Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours

Author(s): Long Wang, Gengyuan Zhang, Long Qin, Huili Ye, Yan Wang, Bo Long, Zuoyi Jiao*

Journal Name: Recent Patents on Anti-Cancer Drug Discovery

Volume 15 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

Background: Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours.

Objective: This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours.

Methods: Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents.

Results: EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours.

Conclusion: EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.

Keywords: Diagnosis and treatment, EGFR, molecular structure, nanobody, patent, solid tumor.

[1]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Shankar A, Dubey A, Saini D, et al. Environmental and occupational determinants of lung cancer. Transl Lung Cancer Res 2019; 8(Suppl. 1): S31-49.
[http://dx.doi.org/10.21037/tlcr.2019.03.05] [PMID: 31211104]
[3]
Ismail NI, Othman I, Abas FH, Lajis N, Naidu R. Mechanism of apoptosis induced by curcumin in colorectal cancer. Int J Mol Sci 2019; 20(10): 2454.
[http://dx.doi.org/10.3390/ijms20102454] [PMID: 31108984]
[4]
Necula L, Matei L, Dragu D, et al. Recent advances in gastric cancer early diagnosis. World J Gastroenterol 2019; 25(17): 2029-44.
[http://dx.doi.org/10.3748/wjg.v25.i17.2029] [PMID: 31114131]
[5]
Guevara ML, Persano F, Persano S. Nano-immunotherapy: Overcoming tumour immune evasion. Semin Cancer Biol 2019.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.010] [PMID: 31883449]
[6]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[7]
Chau CH, Steeg PS, Figg WD. Antibody-drug conjugates for cancer. Lancet 2019; 394(10200): 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[8]
Kim K, Kim HS, Kim JY, et al. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat Commun 2020; 11(1): 951.
[http://dx.doi.org/10.1038/s41467-020-14562-z] [PMID: 32075964]
[9]
Barkal AA, Brewer RE, Markovic M, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019; 572(7769): 392-6.
[http://dx.doi.org/10.1038/s41586-019-1456-0] [PMID: 31367043]
[10]
Kaur S, Venktaraman G, Jain M, Senapati S, Garg PK, Batra SK. Recent trends in antibody-based oncologic imaging. Cancer Lett 2012; 315(2): 97-111.
[http://dx.doi.org/10.1016/j.canlet.2011.10.017] [PMID: 22104729]
[11]
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J Immunol 2005; 174(5): 2453-5.
[PMID: 15728446]
[12]
Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol 2012; 52(1)(Suppl.): 54S-62S.
[http://dx.doi.org/10.1177/0091270011413894] [PMID: 22232754]
[13]
Capelan M, Pugliano L, De Azambuja E, et al. Pertuzumab: New hope for patients with HER2-positive breast cancer. Ann Oncol 2013; 24(2): 273-82.
[http://dx.doi.org/10.1093/annonc/mds328] [PMID: 22910839]
[14]
Nelson AL. Antibody fragments: Hope and hype. MAbs 2010; 2(1): 77-83.
[http://dx.doi.org/10.4161/mabs.2.1.10786] [PMID: 20093855]
[15]
Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 2009; 24(2): 155-61.
[http://dx.doi.org/10.1089/cbr.2009.0627] [PMID: 19409036]
[16]
Lampson LA. Monoclonal antibodies in neuro-oncology: Getting past the blood-brain barrier. MAbs 2011; 3(2): 153-60.
[http://dx.doi.org/10.4161/mabs.3.2.14239] [PMID: 21150307]
[17]
Kleeff J, Michl P. Targeted therapy of pancreatic cancer: Biomarkers are needed. Lancet Oncol 2017; 18(4): 421-2.
[http://dx.doi.org/10.1016/S1470-2045(17)30087-6] [PMID: 28259609]
[18]
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - A novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14(10): 1527-39.
[http://dx.doi.org/10.1517/14712598.2014.937701] [PMID: 25090369]
[19]
Sundberg EJ, Mariuzza RA. Molecular recognition in antibody-antigen complexes. Adv Protein Chem 2002; 61: 119-60.
[http://dx.doi.org/10.1016/S0065-3233(02)61004-6] [PMID: 12461823]
[20]
Huston JS, Levinson D, Mudgett-Hunter M, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 1988; 85(16): 5879-83.
[http://dx.doi.org/10.1073/pnas.85.16.5879] [PMID: 3045807]
[21]
Kuroki M, Arakawa F, Khare PD, et al. Specific targeting strategies of cancer gene therapy using a single-chain variable fragment (scFv) with a high affinity for CEA. Anticancer Res 2000; 20(6A): 4067-71.
[PMID: 11131674]
[22]
Zhong YW, Cheng J, Wang G, et al. Preparation of human single chain Fv antibody against hepatitis C virus E2 protein and its identification in immunohistochemistry. World J Gastroenterol 2002; 8(5): 863-7.
[http://dx.doi.org/10.3748/wjg.v8.i5.863] [PMID: 12378631]
[23]
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126-36.
[http://dx.doi.org/10.1038/nbt1142] [PMID: 16151406]
[24]
Merk H, Stiege W, Tsumoto K, Kumagai I, Erdmann VA. Cell-free expression of two single-chain monoclonal antibodies against lysozyme: Effect of domain arrangement on the expression. J Biochem 1999; 125(2): 328-33.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022290] [PMID: 9990130]
[25]
Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52(12): 3402-8.
[PMID: 1596900]
[26]
Rondon IJ, Marasco WA. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 1997; 51: 257-83.
[http://dx.doi.org/10.1146/annurev.micro.51.1.257] [PMID: 9343351]
[27]
Utsumi S, Karush F. The subunits of purified rabbit antibody. Biochemistry 1964; 3: 1329-38.
[http://dx.doi.org/10.1021/bi00897a024] [PMID: 14229677]
[28]
Ward ES, Güssow D, Griffiths AD, Jones PT, Winter G. Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli. Nature 1989; 341(6242): 544-6.
[http://dx.doi.org/10.1038/341544a0] [PMID: 2677748]
[29]
Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature 1993; 363(6428): 446-8.
[http://dx.doi.org/10.1038/363446a0] [PMID: 8502296]
[30]
de Marco A. Biotechnological applications of recombinant single-domain antibody fragments. Microb Cell Fact 2011; 10: 44.
[http://dx.doi.org/10.1186/1475-2859-10-44] [PMID: 21658216]
[31]
Muyldermans S, Baral TN, Retamozzo VC, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009; 128(1-3): 178-83.
[http://dx.doi.org/10.1016/j.vetimm.2008.10.299] [PMID: 19026455]
[32]
Xu Y, Xiong L, Li Y, et al. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Anal Bioanal Chem 2015; 407(18): 5333-41.
[http://dx.doi.org/10.1007/s00216-015-8693-3] [PMID: 25910884]
[33]
Spinelli S, Tegoni M, Frenken L, van Vliet C, Cambillau C. Lateral recognition of a dye hapten by a llama VHH domain. J Mol Biol 2001; 311(1): 123-9.
[http://dx.doi.org/10.1006/jmbi.2001.4856] [PMID: 11469862]
[34]
De Genst E, Silence K, Decanniere K, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci USA 2006; 103(12): 4586-91.
[http://dx.doi.org/10.1073/pnas.0505379103] [PMID: 16537393]
[35]
MacCallum RM, Martin AC, Thornton JM. Antibody-antigen interactions: Contact analysis and binding site topography. J Mol Biol 1996; 262(5): 732-45.
[http://dx.doi.org/10.1006/jmbi.1996.0548] [PMID: 8876650]
[36]
Collis AV, Brouwer AP, Martin AC. Analysis of the antigen combining site: Correlations between length and sequence composition of the hypervariable loops and the nature of the antigen. J Mol Biol 2003; 325(2): 337-54.
[http://dx.doi.org/10.1016/S0022-2836(02)01222-6] [PMID: 12488099]
[37]
Kunik V, Ofran Y. The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel 2013; 26(10): 599-609.
[http://dx.doi.org/10.1093/protein/gzt027] [PMID: 23754530]
[38]
Pérez JM, Renisio JG, Prompers JJ, et al. Thermal unfolding of a llama antibody fragment: A two-state reversible process. Biochemistry 2001; 40(1): 74-83.
[http://dx.doi.org/10.1021/bi0009082] [PMID: 11141058]
[39]
Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability. Protein Sci 2002; 11(3): 500-15.
[http://dx.doi.org/10.1110/ps.34602] [PMID: 11847273]
[40]
Van Bockstaele F, Holz JB, Revets H. The development of nanobodies for therapeutic applications. Curr Opin Investig Drugs 2009; 10(11): 1212-24.
[PMID: 19876789]
[41]
Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82: 775-97.
[http://dx.doi.org/10.1146/annurev-biochem-063011-092449] [PMID: 23495938]
[42]
Guedon JT, Luo K, Zhang H, Markham RB. Monoclonal and single domain antibodies targeting β -integrin subunits block sexual transmission of HIV-1 in in vitro and in vivo model systems. J Acquir Immune Defic Syndr 2015; 69(3): 278-85.
[http://dx.doi.org/10.1097/QAI.0000000000000609] [PMID: 25828964]
[43]
Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012; 12(8): 553-63.
[http://dx.doi.org/10.1038/nrc3309] [PMID: 22785351]
[44]
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010; 141(7): 1117-34.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[45]
Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 2010; 7(9): 493-507.
[http://dx.doi.org/10.1038/nrclinonc.2010.97] [PMID: 20551942]
[46]
Zhu Q, Dong H, Bukhari AAS, et al. HUWE1 promotes EGFR ubiquitination and degradation to protect against renal tubulointerstitial fibrosis. FASEB J 2020; 34(3): 4591-601.
[http://dx.doi.org/10.1096/fj.201902751R] [PMID: 32017279]
[47]
Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J 2000; 19(13): 3159-67.
[http://dx.doi.org/10.1093/emboj/19.13.3159] [PMID: 10880430]
[48]
Desai J, Gan H, Barrow C, et al. Phase I, open-label, dose-escalation/dose-expansion study of lifirafenib (BGB-283), an RAF family kinase inhibitor, in patients with solid tumors. J Clin Oncol 2020; 38(19): 2140-50.
[http://dx.doi.org/10.1200/JCO.19.02654] [PMID: 32182156]
[49]
Allam HA, Aly EE, Farouk AKBAW, El Kerdawy AM, Rashwan E, Abbass SES. Design and synthesis of some new 2,4,6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorg Chem 2020; 98103726.
[http://dx.doi.org/10.1016/j.bioorg.2020.103726] [PMID: 32171987]
[50]
Mustafa M, Mirza A, Kannan N. Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: A molecular dynamics study. Proteins 2011; 79(1): 99-114.
[http://dx.doi.org/10.1002/prot.22862] [PMID: 20938978]
[51]
Cho HS, Leahy DJ. Structure of the extracellular region of HER3 reveals an interdomain tether. Science 2002; 297(5585): 1330-3.
[http://dx.doi.org/10.1126/science.1074611] [PMID: 12154198]
[52]
Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep 2014; 9(4): 1306-17.
[http://dx.doi.org/10.1016/j.celrep.2014.10.010] [PMID: 25453753]
[53]
Garrett TP, McKern NM, Lou M, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110(6): 763-73.
[http://dx.doi.org/10.1016/S0092-8674(02)00940-6] [PMID: 12297049]
[54]
Ogiso H, Ishitani R, Nureki O, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110(6): 775-87.
[http://dx.doi.org/10.1016/S0092-8674(02)00963-7] [PMID: 12297050]
[55]
Arkhipov A, Shan Y, Das R, et al. Architecture and membrane interactions of the EGF receptor. Cell 2013; 152(3): 557-69.
[http://dx.doi.org/10.1016/j.cell.2012.12.030] [PMID: 23374350]
[56]
Endres NF, Das R, Smith AW, et al. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 2013; 152(3): 543-56.
[http://dx.doi.org/10.1016/j.cell.2012.12.032] [PMID: 23374349]
[57]
Jura N, Endres NF, Engel K, et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 2009; 137(7): 1293-307.
[http://dx.doi.org/10.1016/j.cell.2009.04.025] [PMID: 19563760]
[58]
Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006; 125(6): 1137-49.
[http://dx.doi.org/10.1016/j.cell.2006.05.013] [PMID: 16777603]
[59]
Kovacs E, Das R, Wang Q, et al. Analysis of the role of the C-terminal tail in the regulation of the epidermal growth factor receptor. Mol Cell Biol 2015; 35(17): 3083-102.
[http://dx.doi.org/10.1128/MCB.00248-15] [PMID: 26124280]
[60]
Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25(3): 282-303.
[http://dx.doi.org/10.1016/j.ccr.2014.02.025] [PMID: 24651011]
[61]
Alvarado D, Klein DE, Lemmon MA. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature 2009; 461(7261): 287-91.
[http://dx.doi.org/10.1038/nature08297] [PMID: 19718021]
[62]
Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA 2010; 107(17): 7692-7.
[http://dx.doi.org/10.1073/pnas.1002753107] [PMID: 20351256]
[63]
Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc Natl Acad Sci USA 2009; 106(51): 21608-13.
[http://dx.doi.org/10.1073/pnas.0912101106] [PMID: 20007378]
[64]
Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002; 110(6): 669-72.
[http://dx.doi.org/10.1016/S0092-8674(02)00966-2] [PMID: 12297041]
[65]
Clayton AHA, Walker F, Orchard SG, et al. Ligand-induced dimer-tetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis. J Biol Chem 2005; 280(34): 30392-9.
[http://dx.doi.org/10.1074/jbc.M504770200] [PMID: 15994331]
[66]
Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 2010; 464(7289): 783-7.
[http://dx.doi.org/10.1038/nature08827] [PMID: 20208517]
[67]
Huang Y, Bharill S, Karandur D, et al. Molecular basis for multimerization in the activation of the epidermal growth factor receptor. eLife 2016; 5e14107.
[http://dx.doi.org/10.7554/eLife.14107] [PMID: 27017828]
[68]
Liang SI, van Lengerich B, Eichel K, et al. Phosphorylated EGFR dimers are not sufficient to activate Ras. Cell Rep 2018; 22(10): 2593-600.
[http://dx.doi.org/10.1016/j.celrep.2018.02.031] [PMID: 29514089]
[69]
Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, et al. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 2002; 98(3): 456-62.
[http://dx.doi.org/10.1002/ijc.10212] [PMID: 11920600]
[70]
Maennling AE, Tur MK, Niebert M, et al. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers (Basel) 2019; 11(12): E1826.
[http://dx.doi.org/10.3390/cancers11121826] [PMID: 31756933]
[71]
Shen M, Jiang YZ, Wei Y, et al. Tinagl1 suppresses triple-negative breast cancer progression and metastasis by simultaneously inhibiting integrin/FAK and EGFR signaling. Cancer Cell 2019; 35(1): 64-80.
[http://dx.doi.org/10.1016/j.ccell.2018.11.016] [PMID: 30612941]
[72]
Liu X, Chen X, Shi L, et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res 2019; 38(1): 219.
[http://dx.doi.org/10.1186/s13046-019-1235-7] [PMID: 31122294]
[73]
Pruszynski M, Koumarianou E, Vaidyanathan G, et al. Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 2014; 55(4): 650-6.
[http://dx.doi.org/10.2967/jnumed.113.127100] [PMID: 24578241]
[74]
de Souza Albernaz M, Toma SH, Clanton J, Araki K, Santos-Oliveira R. Decorated superparamagnetic iron oxide nanoparticles with monoclonal antibody and diethylene-triamine-pentaacetic acid labeled with thechnetium-99m and galium-68 for breast cancer imaging. Pharm Res 2018; 35(1): 24.
[http://dx.doi.org/10.1007/s11095-017-2320-2] [PMID: 29305666]
[75]
Jurcic JG. Clinical studies with bismuth-213 and actinium-225 for hematologic malignancies. Curr Radiopharm 2018; 11(3): 192-9.
[http://dx.doi.org/10.2174/1874471011666180525102814] [PMID: 29793418]
[76]
Bannas P, Lenz A, Kunick V, et al. Molecular imaging of tumors with nanobodies and antibodies: Timing and dosage are crucial factors for improved in vivo detection. Contrast Media Mol Imaging 2015; 10(5): 367-78.
[http://dx.doi.org/10.1002/cmmi.1637] [PMID: 25925493]
[77]
van Driel PB, van der Vorst JR, Verbeek FP, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer 2014; 134(11): 2663-73.
[http://dx.doi.org/10.1002/ijc.28601] [PMID: 24222574]
[78]
Krüwel T, Nevoltris D, Bode J, et al. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody targeting the Epidermal Growth Factor Receptor. Sci Rep 2016; 6: 21834.
[http://dx.doi.org/10.1038/srep21834] [PMID: 26912069]
[79]
Keyaerts M, Xavier C, Heemskerk J, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med 2016; 57(1): 27-33.
[http://dx.doi.org/10.2967/jnumed.115.162024] [PMID: 26449837]
[80]
Xavier C, Blykers A, Vaneycken I, et al. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol 2016; 43(4): 247-52.
[http://dx.doi.org/10.1016/j.nucmedbio.2016.01.002] [PMID: 27067045]
[81]
D’Huyvetter M, Vincke C, Xavier C, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics 2014; 4(7): 708-20.
[http://dx.doi.org/10.7150/thno.8156] [PMID: 24883121]
[82]
Kijanka M, Dorresteijn B, Oliveira S. van Bergen en Henegouwen PM. Nanobody-based cancer therapy of solid tumors. Nanomedicine (Lond) 2015; 10(1): 161-74.
[http://dx.doi.org/10.2217/nnm.14.178] [PMID: 25597775]
[83]
Oliveira S, van Dongen GA, Stigter-van Walsum M, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging 2012; 11(1): 33-46.
[http://dx.doi.org/10.2310/7290.2011.00025] [PMID: 22418026]
[84]
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484: 15-24.
[http://dx.doi.org/10.1016/j.mce.2019.01.021] [PMID: 30690070]
[85]
Heukers R, De Groof TWM, Smit MJ. Nanobodies detecting and modulating GPCRs outside in and inside out. Curr Opin Cell Biol 2019; 57: 115-22.
[http://dx.doi.org/10.1016/j.ceb.2019.01.003] [PMID: 30849632]
[86]
Sun T, Tang L, Zhang M. Long noncoding RNA Lnc EGFR promotes cell proliferation and inhibits cell apoptosis via regulating the expression of EGFR in human tongue cancer. Mol Med Rep 2018; 17(1): 1847-54.
[PMID: 29138845]
[87]
Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM, Witze ES. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal 2020; 13(621): eaax2364.
[http://dx.doi.org/10.1126/scisignal.aax2364] [PMID: 32127496]
[88]
Omidfar K, Amjad Zanjani FS, Hagh AG, Azizi MD, Rasouli SJ, Kashanian S. Efficient growth inhibition of EGFR over-expressing tumor cells by an anti-EGFR nanobody. Mol Biol Rep 2013; 40(12): 6737-45.
[http://dx.doi.org/10.1007/s11033-013-2790-1] [PMID: 24052234]
[89]
Bannas P, Hambach J, Koch-Nolte F. Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front Immunol 2017; 8: 1603.
[http://dx.doi.org/10.3389/fimmu.2017.01603] [PMID: 29213270]
[90]
Kazemi-Lomedasht F, Behdani M, Bagheri KP, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015; 65(1): 58-67.
[http://dx.doi.org/10.1016/j.molimm.2015.01.010] [PMID: 25645505]
[91]
Roovers RC, Laeremans T, Huang L, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother 2007; 56(3): 303-17.
[http://dx.doi.org/10.1007/s00262-006-0180-4] [PMID: 16738850]
[92]
Roovers RC, Vosjan MJ, Laeremans T, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer 2011; 129(8): 2013-24.
[http://dx.doi.org/10.1002/ijc.26145] [PMID: 21520037]
[93]
Farajpour Z, Rahbarizadeh F, Kazemi B, Ahmadvand D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem Biophys Res Commun 2014; 446(1): 132-6.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.069] [PMID: 24569074]
[94]
Glassman PM, Walsh LR, Villa CH, et al. Molecularly engineered nanobodies for tunable pharmacokinetics and drug delivery. Bioconjug Chem 2020; 31(4): 1144-55.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00003] [PMID: 32167754]
[95]
Huang H, Wu T, Shi H, et al. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun (Camb) 2019; 55(35): 5175-8.
[http://dx.doi.org/10.1039/C9CC01391A] [PMID: 30984937]
[96]
Behdani M, Zeinali S, Karimipour M, et al. Development of VEGFR2-specific nanobody pseudomonas exotoxin A conjugated to provide efficient inhibition of tumor cell growth. N Biotechnol 2013; 30(2): 205-9.
[http://dx.doi.org/10.1016/j.nbt.2012.09.002] [PMID: 23031816]
[97]
Fang T, Duarte JN, Ling J, Li Z, Guzman JS, Ploegh HL. Structurally defined αMHC-II nanobody-drug conjugates: A therapeutic and imaging system for B-cell lymphoma. Angew Chem Int Ed Engl 2016; 55(7): 2416-20.
[http://dx.doi.org/10.1002/anie.201509432] [PMID: 26840214]
[98]
Martínez-Jothar L, Beztsinna N, van Nostrum CF, Hennink WE, Oliveira S. Selective cytotoxicity to HER2 positive breast cancer cells by saporin-loaded nanobody- targeted polymeric nanoparticles in combination with photochemical internalization. Mol Pharm 2019; 16(4): 1633-47.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01318] [PMID: 30817164]
[99]
Noor A, Walser G, Wesseling M, et al. Production of a mono-biotinylated EGFR nanobody in the E. coli periplasm using the pET22b vector. BMC Res Notes 2018; 11(1): 751.
[http://dx.doi.org/10.1186/s13104-018-3852-1] [PMID: 30348204]
[100]
Kooijmans SAA, Fliervoet LAL, van der Meel R, et al. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224: 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.009] [PMID: 26773767]
[101]
Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, Vader P. Recombinant phosphatidylserine-binding nanobodies for targeting of extracellular vesicles to tumor cells: A plug-and-play approach. Nanoscale 2018; 10(5): 2413-26.
[http://dx.doi.org/10.1039/C7NR06966A] [PMID: 29334397]
[102]
Talelli M, Oliveira S, Rijcken CJF, et al. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy. Biomaterials 2013; 34(4): 1255-60.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.064] [PMID: 23122804]
[103]
Debets MF, Leenders WPJ, Verrijp K, et al. Nanobody-functionalized polymersomes for tumor-vessel targeting. Macromol Biosci 2013; 13(7): 938-45.
[http://dx.doi.org/10.1002/mabi.201300039] [PMID: 23695978]
[104]
D’Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv 2014; 11(12): 1939-54.
[http://dx.doi.org/10.1517/17425247.2014.941803] [PMID: 25035968]
[105]
Choi J, Vaidyanathan G, Koumarianou E, Kang CM, Zalutsky MR. Astatine-211 labeled anti-HER2 5F7 single domain antibody fragment conjugates: Radiolabeling and preliminary evaluation. Nucl Med Biol 2018; 56: 10-20.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.09.003] [PMID: 29031230]
[106]
D’Huyvetter M, De Vos J, Xavier C, et al. 131I-Labeled anti-HER2 Camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res 2017; 23(21): 6616-28.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0310] [PMID: 28751451]
[107]
Driehuis E, Spelier S, Beltrán Hernández I, et al. Patient-derived head and neck cancer organoids recapitulate EGFR expression levels of respective tissues and are responsive to EGFR-targeted photodynamic therapy. J Clin Med 2019; 8(11): 1880.
[http://dx.doi.org/10.3390/jcm8111880] [PMID: 31694307]
[108]
Beltrán Hernández I, Angelier ML, Del Buono D’Ondes T, Di Maggio A, Yu Y, Oliveira S. The potential of nanobody-targeted photodynamic therapy to trigger immune responses. Cancers (Basel) 2020; 12(4): 978.
[http://dx.doi.org/10.3390/cancers12040978] [PMID: 32326519]
[109]
van Lith SAM, van den Brand D, Wallbrecher R, et al. The effect of subcellular localization on the efficiency of EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm 2018; 124: 63-72.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.009] [PMID: 29274374]
[110]
Liu M, Zhu Y, Wu T, Cheng J, Liu Y. Nanobody-ferritin conjugate for targeted photodynamic therapy. Chemistry 2020; 26(33): 7442-50.
[http://dx.doi.org/10.1002/chem.202000075] [PMID: 32166771]
[111]
van Driel PBAA, Boonstra MC, Slooter MD, et al. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release 2016; 229: 93-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.014] [PMID: 26988602]
[112]
Liu Y, Scrivano L, Peterson JD, et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol Pharm 2020; 17(4): 1276-92.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01280] [PMID: 32142290]
[113]
Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs 2019; 11(2): 219-38.
[http://dx.doi.org/10.1080/19420862.2018.1556465] [PMID: 30516432]
[114]
Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 2020; 27(1): 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z] [PMID: 31894001]
[115]
Raghida B, Michael J, Anne K, et al. Antibodies against Epidermal Growth Factor Receptor (EGFR) and uses thereof. US20170314079, 2017.
[116]
Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 2019; 37(1): 9-16.
[http://dx.doi.org/10.1016/j.tibtech.2018.05.014] [PMID: 29945725]
[117]
Qu ZC, Li SP. Nanobody biomedicine transdermal administration for mulation system and preparation method and use thereof. US20190184012, 2019.
[118]
Deken MM, Kijanka MM, Beltrán Hernández I, et al. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 2020; 323: 269-81.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.030] [PMID: 32330574]
[119]
Xia L, Teng Q, Chen Q, Zhang F. Preparation and Characterization of Anti-GPC3 Nanobody Against Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15: 2197-205.
[http://dx.doi.org/10.2147/IJN.S235058] [PMID: 32280214]
[120]
Schriewer L, Schütze K, Petry K, et al. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies. Theranostics 2020; 10(6): 2645-58.
[http://dx.doi.org/10.7150/thno.38533] [PMID: 32194826]
[121]
Revets H, Boutton C, Hoogenboom HRJM. Amino acid sequences directed against HER2 and polypeptides comprising the same for the treatment of cancers and/or tumors. WO2009068625, 2009.
[122]
Laeremans T, De Haard H, Hoogenboom HRJM. Nanobodies and polypeptides against EGFR and IGF-IR. US20090252681, 2009.
[123]
Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs 2020; 34(1): 11-26.
[http://dx.doi.org/10.1007/s40259-019-00392-z] [PMID: 31686399]
[124]
Albert S, Arndt C, Feldmann A, et al. A novel nanobody-based target module for retargeting of T lymphocytes to EGFR-expressing cancer cells via the modular UniCAR platform. OncoImmunology 2017; 6(4): e1287246.
[http://dx.doi.org/10.1080/2162402X.2017.1287246] [PMID: 28507794]
[125]
Xie YJ, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci USA 2019; 116(16): 7624-31.
[http://dx.doi.org/10.1073/pnas.1817147116] [PMID: 30936321]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2020
Published on: 04 September, 2020
Page: [200 - 211]
Pages: 12
DOI: 10.2174/1574892815666200904111728
Price: $65

Article Metrics

PDF: 54
HTML: 1