Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides

Author(s): Helloana Azevedo-Barbosa, Danielle Ferreira Dias, Lucas Lopardi Franco, Jamie Anthony Hawkes and Diogo Teixeira Carvalho*

Volume 20, Issue 19, 2020

Page: [2052 - 2066] Pages: 15

DOI: 10.2174/1389557520666200905125738

Price: $65

Abstract

Sulfonamides have been in clinical use for many years, and the development of bioactive substances containing the sulfonamide subunit has grown steadily in view of their important biological properties such as antibacterial, antifungal, antiparasitic, antioxidant, and antitumour properties. This review addresses the medicinal chemistry aspects of sulfonamides; covering their discovery, the structure- activity relationship and the mechanism of action of the antibacterial sulfonamide class, as well as the physico-chemical and pharmacological properties associated with this class. It also provides an overview of the various biological activities inherent to sulfonamides, reporting research that emphasises the importance of this group in the planning and development of bioactive substances, with a special focus on potential antitumour properties. The synthesis of sulfonamides is considered to be simple and provides a diversity of derivatives from a wide variety of amines and sulfonyl chlorides. The sulfonamide group is a non-classical bioisostere of carboxyl groups, phenolic hydroxyl groups and amide groups. This review highlights that most of the bioactive substances have the sulfonamide group, or a related group such as sulfonylurea, in an orientation towards other functional groups. This structural characteristic was observed in molecules with distinct antibacterial activities, demonstrating a clear structure-activity relationship of sulfonamides. This short review sought to contextualise the discovery of classic antibacterial sulfonamides and their physico-chemical and pharmacological properties. The importance of the sulfonamide subunit in Medicinal Chemistry has been highlighted and emphasised, in order to promote its inclusion in the planning and synthesis of future drugs.

Keywords: Sulfonamide, sulphonamide, sulfas, antibacterial, bioisostere, anti-tumour, structure-activity relationship.

Graphical Abstract
[1]
Liu, Z.L.; Tian, W.; Wang, Y.; Kuang, S.; Luo, X.M.; Yu, Q. A novel sulfonamide agent, MPSP-001, exhibits potent activity against human cancer cells in vitro through disruption of microtubule. Acta Pharmacol. Sin., 2012, 33(2), 261-270.
[http://dx.doi.org/10.1038/aps.2011.156] [PMID: 22301862]
[2]
Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Elaasser, M.M.; Abdel-Aziz, M.M. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur. J. Med. Chem., 2014, 85, 480-486.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.016] [PMID: 25113876]
[3]
Azevedo-Barbosa, H.; Ferreira-Silva, G.Á.; Silva, C.F.; de Souza, T.B.; Dias, D.F.; de Paula, A.C.C.; Ionta, M.; Carvalho, D.T. Phenylpropanoid-based sulfonamide promotes cyclin D1 and cyclin E down-regulation and induces cell cycle arrest at G1/S transition in estrogen positive MCF-7 cell line. Toxicol. In Vitro, 2019, 59, 150-160.
[http://dx.doi.org/10.1016/j.tiv.2019.04.023] [PMID: 31022444]
[4]
4. National Centre for Biotechnology Information database (Pub-MED):, . www.ncbi.nlm.nih.gov/pubmed/2020
[5]
SScopus Database by Elsevier. 2020.www.scopus.com
[6]
Science Direct database.,. www.sciencedirect.com2020.
[7]
Scifinder database (American Chemical Society). . www.cas.org/products/scifinder Accessed 20/04/2020
[8]
[9]
Espacenet® - European Patent Office Database.. https://worldwide. espacenet.com/patent/2020
[10]
Tolika, E.P.; Samanidou, F.V.; Papadoyannis, I.N. An overview of chromatographic analysis of sulfonamides in pharmaceutical preparations and biological fluids. Curr. Pharm. Anal., 2010, 6(3), 198-212.
[http://dx.doi.org/10.2174/157341210791936803]
[11]
Domagk, G. Ein Beitrag zur Chemotherapie der bakteriellen Infektionen. (translation from German: “On chemotherapy of bacterial infections”). Dtsch. Med. Wochenschr., 1935, 61(7), 250-253.
[http://dx.doi.org/10.1055/s-0028-1129486]
[12]
Mietzsch, F.; Klarer, J. Verfahren zur Herstellung von Azoverbindungen., Deutsches Reichspatent, (Translation: German Patent) DE607537C.,. 1935.
[13]
Mietzsch, F.; Klarer, J. Zur Entwicklung der chemotherapie auf dem Gebiet der Azo- und sulfonamid-Verbindung. (Translation from German: For the development of chemotherapy in the field of azo and sulfonamide compounds). Med. Chem., 1942, 4, 73-81.
[15]
Woods, D.D. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br. J. Exp. Pathol., 1940, 21(2), 74-90.
[16]
Bell, P.H.; Roblin, R.O. Jr Studies in Chemotherapy. VII. A theory of the relation of structure to activity of sulfanilamide type compounds. J. Am. Chem. Soc., 1942, 64(12), 2905-pp2917.
[http://dx.doi.org/10.1021/ja01264a055]
[17]
Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[18]
Selbie, F.R. The inhibition of the action of sulphanilamide in mice by p-aminobenzoic acid. Br. J. Exp. Pathol., 1940, 21(2), 90-93.
[20]
Stork, W. Prontosil. Purpose antibacterial. Chem. Eng. News, 2005, 83(25), 102.
[http://dx.doi.org/10.1021/cen-v083n025.p102]
[21]
Seydel, J.K. Sulfonamides, structure-activity relationship, and mode of action. Structural problems of the antibacterial action of 4-aminobenzoic acid (PABA) antagonists. J. Pharm. Sci., 1968, 57(9), 1455-1478.
[http://dx.doi.org/10.1002/jps.2600570902] [PMID: 4877188]
[22]
Brown, G.M. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J. Biol. Chem., 1962, 237(2), 536-540.
[PMID: 13873645]
[23]
Richey, D.P.; Brown, G.M. The biosynthesis of folic acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J. Biol. Chem., 1969, 244(6), 1582-1592.
[PMID: 4304228]
[24]
Capasso, C.; Supuran, C.T. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J. Enzyme Inhib. Med. Chem., 2014, 29(3), 379-387.
[http://dx.doi.org/10.3109/14756366.2013.787422 PMID: 23627736]
[25]
Kornfeld, O.; Nichols, B.P. Vitamin B3 confers resistance to sulfa drugs in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 2005, 251(1), 137-141.
[http://dx.doi.org/10.1016/j.femsle.2005.07.037] [PMID: 16112818]
[26]
Boufas, W.; Dupont, N.; Berredjem, M.; Berrezag, K.; Becheker, I.; Berredjem, H.; Aouf, N. Synthesis and antibacterial activity of sulfonamides. SAR and DFT studies. J. Mol. Struct., 2014, 1074, 180-185.
[http://dx.doi.org/10.1016/j.molstruc.2014.05.066]
[27]
Rad, M.N.S.; Khalafi-Nezhad, A.; Asrari, Z.; Behrouz, S.; Amini, Z.; Behrouz, M. One-Pot synthesis of sulfonamides from primary and secondary amine derived sulfonate salts using cyanuric chloride. Synthesis, 2009, 23, 3983-pp3988.
[http://dx.doi.org/10.1055/s-0029-1217020]
[28]
Ashfaq, M. Ahmad, Shah, S.S.A.; Najjam, T.; Shaheen, S.; Rivera, G. Synthetic routes of sulfonamide derivatives: A brief review. Mini Rev. Org. Chem., 2013, 10, 160-170.
[http://dx.doi.org/10.2174/1570193X11310020005]
[29]
Kołaczek, A.; Fusiarz, I.; Ławecka, J.; Branowska, D. Biological activity and synthesis of sulfonamide derivatives: A brief review. Chemik., 2020, 68(7), 620-628.
[31]
Cairns, D. Essentials of Pharmaceutical Chemistry, 3rd Revised edition; Pharmaceutical Press: London, 2008, pp. 978-0071417983.. , 2008.
[32]
Hoff, R.; Pizzolato, T.M.; Diaz-Cruz, M.S. Trends in sulfonamides and their by-products analysis in environmental samples using mass spectrometry techniques. Trends Environ. Anal. Chem., 2016, 9, 24-36.
[http://dx.doi.org/10.1016/j.teac.2016.02.002]
[33]
Kumler, W.D.; Halverstadt, I.F. The dipole moment of sulfanilamide and related compounds. J. Am. Chem. Soc., 1941, 63(8), 2182-2187.
[http://dx.doi.org/10.1021/ja01853a044]
[34]
Kumler, W.D.; Strait, L.A. The ultraviolet absorption spectra and resonance in benzene derivatives–sulfanilamide, metanilamide, p-aminobenzoic acid, benzenesulfonamide, benzoic acid and aniline. J. Am. Chem. Soc., 1943, 65(12), 2349-2354.
[http://dx.doi.org/10.1021/ja01252a027]
[35]
Soriano-Correa, C.; Esquivel, R.O.; Sagar, R.P. Physicochemical and structural properties of bacteriostatic sulfonamides: Theoretical study. Int. J. Quantum Chem., 2003, 94(3), 165-172.
[http://dx.doi.org/10.1002/qua.10597]
[36]
Mengelers, M.J.B.; Hougee, P.E.; Janssen, L.H.M.; Van Miert, A.S.J.P.A.M. Structure-activity relationships between antibacterial activities and physicochemical properties of sulfonamides. J. Vet. Pharmacol. Ther., 1997, 20(4), 276-283.
[http://dx.doi.org/10.1046/j.1365-2885.1997.00063.x PMID: 9280367]
[37]
Oprea, T.I. Current trends in lead discovery: are we looking for the appropriate properties? J. Comput. Aided Mol. Des., 2002, 16(5-6), 325-334.
[http://dx.doi.org/10.1023/A:1020877402759] [PMID: 12489682]
[38]
Remko, M.; von der Lieth, C.W. Theoretical study of gas-phase acidity, pKa, lipophilicity, and solubility of some biologically active sulfonamides. Bioorg. Med. Chem., 2004, 12(20), 5395-5403.
[http://dx.doi.org/10.1016/j.bmc.2004.07.049] [PMID: 15388166]
[39]
Soriano-Correa, C.; Barrientos-Salcedo, C.; Francisco-Márquez, M.; Sainz-Díaz, C.I. Computational study of substituent effects on the acidity, toxicity and chemical reactivity of bacteriostatic sulfonamides. J. Mol. Graph. Model., 2018, 81, 116-124.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.006] [PMID: 29549806]
[40]
Sainz-Díaz, C.I.; Francisco-Márquez, M.; Soriano-Correa, C. Polymorphism, Intermolecular interactions, and spectroscopic properties in crystal structures of sulfonamides. J. Pharm. Sci., 2018, 107(1), 273-285.
[http://dx.doi.org/10.1016/j.xphs.2017.10.015] [PMID: 29045887]
[41]
Lin, P.; Marino, D.; Lo, J.L.; Yang, Y.T.; Cheng, K.; Smith, R.G.; Fisher, M.H.; Wyvratt, M.J.; Goulet, M.T. 2-(3,5-Dimethylphenyl)-tryptamine derivatives that bind to the GnRH receptor. Bioorg. Med. Chem. Lett., 2001, 11(8), 1073-1076.
[http://dx.doi.org/10.1016/S0960-894X(01)00134-2 PMID: 11327593]
[42]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[43]
Moree, W.J.; van der Marel, G.A.; Liskamp, R.J. Synthesis of peptidosulfinamides and peptidosulfonamides: peptidomimetics containing the sulfinamide or sulfonamide transition-state isostere. J. Org. Chem., 1996, 60(16), 5157-5169.
[http://dx.doi.org/10.1021/jo00121a038]
[44]
Nau, R.; Sörgel, F.; Eiffert, H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev., 2010, 23(4), 858-883.
[http://dx.doi.org/10.1128/CMR.00007-10] [PMID: 20930076]
[45]
Khan, F.A.; Mushtaq, S.; Naz, S.; Farooq, U.; Zaidi, A.; Bukhari, S.M.; Rauf, A.; Mubarak, M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem., 2018, 22(8), 818-830.
[http://dx.doi.org/10.2174/1385272822666180122153839]
[46]
Chin, C.M.; Ferreira, E.I. O processo de latenciação no planejamento de fármacos (Translated from Portuguese: The latency process in drug planning). Quim. Nova, 1999, 22(1), 75-84.
[http://dx.doi.org/10.1590/S0100-40421999000100014]
[47]
García-Galán, M.J.; Díaz-Cruz, M.S.; Barceló, D. Identification and determination of metabolites and degradation products of sulfonamide antibiotics. Trends Analyt. Chem., 2008, 27(11), 1008-1022.
[http://dx.doi.org/10.1016/j.trac.2008.10.001]
[48]
Kalgutkar, A.S.; Jones, R.; Sawant, A. Sulfonamide as an Essential Functional Group in Drug Design.Metabolism, Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical Building Blocks on ADMET; Royal Society of Chemistry: London, 2010, pp. 210-274.
[http://dx.doi.org/10.1039/9781849731102-00210]
[49]
Gitto, R.; Agnello, S.; Ferro, S.; De Luca, L.; Vullo, D.; Brynda, J.; Mader, P.; Supuran, C.T.; Chimirri, A. Identification of 3,4-Dihydroisoquinoline-2(1H)-sulfonamides as potent carbonic anhydrase inhibitors: synthesis, biological evaluation, and enzyme--ligand X-ray studies. J. Med. Chem., 2010, 53(6), 2401-2408.
[http://dx.doi.org/10.1021/jm9014026] [PMID: 20170095]
[50]
Cheng, X.C.; Wang, Q.; Fang, H.; Xu, W.F. Role of sulfonamide group in matrix metalloproteinase inhibitors. Curr. Med. Chem., 2008, 15(4), 368-373.
[http://dx.doi.org/10.2174/092986708783497300] [PMID: 18288991]
[51]
Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E.A.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy-Bourget, M.C.; Beaulieu, C.; Li, Z.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem., 2003, 46(5), 820-830.
[http://dx.doi.org/10.1021/jm020377a] [PMID: 12593661]
[52]
Kamal, A.; Dastagiri, D.; Ramaiah, M.J.; Reddy, J.S.; Bharathi, E.V.; Reddy, M.K.; Sagar, M.V.; Reddy, T.L.; Pushpavalli, S.N.; Pal-Bhadra, M. Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. Eur. J. Med. Chem., 2011, 46(12), 5817-5824.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.039] [PMID: 22000207]
[53]
Fortin, S.; Wei, L.; Moreau, E.; Lacroix, J.; Côté, M.F.; Petitclerc, E.; Kotra, L.P.; Gaudreault, R.C. Substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonamides as antimitotics. Antiproliferative, antiangiogenic and antitumoral activity, and quantitative structure-activity relationships. Eur. J. Med. Chem., 2011, 46(11), 5327-5342.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.034] [PMID: 21920638]
[54]
Kwon, Y.; Song, J.; Lee, H.; Kim, E.Y.; Lee, K.; Lee, S.K.; Kim, S. Design, synthesis, and biological activity of sulfonamide analogues of antofine and cryptopleurine as potent and orally active antitumor agents. J. Med. Chem., 2015, 58(19), 7749-7762.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00764] [PMID: 26393416]
[55]
Tanaka, H.; Ohshima, N.; Ikenoya, M.; Komori, K.; Katoh, F.; Hidaka, H. HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Cancer Res., 2003, 63(20), 6942-6947.
[PMID: 14583495]
[56]
Qu, M.; Liu, Z.; Zhao, D.; Wang, C.; Zhang, J.; Tang, Z.; Liu, K.; Shu, X.; Yuan, H.; Ma, X. Design, synthesis and biological evaluation of sulfonamide-substituted diphenylpyrimidine derivatives (Sul-DPPYs) as potent focal adhesion kinase (FAK) inhibitors with antitumor activity. Bioorg. Med. Chem., 2017, 25(15), 3989-3996.
[http://dx.doi.org/10.1016/j.bmc.2017.05.044] [PMID: 28576633]
[57]
Huang, R.Z.; Liang, G.B.; Huang, X.C.; Zhang, B.; Zhou, M.M.; Liao, Z.X.; Wang, H.S. Discovery of dehydroabietic acid sulfonamide based derivatives as selective matrix metalloproteinases inactivators that inhibit cell migration and proliferation. Eur. J. Med. Chem., 2017, 138(138), 979-992.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.020] [PMID: 28756264]
[58]
Guo, J.; Yu, W.; Cai, G.; Zhang, W.; Li, S.; Zhu, J.; Song, D.; Kong, L. Discovery of new benzensulfonamide derivatives as tripedal STAT3 inhibitors. Eur. J. Med. Chem., 2018, 151(151), 752-764.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.053] [PMID: 29674294]
[59]
Ibrahim, H.S.; Allam, H.A.; Mahmoud, W.R.; Bonardi, A.; Nocentini, A.; Gratteri, P.; Ibrahim, E.S.; Abdel-Aziz, H.A.; Supuran, C.T. Dual-tail arylsulfone-based benzenesulfonamides differently match the hydrophobic and hydrophilic halves of human carbonic anhydrases active sites: Selective inhibitors for the tumor-associated hCA IX isoform. Eur. J. Med. Chem., 2018, 152, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.016] [PMID: 29684705]
[60]
Okasha, R.M.; Alsehli, M.; Ihmaid, S.; Althagfan, S.S.; El-Gaby, M.S.A.; Ahmed, H.E.A.; Afifi, T.H. First example of Azo-Sulfa conjugated chromene moieties: Synthesis, characterization, antimicrobial assessment, docking simulation as potent class I histone deacetylase inhibitors and antitumor agents. Bioorg. Chem., 2019, 92103262
[http://dx.doi.org/10.1016/j.bioorg.2019.103262] [PMID: 31518757]
[61]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Elsayed, M.S.A.; Ghorab, W.M. Design, synthesis and molecular modeling study of certain 4-Methylbenzenesulfonamides with CDK2 inhibitory activity as anticancer and radio-sensitizing agents. Bioorg. Chem., 2018, 80, 276-287.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.010] [PMID: 29966874]
[62]
Branowska, D.; Karczmarzyk, Z.; Wolińska, E.; Wysocki, W.; Morawiak, M.; Urbańczyk-Lipkowska, Z.; Bielawska, A.; Bielawski, K. 1,2,4-Triazine sulfonamides: Synthesis by sulfenamide intermediates, In Vitro anticancer screening, structural characterization, and molecular docking study. Molecules, 2020, 25(10)pp2324
[http://dx.doi.org/10.3390/molecules25102324] [PMID: 32429377]
[63]
Abdelrahman, M.A.; Eldehna, W.M.; Nocentini, A.; Ibrahim, H.S.; Almahli, H.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Supuran, C.T. Novel benzofuran-based sulphonamides as selective carbonic anhydrases IX and XII inhibitors: Synthesis and in vitro biological evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 298-305.
[http://dx.doi.org/10.1080/14756366.2019.1697250 PMID: 31809607]
[64]
Bilginer, S.; Gonder, B.; Gul, H.I.; Kaya, R.; Gulcin, I.; Anil, B.; Supuran, C.T. Novel sulphonamides incorporating triazene moieties show powerful carbonic anhydrase I and II inhibitory properties. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 325-329.
[http://dx.doi.org/10.1080/14756366.2019.1700240 PMID: 31813300]
[65]
Said, M.A.; Eldehna, W.M.; Nocentini, A.; Fahim, S.H.; Bonardi, A.; Elgazar, A.A.; Kryštof, V.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. Eur. J. Med. Chem., 2020, 189112019
[http://dx.doi.org/10.1016/j.ejmech.2019.112019] [PMID: 31972394]
[66]
Akocak, S.; Lolak, N.; Bua, S.; Supuran, C.T. Discovery of novel 1,3-diaryltriazene sulfonamides as carbonic anhydrase I, II, VII, and IX inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1575-1580.
[http://dx.doi.org/10.1080/14756366.2018.1515933 PMID: 30296852]
[67]
Fantacuzzi, M.; De Filippis, B.; Gallorini, M.; Ammazzalorso, A.; Giampietro, L.; Maccallini, C.; Aturki, Z.; Donati, E.; Ibrahim, R.S.; Shawky, E.; Cataldi, A.; Amoroso, R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem., 2020, 185111815
[http://dx.doi.org/10.1016/j.ejmech.2019.111815] [PMID: 31732252]
[68]
Garber, K. Drugging the Wnt pathway: Problems and progress. J. Natl. Cancer Inst., 2009, 101(8), 548-550.
[http://dx.doi.org/10.1093/jnci/djp084] [PMID: 19351922]
[69]
Lanier, M.; Schade, D.; Willems, E.; Tsuda, M.; Spiering, S.; Kalisiak, J.; Mercola, M.; Cashman, J.R. Wnt inhibition correlates with human embryonic stem cell cardiomyogenesis: A structure-activity relationship study based on inhibitors for the Wnt response. J. Med. Chem., 2012, 55(2), 697-708.
[http://dx.doi.org/10.1021/jm2010223] [PMID: 22191557]
[70]
Willems, E.; Spiering, S.; Davidovics, H.; Lanier, M.; Xia, Z.; Dawson, M.; Cashman, J.; Mercola, M. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ. Res., 2011, 109(4), 360-364.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.249540 PMID: 21737789]
[71]
Cheng, J.; Dwyer, M.; Okolotowicz, K.J.; Mercola, M.; Cashman, J.R. A novel inhibitor targets both Wnt signaling and ATM/p53 in colorectal cancer. Cancer Res., 2018, 78(17), 5072-5083.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2642 PMID: 30032112]
[72]
Cashman, J.R.; Mercola, M.; Schade, D.; Tsuda, M. Compounds for inhibition of cancer cell proliferation.Granted US Patent. US9403800B2., 2016.
[73]
Nusse, R.; van Ooyen, A.; Cox, D.; Fung, Y.K.T.; Varmus, H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984, 307(5947), 131-136.
[http://dx.doi.org/10.1038/307131a0] [PMID: 6318122]
[74]
Wikipedia online database. Accessed 01/08/2020. https://en.wikipedia.org/wiki/Wnt_signaling_pathway
[75]
Okolotowicz, K.J.; Dwyer, M.; Ryan, D.; Cheng, J.; Cashman, E.A.; Moore, S.; Mercola, M.; Cashman, J.R. Novel tertiary sulfonamides as potent anti-cancer agents. Bioorg. Med. Chem., 2018, 26(15), 4441-4451.
[http://dx.doi.org/10.1016/j.bmc.2018.07.042] [PMID: 30075999]
[76]
Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C.T. Anticancer and antiviral sulfonamides. Curr. Med. Chem., 2003, 10(11), 925-953.
[http://dx.doi.org/10.2174/0929867033457647] [PMID: 12678681]
[77]
Rakesh, K.P.; Wang, S-M.; Leng, J.; Ravindar, L.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2018, 18(4), 488-505.
[http://dx.doi.org/10.2174/1871520617666171103140749 PMID: 29110622]
[78]
Mastrolorenzo, A.; Scozzafava, A.; Supuran, C.T. Antifungal activity of silver and zinc complexes of sulfadrug derivatives incorporating arylsulfonylureido moieties. Eur. J. Pharm. Sci., 2000, 11(2), 99-107.
[http://dx.doi.org/10.1016/S0928-0987(00)00093-2 PMID: 10915959]
[79]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[80]
Facchinetti, V.; Moreth, M.; Gomes, C.R.B.; Do Ó Pessoa, C.; Rodrigues, F.A.R.; Cavalcanti, B.C.; Oliveira, A.C.A.; Carneiro, T.R.; Gama, I.L.; De Souza, M.V.N. Evaluation of (2S,3R)-2-(amino)-[4-(N-benzylarenesulfonamido)-3-hydroxy-1-phenylbutane derivatives: A promising class of anticancer agents. Med. Chem. Res., 2015, 24(2), 533-542.
[http://dx.doi.org/10.1007/s00044-014-1143-5]
[81]
Chen, Q.H.; Rao, P.N.P.; Knaus, E.E. Design, synthesis, and biological evaluation of N-acetyl-2-carboxybenzenesulfonamides: A novel class of cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem., 2005, 13(7), 2459-2468.
[http://dx.doi.org/10.1016/j.bmc.2005.01.039] [PMID: 15755648]
[82]
Funahashi, Y.; Sugi, N.H.; Semba, T.; Yamamoto, Y.; Hamaoka, S.; Tsukahara-Tamai, N.; Ozawa, Y.; Tsuruoka, A.; Nara, K.; Takahashi, K.; Okabe, T.; Kamata, J.; Owa, T.; Ueda, N.; Haneda, T.; Yonaga, M.; Yoshimatsu, K.; Wakabayashi, T. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin α2 subunit on endothelium. Cancer Res., 2002, 62(21), 6116-6123.
[83]
Agrawal, V.K.; Bano, S.; Supuran, C.T.; Khadikar, P.V. QSAR study on carbonic anhydrase inhibitors: aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl moieties, with topical activity as antiglaucoma agents. Eur. J. Med. Chem., 2004, 39(7), 593-600.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.002 PMID: 15236839]
[84]
Hou, Z.; Li, C.; Liu, Y.; Zhang, M.; Wang, Y.; Fan, Z.; Guo, C.; Lin, B.; Liu, Y. Design, synthesis and biological evaluation of carbohydrate-based sulphonamide derivatives as topical antiglaucoma agents through selective inhibition of carbonic anhydrase II. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 383-390.
[http://dx.doi.org/10.1080/14756366.2019.1705293 PMID: 31865756]
[85]
Supuran, C.T.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A. Antiviral sulfonamide derivatives. Mini Rev. Med. Chem., 2004, 4(2), 189-200.
[http://dx.doi.org/10.2174/1389557043487402] [PMID: 14965291]
[86]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco, 2005, 60(4), 307-311.
[http://dx.doi.org/10.1016/j.farmac.2005.01.005] [PMID: 15848205]
[87]
Ugwuja, D.I.; Okoro, U.C.; Soman, S.S.; Soni, R.; Okafor, S.N.; Ugwu, D.I. New peptide derived antimalaria and antimicrobial agents bearing sulphonamide moiety. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1388-1399.
[http://dx.doi.org/10.1080/14756366.2019.1651313 PMID: 31392901]
[88]
El-Gaby, M.S.A.; Hussein, M.F.; Hassan, M.I.; Ali, A.M.; Elshaier, Y.A.M.M.; Gebril, A.S.; Faraghally, F.A. New sulfonamide hybrids: synthesis, in vitro antimicrobial activity and Docking study of some novel sulfonamide derivatives bearing carbamate/acyl-thiourea scaffolds. Mediterr. J. Chem., 2018, 7(5), 370-385.
[http://dx.doi.org/10.13171/mjc751912111445mh]
[89]
Neff, K.M.; Nawarskas, J.J. Hydrochlorothiazide versus chlorthalidone in the management of hypertension. Cardiol. Rev., 2010, 18(1), 51-56.
[http://dx.doi.org/10.1097/CRD.0b013e3181c61b52 PMID: 20010338]
[90]
Boyd, A.E. III Sulfonylurea receptors, ion channels, and fruit flies. Diabetes, 1988, 37(7), 847-850.
[http://dx.doi.org/10.2337/diab.37.7.847] [PMID: 2454858]
[91]
Kanda, Y.; Kawanishi, Y.; Oda, K.; Sakata, T.; Mihara, S.I.; Asakura, K.; Kanemasa, T.; Ninomiya, M.; Fujimoto, M.; Konoike, T. Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorg. Med. Chem., 2001, 9(4), 897-907.
[http://dx.doi.org/10.1016/S0968-0896(00)00305-9 PMID: 11354672]
[92]
Parker, M.H.; Smith-Swintosky, V.L.; McComsey, D.F.; Huang, Y.; Brenneman, D.; Klein, B.; Malatynska, E.; White, H.S.; Milewski, M.E.; Herb, M.; Finley, M.F.A.; Liu, Y.; Lubin, M.L.; Qin, N.; Iannucci, R.; Leclercq, L.; Cuyckens, F.; Reitz, A.B.; Maryanoff, B.E. Novel, broad-spectrum anticonvulsants containing a sulfamide group: Advancement of N-((benzo[b]thien-3-yl)methyl)-sulfamide (JNJ-26990990) into human clinical studies. J. Med. Chem., 2009, 52(23), 7528-7536.
[http://dx.doi.org/10.1021/jm801432r] [PMID: 19388676]
[93]
Chibale, K.; Haupt, H.; Kendrick, H.; Yardley, V.; Saravanamuthu, A.; Fairlamb, A.H.; Croft, S.L. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. Bioorg. Med. Chem. Lett., 2001, 11(19), 2655-2657.
[http://dx.doi.org/10.1016/S0960-894X(01)00528-5 PMID: 11551771]
[94]
Bocanegra-Garcia, V.; Villalobos-Rocha, J.C.; Nogueda-Torres, B.; Lemus-Hernandez, M.E.; Camargo-Ordonez, A.; Rosas-Garcia, N.M.; Rivera, G. Synthesis and biological evaluation of new sulfonamide derivatives as potential anti-Trypanosoma cruzi agents. Med. Chem., 2012, 8(6), 1039-1044.
[http://dx.doi.org/10.2174/157340612804075133] [PMID: 22762161]
[95]
Tite, T.; Tomas, L.; Docsa, T.; Gergely, P.; Kovensky, J.; Gueyrard, D.; Wadouachi, A. Synthesis of N-aryl spiro-sulfamides as potential glycogen phosphorylase inhibitors. Tetrahedron Lett., 2012, 53(8), 959-961.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.049]
[96]
Castro, J.L.; Baker, R.; Guiblin, A.R.; Hobbs, S.C.; Jenkins, M.R.; Russell, M.G.N.; Beer, M.S.; Stanton, J.A.; Scholey, K.; Hargreaves, R.J.; Graham, M.I.; Matassat, V.G. Synthesis and biological activity of 3-[2-(dimethylamino)ethyl]-5-[(1,1-dioxo-5-methyl-1,2,5-thiadiazolidin- 2-yl)-methyl]-1H-indole and analogues: agonists for the 5-HT1D receptor. J. Med. Chem., 1994, 37(19), 3023-3032.
[http://dx.doi.org/10.1021/jm00045a006] [PMID: 7932524]
[97]
Takahashi, K.; Ohta, M.; Shoji, Y.; Kasai, M.; Kunishiro, K.; Miike, T.; Kanda, M.; Shirahase, H. Novel acyl-CoA: cholesterol acyltransferase inhibitor: indoline-based sulfamide derivatives with low lipophilicity and protein binding ratio. Chem. Pharm. Bull. (Tokyo), 2010, 58(8), 1057-1065.
[http://dx.doi.org/10.1248/cpb.58.1057] [PMID: 20686260]
[98]
Stranix, B.R.; Lavallée, J.F.; Sévigny, G.; Yelle, J.; Perron, V.; LeBerre, N.; Herbart, D.; Wu, J.J. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic α-amino acids. Bioorg. Med. Chem. Lett., 2006, 16(13), 3459-3462.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.011] [PMID: 16644213]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy