One, 2010, 5(9), e11234.
[http://dx.doi.org/10.1371/journal.pone.0011234] [PMID: 20856804]
Heim, M.; Keerl, D.; Scheibel, T. Spider silk: from soluble protein to extraordinary fiber. Angew. Chem. Int. Ed. Engl., 2009, 48(20), 3584-3596.
[http://dx.doi.org/10.1002/anie.200803341] [PMID: 19212993]
Scheibel, T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact., 2004, 3(1), 14-14.
[http://dx.doi.org/10.1186/1475-2859-3-14] [PMID: 15546497]
Allmeling, C.; Radtke, C.; Vogt, P.M. Technical and biomedical uses of nature’s strongest fiber: Spider silk. In: Spider ecophysiology; Nentwig, W. Ed.; Springer: Berlin, Heidelberg. , 2013; pp. 475-490.
Harvey, D.; Bardelang, P.; Goodacre, S.L.; Cockayne, A.; Thomas, N.R. Antibiotic spider silk: Site-specific functionalization of recombinant spider silk using “click” chemistry. Adv. Mater., 2017, 29(10), 1604245.
[http://dx.doi.org/10.1002/adma.201604245] [PMID: 28028885]
Blamires, S.J.; Blackledge, T.A.; Tso, I-M. Physicochemical property variation in spider silk: Ecology, evolution, and synthetic production. Annu. Rev. Entomol., 2017, 62(1), 443-460.
Tokareva, O.; Jacobsen, M.; Buehler, M.; Wong, J.; Kaplan, D.L. Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater., 2014, 10(4), 1612-1626.
[http://dx.doi.org/10.1016/j.actbio.2013.08.020] [PMID: 23962644]
Murphy, J.A.; Roberts, M.J. Spider families of the world and their spinnerets, British Arachnological Society, 2015
Bittencourt, D.; Oliveira, P.; Prosdocimi, F.; Rech, E. Protein families, natural history and biotechnological aspects of spider silk. Genet. Mol. Res 2012, (3)11, 2360-80.
Foelix, R. Biology of spiders, 3rd ed; Oxford University Press: New York, 2011
Guerette, P.A.; Ginzinger, D.G.; Weber, B.H.F.; Gosline, J.M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science, 1996, 272(5258), 112-115.
[http://dx.doi.org/10.1126/science.272.5258.112] [PMID: 8600519]
Gatesy, J.; Hayashi, C.; Motriuk, D.; Woods, J.; Lewis, R. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science, 2001, 291(5513), 2603-2605.
[http://dx.doi.org/10.1126/science.1057561] [PMID: 11283372]
Chaw, R.C.; Saski, C.A.; Hayashi, C.Y. Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization. Insect Biochem. Mol. Biol., 2017, 81, 80-90.
[http://dx.doi.org/10.1016/j.ibmb.2017.01.002] [PMID: 28057598]
Ayoub, N.A.; Garb, J.E.; Kuelbs, A.; Hayashi, C.Y. Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol. Biol. Evol., 2013, 30(3), 589-601.
[http://dx.doi.org/10.1093/molbev/mss254] [PMID: 23155003]
Collin, M.A.; Clarke, T.H., III; Ayoub, N.A.; Hayashi, C.Y. Genomic perspectives of spider silk genes through target capture sequencing: Conservation of stabilization mechanisms and homology-based structural models of spidroin terminal regions. Int. J. Biol. Macromol., 2018, 113, 829-840.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.032] [PMID: 29454054]
Garb, J.E.; Hayashi, C.Y. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc. Natl. Acad. Sci. USA, 2005, 102(32), 11379-11384.
[http://dx.doi.org/10.1073/pnas.0502473102] [PMID: 16061817]
Blasingame, E.; Tuton-Blasingame, T.; Larkin, L.; Falick, A.M.; Zhao, L.; Fong, J.; Vaidyanathan, V.; Visperas, A.; Geurts, P.; Hu, X.; La Mattina, C.; Vierra, C. Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J. Biol. Chem., 2009, 284(42), 29097-29108.
[http://dx.doi.org/10.1074/jbc.M109.021378] [PMID: 19666476]
Geurts, P.; Zhao, L.; Hsia, Y.; Gnesa, E.; Tang, S.; Jeffery, F.; La Mattina, C.; Franz, A.; Larkin, L.; Vierra, C. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules, 2010, 11(12), 3495-3503.
[http://dx.doi.org/10.1021/bm101002w] [PMID: 21053953]
Perry, D.J.; Bittencourt, D.; Siltberg-Liberles, J.; Rech, E.L.; Lewis, R.V. Piriform spider silk sequences reveal unique repetitive elements. Biomacromolecules, 2010, 11(11), 3000-3006.
[http://dx.doi.org/10.1021/bm1007585] [PMID: 20954740]
Zhao, A-C.; Zhao, T-F.; Nakagaki, K.; Zhang, Y-S.; Sima, Y.H.; Miao, Y.G.; Shiomi, K.; Kajiura, Z.; Nagata, Y.; Takadera, M.; Nakagaki, M. Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. Biochemistry, 2006, 45(10), 3348-3356.
[http://dx.doi.org/10.1021/bi052414g] [PMID: 16519529]
Chaw, R.C.; Correa-Garhwal, S.M.; Clarke, T.H.; Ayoub, N.A.; Hayashi, C.Y. Proteomic evidence for components of spider silk synthesis from black widow silk glands and fibers. J. Proteome Res., 2015, 14(10), 4223-4231.
[http://dx.doi.org/10.1021/acs.jproteome.5b00353] [PMID: 26302244]
Chouhan, D.; Mandal, B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater., 2020, 103, 24-51.
[http://dx.doi.org/10.1016/j.actbio.2019.11.050] [PMID: 31805409]
Xu, M.; Lewis, R.V. Structure of a protein superfiber: spider dragline silk. Proc. Natl. Acad. Sci. USA, 1990, 87(18), 7120-7124.
[http://dx.doi.org/10.1073/pnas.87.18.7120] [PMID: 2402494]
Lewis, R.V. Spider silk: The unraveling of a mystery. Acc. Chem. Res., 1992, 25(9), 392-398.
Beckwitt, R.; Arcidiacono, S. Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem., 1994, 269(9), 6661-6663.
[PMID: 8120021]
Colgin, M.A.; Lewis, R.V. Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci., 1998, 7(3), 667-672.
[http://dx.doi.org/10.1002/pro.5560070315] [PMID: 9541398]
Hayashi, C.Y.; Lewis, R.V. Evidence from flagelliform silk cdna for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol, 1998, 275(5), 773-784.
Hayashi, C.Y.; Blackledge, T.A.; Lewis, R.V. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol. Biol. Evol., 2004, 21(10), 1950-1959.
[http://dx.doi.org/10.1093/molbev/msh204] [PMID: 15240839]
Hu, X.; Kohler, K.; Falick, A.M.; Moore, A.M.F.; Jones, P.R.; Sparkman, O.D.; Vierra, C. Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J. Biol. Chem., 2005, 280(22), 21220-21230.
[http://dx.doi.org/10.1074/jbc.M412316200] [PMID: 15797873]
Hu, X.; Kohler, K.; Falick, A.M.; Moore, A.M.F.; Jones, P.R.; Vierra, C. Spider egg case core fibers: trimeric complexes assembled from TuSp1, ECP-1, and ECP-2. Biochemistry, 2006, 45(11), 3506-3516.
[http://dx.doi.org/10.1021/bi052105q] [PMID: 16533031]
Lee, K.S.; Kim, B.Y.; Je, Y.H.; Woo, S.D.; Sohn, H.D.; Jin, B.R. Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J. Biosci., 2007, 32(4), 705-712.
[http://dx.doi.org/10.1007/s12038-007-0070-8] [PMID: 17762143]
Vasanthavada, K.; Hu, X.; Falick, A.M.; La Mattina, C.; Moore, A.M.F.; Jones, P.R.; Yee, R.; Reza, R.; Tuton, T.; Vierra, C. Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. J. Biol. Chem., 2007, 282(48), 35088-35097.
[http://dx.doi.org/10.1074/jbc.M705791200] [PMID: 17921147]
La Mattina, C.; Reza, R.; Hu, X.; Falick, A.M.; Vasanthavada, K.; McNary, S.; Yee, R.; Vierra, C.A. Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus. Biochemistry, 2008, 47(16), 4692-4700.
[http://dx.doi.org/10.1021/bi800140q] [PMID: 18376847]
Gaines, W.A., IV; Marcotte, W.R., Jr Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. Insect Mol. Biol., 2008, 17(5), 465-474.
[http://dx.doi.org/10.1111/j.1365-2583.2008.00828.x] [PMID: 18828837]
Choresh, O.; Bayarmagnai, B.; Lewis, R.V. Spider web glue: two proteins expressed from opposite strands of the same DNA sequence. Biomacromolecules, 2009, 10(10), 2852-2856.
[http://dx.doi.org/10.1021/bm900681w] [PMID: 19731928]
Collin, M.A.; Clarke, T.H., III; Ayoub, N.A.; Hayashi, C.Y. Evidence from multiple species that spider silk glue component asg2 is a spidroin. Sci. Rep., 2016, 6(1), 21589.
[http://dx.doi.org/10.1038/srep21589] [PMID: 26875681]
Han, L.; Zhang, L.; Zhao, T.; Wang, Y.; Nakagaki, M. Analysis of a new type of major ampullate spider silk gene, MaSp1s. Int. J. Biol. Macromol., 2013, 56, 156-161.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.034] [PMID: 23403024]
Babb, P.L.; Lahens, N.F.; Correa-Garhwal, S.M.; Nicholson, D.N.; Kim, E.J.; Hogenesch, J.B.; Kuntner, M.; Higgins, L.; Hayashi, C.Y.; Agnarsson, I.; Voight, B.F. The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression. Nat. Genet., 2017, 49(6), 895-903.
[http://dx.doi.org/10.1038/ng.3852] [PMID: 28459453]
Stellwagen, S.D.; Renberg, R.L. Toward spider glue: Long read scaffolding for extreme length and repetitious silk family genes agsp1 and agsp2 with insights into functional adaptation. G3 (Bethesda), 2019, 9(6), 1909-1919.
[http://dx.doi.org/10.1534/g3.119.400065] [PMID: 30975702]
Wang, K.; Wen, R.; Wang, S.; Tian, L.; Xiao, J.; Meng, Q. The molecular structure of novel pyriform spidroin (PySp2) reveals extremely complex central repetitive region. Int. J. Biol. Macromol., 2020, 145, 437-444.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.027] [PMID: 31843611]
Garb, J.E.; Ayoub, N.A.; Hayashi, C.Y. Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol., 2010, 10(1), 243.
[http://dx.doi.org/10.1186/1471-2148-10-243] [PMID: 20696068]
Correa-Garhwal, S.M.; Clarke, T.H., III; Janssen, M.; Crevecoeur, L.; McQuillan, B.N.; Simpson, A.H.; Vink, C.J.; Hayashi, C.Y. Spidroins and silk fibers of aquatic spiders. Sci. Rep., 2019, 9(1), 13656.
[http://dx.doi.org/10.1038/s41598-019-49587-y] [PMID: 31541123]
Ayoub, N.A.; Garb, J.E.; Tinghitella, R.M.; Collin, M.A.; Hayashi, C.Y. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One, 2007, 2(6), e514.
[http://dx.doi.org/10.1371/journal.pone.0000514] [PMID: 17565367]
Zhang, Y.; Zhao, A-C.; Sima, Y-H.; Lu, C.; Xiang, Z-H.; Nakagaki, M. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2013, 164(3), 151-158.
[http://dx.doi.org/10.1016/j.cbpb.2012.12.002] [PMID: 23262065]
Chen, G.; Liu, X.; Zhang, Y.; Lin, S.; Yang, Z.; Johansson, J.; Rising, A.; Meng, Q. Full-length minor ampullate spidroin gene sequence. PLoS One, 2012, 7(12), e52293.
[http://dx.doi.org/10.1371/journal.pone.0052293] [PMID: 23251707]
Chaw, R.C.; Zhao, Y.; Wei, J.; Ayoub, N.A.; Allen, R.; Atrushi, K.; Hayashi, C.Y. Intragenic homogenization and multiple copies of prey-wrapping silk genes in Argiope garden spiders. BMC Evol. Biol., 2014, 14(1), 31.
[http://dx.doi.org/10.1186/1471-2148-14-31] [PMID: 24552485]
Wen, R.; Wang, K.; Liu, X.; Li, X.; Mi, J.; Meng, Q. Molecular cloning and analysis of the full-length aciniform spidroin gene from Araneus ventricosus. Int. J. Biol. Macromol., 2018, 117, 1352-1360.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.090] [PMID: 29269010]
Wen, R.; Liu, X.; Meng, Q. Characterization of full-length tubuliform spidroin gene from Araneus ventricosus. Int. J. Biol. Macromol., 2017, 105(Pt 1), 702-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.086] [PMID: 28735001]
Hu, B.; Jin, J.; Guo, A-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31(8), 1296-1297.
[http://dx.doi.org/10.1093/bioinformatics/btu817] [PMID: 25504850]
Andersson, M.; Chen, G.; Otikovs, M.; Landreh, M.; Nordling, K.; Kronqvist, N.; Westermark, P.; Jörnvall, H.; Knight, S.; Ridderstråle, Y.; Holm, L.; Meng, Q.; Jaudzems, K.; Chesler, M.; Johansson, J.; Rising, A. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol., 2014, 12(8), e1001921.
[http://dx.doi.org/10.1371/journal.pbio.1001921] [PMID: 25093327]
Dos Santos-Pinto, J.R.A.; Esteves, F.G.; Sialana, F.J.; Ferro, M.; Smidak, R.; Rares, L.C.; Nussbaumer, T.; Rattei, T.; Bilban, M.; Bacci Júnior, M.; Palma, M.S.; Lübec, G. A proteotranscriptomic study of silk-producing glands from the orb-weaving spiders. Mol Omics, 2019, 15(4), 256-270.
[http://dx.doi.org/10.1039/C9MO00087A] [PMID: 31268449]
Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today, 2011, 14(3), 80-86.
Askarieh, G.; Hedhammar, M.; Nordling, K.; Saenz, A.; Casals, C.; Rising, A.; Johansson, J.; Knight, S.D. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature, 2010, 465(7295), 236-238.
[http://dx.doi.org/10.1038/nature08962] [PMID: 20463740]
Ko, F.K.; Wan, L.Y. 6 - engineering properties of spider silk.Handbook of properties of textile and technical fibres, 2nd ed; Bunsell, A.R., Ed.; Woodhead Publishing. , 2018, pp. 185-220.
Starrett, J.; Garb, J.E.; Kuelbs, A.; Azubuike, U.O.; Hayashi, C.Y. Early events in the evolution of spider silk genes. PLoS One, 2012, 7(6), e38084.
[http://dx.doi.org/10.1371/journal.pone.0038084] [PMID: 22761664]
Urry, D.W.; Cunningham, W.D.; Ohnishi, T. Studies on the conformation and interactions of elastin. Proton magnetic resonance of the repeating pentapeptide. Biochemistry, 1974, 13(3), 609-616.
[http://dx.doi.org/10.1021/bi00700a032] [PMID: 4810070]
Hayashi, C.Y.; Shipley, N.H.; Lewis, R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol., 1999, 24(2-3), 271-275.
[http://dx.doi.org/10.1016/S0141-8130(98)00089-0] [PMID: 10342774]
van Beek, J.D.; Hess, S.; Vollrath, F.; Meier, B.H. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. USA, 2002, 99(16), 10266-10271.
[http://dx.doi.org/10.1073/pnas.152162299] [PMID: 12149440]
Edmonds, D.T.; Vollrath, F. The contribution of atmospheric water vapour to the formation and efficiency of a spider’s capture web. Proc. R. Soc. Lond. B Biol. Sci., 1992, 248(1322), 145-148.
Liu, D.; Tarakanova, A.; Hsu, C.C.; Yu, M.; Zheng, S.; Yu, L.; Liu, J.; He, Y.; Dunstan, D.J.; Buehler, M.J. Spider dragline silk as torsional actuator driven by humidity. Sci. Adv., 2019, 5(3), eaau9183.
[http://dx.doi.org/10.1126/sciadv.aau9183] [PMID: 30838327]
Ayoub, N.A.; Hayashi, C.Y. Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol. Biol. Evol., 2008, 25(2), 277-286.
[http://dx.doi.org/10.1093/molbev/msm246] [PMID: 18048404]
Correa-Garhwal, S.M.; Chaw, R.C.; Dugger, T.; Clarke, T.H., III; Chea, K.H.; Kisailus, D.; Hayashi, C.Y. Semi-aquatic spider silks: transcripts, proteins, and silk fibres of the fishing spider, Dolomedes triton (Pisauridae). Insect Mol. Biol., 2019, 28(1), 35-51.
[http://dx.doi.org/10.1111/imb.12527] [PMID: 30059178]
Shear, W.A.; Palmer, J.M.; Coddington, J.A.; Bonamo, P.M. A devonian spinneret: early evidence of spiders and silk use. Science, 1989, 246(4929), 479-481.
[http://dx.doi.org/10.1126/science.246.4929.479] [PMID: 17788699]
Zschokke, S. Palaeontology: spider-web silk from the Early Cretaceous. Nature, 2003, 424(6949), 636-637.
[http://dx.doi.org/10.1038/424636a] [PMID: 12904780]
Shultz, J.W. The origin of the spinning apparatus in spiders. Biol. Rev. Camb. Philos. Soc., 1987, 62(2), 89-113.
Damen, W.G.M.; Saridaki, T.; Averof, M. Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr. Biol., 2002, 12(19), 1711-1716.
[http://dx.doi.org/10.1016/S0960-9822(02)01126-0] [PMID: 12361577]
Messner, B.; Adis, J. Es gibt nur fakultative plastronatmer unter den tauchenden webespinnen (araneae). Dtsch. Entomol. Z., 1995, 42(2), 453-459.
Crews, S.C.; Garcia, E.L.; Spagna, J.C.; Van Dam, M.H.; Esposito, L.A. The life aquatic with spiders (araneae): Repeated evolution of aquatic habitat association in dictynidae and allied taxa. Zool. J. Linn. Soc., 2020, 189(3), 862-920.
McQueen, D.J.; McLay, C.L. How does the intertidal spider Desis marina (hector) remain under water for such a long time? N. Z. J. Zool., 1983, 10(4), 383-391.
Kurland, N.E.; Presnall, D.L.; Yadavalli, V.K. 4 - silk nanostructures based on natural and engineered self-assemblySilk biomaterials for tissue engineering and regenerative medicine, Kundu, S. C., Ed; Woodhead Publishing. , 2014, pp. 100-124.
Knight, D.P.; Knight, M.M.; Vollrath, F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int. J. Biol. Macromol., 2000, 27(3), 205-210.
[http://dx.doi.org/10.1016/S0141-8130(00)00124-0] [PMID: 10828366]
Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA, 2008, 105(18), 6590-6595.
[http://dx.doi.org/10.1073/pnas.0709246105] [PMID: 18445655]
Morris, R.H.; Atherton, S.; Shirtcliffe, N.J.; McHale, G.; Dias, T.; Newton, M.I. Hydrophobic smart material for water transport and collection. Springer: London, 2012, 49-55.
Callies, M.; Quéré, D. On water repellency. Soft Matter, 2005, 1(1), 55-61.
[http://dx.doi.org/10.1039/b501657f] [PMID: 16208436]
Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater., 2007, 19(21), 3423-3424.
Vetter, R.S.; Tarango, J.; Campbell, K.A.; Tham, C.; Hayashi, C.Y.; Choe, D-H. Efficacy of several pesticide products on brown widow spider (araneae: Theridiidae) egg sacs and their penetration through the egg sac silk. J. Econ. Entomol., 2016, 109(1), 267-272.
[http://dx.doi.org/10.1093/jee/tov288] [PMID: 26530954]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.Y.; Liu, Q.; Zhu, S.P.; Zhou, T.; Chang, Q.; He, B.; Zhou, Q.; Chen, L.; Wang, Z.; Ras, R.H.A.; Deng, X. Design of robust superhydrophobic surfaces. Nature, 2020, 582(7810), 55-59.
[http://dx.doi.org/10.1038/s41586-020-2331-8] [PMID: 32494077]
Patel, S.; Akhtar, N. Antimicrobial peptides (AMPs): The quintessential ‘offense and defense’ molecules are more than antimicrobials. Biomed. Pharmacother., 2017, 95, 1276-1283.
[http://dx.doi.org/10.1016/j.biopha.2017.09.042] [PMID: 28938518]
Wang, X.; Wang, G. Insights into antimicrobial peptides from spiders and scorpions. Protein Pept. Lett., 2016, 23(8), 707-721.
[http://dx.doi.org/10.2174/0929866523666160511151320] [PMID: 27165405]
Wang, G.; Li, X.; Wang, Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
Yi, Y.; You, X.; Bian, C.; Chen, S.; Lv, Z.; Qiu, L.; Shi, Q. High-throughput identification of antimicrobial peptides from amphibious mudskippers. Mar. Drugs, 2017, 15(11), 364.
[http://dx.doi.org/10.3390/md15110364] [PMID: 29165344]
Pandey, V.; Haider, T.; Jain, P.; Gupta, P.N.; Soni, V. Silk as a leading-edge biological macromolecule for improved drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101294.
Allmeling, C.; Jokuszies, A.; Reimers, K.; Kall, S.; Vogt, P.M. Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J. Cell. Mol. Med., 2006, 10(3), 770-777.
[http://dx.doi.org/10.1111/j.1582-4934.2006.tb00436.x] [PMID: 16989736]
Florczak, A.; Mackiewicz, A.; Dams-Kozlowska, H. Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules, 2014, 15(8), 2971-2981.
[http://dx.doi.org/10.1021/bm500591p] [PMID: 24963985]
Franco, A.R.; Fernandes, E.M.; Rodrigues, M.T.; Rodrigues, F.J.; Gomes, M.E.; Leonor, I.B.; Kaplan, D.L.; Reis, R.L. Antimicrobial coating of spider silk to prevent bacterial attachment on silk surgical sutures. Acta Biomater., 2019, 99, 236-246.
[http://dx.doi.org/10.1016/j.actbio.2019.09.004] [PMID: 31505301]
Numata, K.; Hamasaki, J.; Subramanian, B.; Kaplan, D.L. Gene delivery mediated by recombinant silk proteins containing cationic and cell binding motifs. J. Control. Release, 2010, 146(1), 136-143.
[http://dx.doi.org/10.1016/j.jconrel.2010.05.006] [PMID: 20457191]
Numata, K.; Subramanian, B.; Currie, H.A.; Kaplan, D.L. Bioengineered silk protein-based gene delivery systems. Biomaterials, 2009, 30(29), 5775-5784.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.028] [PMID: 19577803]
Numata, K.; Reagan, M.R.; Goldstein, R.H.; Rosenblatt, M.; Kaplan, D.L. Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug. Chem., 2011, 22(8), 1605-1610.
[http://dx.doi.org/10.1021/bc200170u] [PMID: 21739966]
Liebsch, C.; Bucan, V.; Menger, B.; Köhne, F.; Waldmann, K-H.; Vaslaitis, D.; Vogt, P.M.; Strauss, S.; Kuhbier, J.W. Preliminary investigations of spider silk in wounds in vivo - Implications for an innovative wound dressing. Burns, 2018, 44(7), 1829-1838.
[http://dx.doi.org/10.1016/j.burns.2018.03.016] [PMID: 30057335]
Salehi, S.; Koeck, K.; Scheibel, T. Spider silk for tissue engineering applications. Molecules, 2020, 25(3), E737.
[http://dx.doi.org/10.3390/molecules25030737] [PMID: 32046280]
Kluge, J.A.; Rabotyagova, O.; Leisk, G.G.; Kaplan, D.L. Spider silks and their applications. Trends Biotechnol., 2008, 26(5), 244-251.
[http://dx.doi.org/10.1016/j.tibtech.2008.02.006] [PMID: 18367277]
Teulé, F.; Miao, Y-G.; Sohn, B-H.; Kim, Y-S.; Hull, J.J.; Fraser, M.J., Jr; Lewis, R.V.; Jarvis, D.L. Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. USA, 2012, 109(3), 923-928.
[http://dx.doi.org/10.1073/pnas.1109420109] [PMID: 22215590]
Karthik, T.; Rathinamoorthy, R. 6 - sustainable silk production. Sustainable fibres and textiles., Muthu, S.S., Ed.; Woodhead Publishing, 2017 135-170
Zhang, X.; Xia, L.; Day, B.A.; Harris, T.I.; Oliveira, P.; Knittel, C.; Licon, A.L.; Gong, C.; Dion, G.; Lewis, R.V.; Jones, J.A. Crispr/cas9 initiated transgenic silkworms as a natural spinner of spider silk. Biomacromolecules, 2019, 20(6), 2252-2264.
[http://dx.doi.org/10.1021/acs.biomac.9b00193] [PMID: 31059233]
Babu, K.M. 10 - Spider silks and their applications. 2nd ed., Woodhead Publishing, 2019, pp. 235-253.
Strickland, M.; Tudorica, V.; Řezáč, M.; Thomas, N.R.; Goodacre, S.L. Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family. Heredity, 2018, 120(6), 574-580.
[http://dx.doi.org/10.1038/s41437-018-0050-9] [PMID: 29445119]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 07 May, 2021
Page: [255 - 269]
Pages: 15
DOI: 10.2174/0929866527666200907104401
Price: $65

Article Metrics

PDF: 22