In Silico ADMET Evaluation of Natural DPP-IV Inhibitors for Rational Drug Design against Diabetes

Author(s): Rajeev K. Singla, Bairong Shen*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: As a metabolic and lifestyle disorder, diabetes mellitus poses a prodigious health risk. Out of the many key targets, DPP-IV is one of the very imperative therapeutic targets for the treatment of diabetic patients.

Methods: In our current study, we have done the in silico simulations of ADME-T properties for naturally originated potent DPP-IV inhibitors like quinovic acid, stigmasterol, quinovic acid-3-beta-D-glycopyranoside, zygophyloside E, and lupeol. Structural topographies associated with different pharmacokinetic properties have been systematically assessed.

Results: Glycosylation on quinovic acid is found to be noteworthy for the improvement of pharmacokinetic and toxicological properties, which leads to the prediction that zygophyloside E can be further tailored down to get the lead DPP-IV inhibitor.

Conclusion: This assessment provides useful insight into the future development of novel drugs for the treatment of diabetes mellitus.

Keywords: Dipeptidyl peptidase 4, diabetes mellitus, pharmacokinetic predictions, antidiabetic agents, systematic assessment, glycosylation.

[1]
De, B.; Bhandari, K.; Singla, R.K.; Katakam, P.; Samanta, T.; Kushwaha, D.K.; Gundamaraju, R.; Mitra, A. Chemometrics optimized extraction procedures, phytosynergistic blending and in vitro screening of natural enzyme inhibitors amongst leaves of tulsi, banyan and jamun. Pharmacogn. Mag., 2015, 11(Suppl. 4), S522-S532.
[http://dx.doi.org/10.4103/0973-1296.172956] [PMID: 27013789]
[2]
Wang, X.; Wang, H.; Zhang, T.; Cai, L.; Dai, E.; He, J. Diabetes and its potential impact on head and neck oncogenesis. J. Cancer, 2020, 11(3), 583-591.
[http://dx.doi.org/10.7150/jca.35607] [PMID: 31942181]
[3]
Putta, S.; Peluso, I.; Yarla, N.S.; Kilari, E.K.; Bishayee, A.; Lu, D.Y.; Barreto, G.E.; Ashraf, G.M.; Scotti, L.; Scotti, M.T.; Singla, R.K.; Alexiou, T.; Atanasov, A.G.; Tarasov, V.V.; Bramhachari, P.V.; Imandi, S.B.; Chintala, M.; Sharma, B.; Reale, M.; Filosa, R.; Aliev, G.; Kamal, M.A. Diabetes mellitus and male aging: pharmacotherapeutics and clinical implications. Curr. Pharm. Des., 2017, 23(30), 4475-4483.
[http://dx.doi.org/10.2174/1381612823666170823103830] [PMID: 28831925]
[4]
Gallwitz, B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. (Lausanne. 2019. 10, 389.
[http://dx.doi.org/10.3389/fendo.2019.00389] [PMID: 31275246]
[5]
Singla, R.K.; Kumar, R.; Khan, S. Mohit; Kumari, K.; Garg, A. Natural products: potential source of DPP-IV inhibitors. Curr. Protein Pept. Sci., 2019, 20(12), 1218-1225.
[http://dx.doi.org/10.2174/1389203720666190502154129] [PMID: 31057098]
[6]
Pathak, R.; Bridgeman, M.B. Dipeptidyl Peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[PMID: 20975810]
[7]
Singla, R.K.; Dubey, A.K. Molecules and metabolites from natural products as inhibitors of biofilm in Candida spp. pathogens. Curr. Top. Med. Chem., 2019, 19(28), 2567-2578.
[http://dx.doi.org/10.2174/1568026619666191025154834] [PMID: 31654510]
[8]
Saleem, S.; Jafri, L. ul Haq, I.; Chang, L.C.; Calderwood, D.; Green, B.D.; Mirza, B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J. Ethnopharmacol., 2014, 156, 26-32.
[http://dx.doi.org/10.1016/j.jep.2014.08.017] [PMID: 25169215]
[9]
Idris, I.; Donnelly, R. Dipeptidyl peptidase-IV inhibitors: a major new class of oral antidiabetic drug. Diabetes Obes. Metab., 2007, 9(2), 153-165.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00705.x] [PMID: 17300591]
[10]
Babita Aggarwal Rajeev K. Singla; Mohd. Ali; Vijender Singh; John O. Igoli; Rohit Gundamaraju; Kim, K. H., Triterpenic and monoterpenic esters from stems of Ichnocarpus frutescens and their drug likeness potential. Med. Chem. Res., 2015, 24(4), 1427-1437.
[http://dx.doi.org/10.1007/s00044-014-1227-2]
[11]
Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? J. Chem. Inf. Model., 2007, 47(2), 460-463.
[http://dx.doi.org/10.1021/ci6003515] [PMID: 17381169]
[12]
Singla, R.K.; Dubey, A.K. Phytochemical Profiling, GC-MS Analysis and α-Amylase Inhibitory Potential of Ethanolic Extract of Cocos nucifera Linn. Endocarp. Endocr. Metab. Immune Disord. Drug Targets., 2019, 19(4), 419-442.
[http://dx.doi.org/10.2174/1871530319666181128100206] [PMID: 30484412]
[13]
Singla, R.K.; Ali, M.; Kamal, M.A.; Dubey, A.K. Isolation and characterization of nuciferoic acid, a novel keto fatty acid with hyaluronidase inhibitory activity from Cocos nucifera Linn. Endocarp. Curr. Top. Med. Chem., 2018, 18(27), 2367-2378.
[http://dx.doi.org/10.2174/1568026619666181224111319] [PMID: 30582479]
[14]
Singla, R.K.; Scotti, L.; Dubey, A.K. In silico studies revealed multiple neurological targets for the antidepressant molecule ursolic acid. Curr. Neuropharmacol., 2017, 15(8), 1100-1106.
[http://dx.doi.org/10.2174/1570159X14666161229115508] [PMID: 28034283]
[15]
Obrezanova, O.; Segall, M.D. Gaussian processes for classification: QSAR modeling of ADMET and target activity. J. Chem. Inf. Model., 2010, 50(6), 1053-1061.
[http://dx.doi.org/10.1021/ci900406x] [PMID: 20433177]
[16]
Yusof, I.; Segall, M.D. Considering the impact drug-like properties have on the chance of success. Drug Discov. Today, 2013, 18(13-14), 659-666.
[http://dx.doi.org/10.1016/j.drudis.2013.02.008] [PMID: 23458995]
[17]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[18]
Pandey, A.; Negi, P.S. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: a review. J. Ethnopharmacol., 2016, 181, 118-135.
[http://dx.doi.org/10.1016/j.jep.2016.01.036] [PMID: 26821190]
[19]
Wang, L.; Zhang, C.; Layba, M.; Zhang, M. Triterpenes and sterols from Nauclea latifolia. Zhongguo Zhongyao Zazhi, 2011, 36(18), 2511-2514. [Triterpenes and sterols from Nauclea latifolia]
[PMID: 22256756]
[20]
Happi, G.M.; Wouamba, S.C.N.; Ismail, M.; Kouam, S.F.; Frese, M.; Lenta, B.N.; Sewald, N. Ergostane-type steroids from the Cameroonian ‘white tiama’ Entandrophragma angolense. Steroids, 2020.156108584
[http://dx.doi.org/10.1016/j.steroids.2020.108584] [PMID: 31982421]
[21]
Fernandes, T.; Martel, A.; Cordeiro, N. Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Sci. Rep., 2020, 10(1), 339.
[http://dx.doi.org/10.1038/s41598-019-57188-y] [PMID: 31941962]
[22]
Cerri, M.; Reale, L.; Zadra, C. Metabolite Storage in Theobroma cacao L. seed: cyto-histological and phytochemical analyses. Front. Plant Sci., 2019, 10, 1599.
[http://dx.doi.org/10.3389/fpls.2019.01599] [PMID: 31921248]
[23]
Karakaya, S.; Bingol, Z.; Koca, M.; Dagoglu, S.; Pınar, N.M.; Demirci, B.; Gulcin, İ.; Brestic, M.; Sytar, O. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm. J., 2020, 28(1), 1-14.
[http://dx.doi.org/10.1016/j.jsps.2019.11.001] [PMID: 31920428]
[24]
Abd Rani, N.Z.; Kumolosasi, E.; Jasamai, M.; Jamal, J.A.; Lam, K.W.; Husain, K. In vitro anti-allergic activity of Moringa oleifera Lam. extracts and their isolated compounds. BMC Complement. Altern. Med., 2019, 19(1), 361.
[http://dx.doi.org/10.1186/s12906-019-2776-1] [PMID: 31829185]
[25]
Tao, C.; Shkumatov, A.A.; Alexander, S.T.; Ason, B.L.; Zhou, M. Stigmasterol accumulation causes cardiac injury and promotes mortality. Commun. Biol., 2019, 2(1), 20.
[http://dx.doi.org/10.1038/s42003-018-0245-x] [PMID: 30675518]
[26]
Kim, D.; Park, J.B.; Choi, W.K.; Lee, S.J.; Lim, I.; Bae, S.K. Simultaneous determination of β-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction of Zea mays L. J. Sep. Sci., 2016, 39(21), 4060-4070.
[http://dx.doi.org/10.1002/jssc.201600589] [PMID: 27591043]
[27]
Ganbaatar, C.; Gruner, M.; Tunsag, J.; Batsuren, D.; Ganpurev, B.; Chuluunnyam, L.; Sodbayar, B.; Schmidt, A.W.; Knölker, H.J. Chemical constituents isolated from Zygophyllum melongena Bunge growing in Mongolia. Nat. Prod. Res., 2016, 30(14), 1661-1664.
[http://dx.doi.org/10.1080/14786419.2015.1118630] [PMID: 26795069]
[28]
Bouzghaia, B.; Moussa, M.T.B.; Goudjil, R.; Harkat, H.; Pale, P. Chemical composition, in vitro antioxidant and antibacterial activities of Centaurea resupinata subsp. dufourii (dostál) greuter. Nat. Prod. Res., 2020, 1-6.
[http://dx.doi.org/10.1080/14786419.2020.1715397] [PMID: 31971020]
[29]
Yasmeen, S.; Gupta, P. Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: an in silico assessment of their anti-wrinkling potential. Bioinform. Biol. Insights, 2019.131177932219896538
[http://dx.doi.org/10.1177/1177932219896538] [PMID: 31903022]
[30]
Bouazzi, S.; El Mokni, R.; Nakbi, H.; Dhaouadi, H.; Joshi, R.K.; Hammami, S. Chemical composition and antioxidant activity of essential oils and hexane extract of Onopordum arenarium from Tunisia. J. Chromatogr. Sci., 2019.
[PMID: 31867630]
[31]
Sichaem, J.; Vo, H.C.; Nha-Tran, T.; Jarupinthusophon, S.; Niamnont, N.; Srikittiwanna, K.; Nguyen, T.K.; Tran, T.N.; Le, T.T.; Duong, T.H. 29-Norlupane-1β-hydroxy-3,20-dione, a new norlupane triterpenoid from the twigs and leaves of Phyllanthus acidus. Nat. Prod. Res., 2019, 1-6.
[http://dx.doi.org/10.1080/14786419.2019.1700252] [PMID: 31815547]
[32]
Harikrishnan, H.; Jantan, I.; Alagan, A.; Haque, M.A. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology, 2019.
[PMID: 31792765]
[33]
Lerma-Torres, J.M.; Navarro-Ocaña, A.; Calderón-Santoyo, M.; Hernández-Vázquez, L.; Ruiz-Montañez, G.; Ragazzo-Sánchez, J.A. Preparative scale extraction of mangiferin and lupeol from mango (Mangifera indica L.) leaves and bark by different extraction methods. J. Food Sci. Technol., 2019, 56(10), 4625-4631.
[http://dx.doi.org/10.1007/s13197-019-03909-0] [PMID: 31686694]
[34]
Perveen, S.; Chaudhary, H.S. In silico screening of antibacterial compounds from herbal sources against Vibrio cholerae. Pharmacogn. Mag., 2015, 11(Suppl. 4), S550-S555.
[http://dx.doi.org/10.4103/0973-1296.172960] [PMID: 27013793]
[35]
Wu, K.C.; McDonald, P.R.; Liu, J.; Klaassen, C.D. Screening of natural compounds as activators of the keap1-nrf2 pathway. Planta Med., 2014, 80(1), 97-104.
[PMID: 24310212]
[36]
Shi, Y.Q.; Yan, M.; Liu, L.R.; Zhang, X.; Wang, X.; Geng, H.Z.; Zhao, X.; Li, B.X. High glucose represses hERG K+ channel expression through trafficking inhibition. Cell. Physiol. Biochem., 2015, 37(1), 284-296.
[http://dx.doi.org/10.1159/000430353] [PMID: 26303164]
[37]
Itou, M.; Kawaguchi, T.; Taniguchi, E.; Sata, M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J. Gastroenterol., 2013, 19(15), 2298-2306.
[http://dx.doi.org/10.3748/wjg.v19.i15.2298] [PMID: 23613622]
[38]
Dicembrini, I.; Nreu, B.; Montereggi, C.; Mannucci, E.; Monami, M. Risk of cancer in patients treated with dipeptidyl peptidase-4 inhibitors: an extensive meta-analysis of randomized controlled trials. Acta Diabetol., 2020, 57(6), 689-696.
[http://dx.doi.org/10.1007/s00592-020-01479-8] [PMID: 31955260]
[39]
Overbeek, J.A.; Bakker, M.; van der Heijden, A.A.W.A.; van Herk-Sukel, M.P.P.; Herings, R.M.C.; Nijpels, G. Risk of dipeptidyl peptidase-4 (DPP-4) inhibitors on site-specific cancer: a systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2018, 34(5),e3004.
[http://dx.doi.org/10.1002/dmrr.3004] [PMID: 29573125]
[40]
Zhao, M.; Chen, J.; Yuan, Y.; Zou, Z.; Lai, X.; Rahmani, D.M.; Wang, F.; Xi, Y.; Huang, Q.; Bu, S. Dipeptidyl peptidase-4 inhibitors and cancer risk in patients with type 2 diabetes: a meta-analysis of randomized clinical trials. Sci. Rep., 2017, 7(1), 8273.
[http://dx.doi.org/10.1038/s41598-017-07921-2] [PMID: 28811622]
[41]
Shao, S.; Xu, Q.; Yu, X.; Pan, R.; Chen, Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol. Ther., 2020, 209,107503.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107503] [PMID: 32061923]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 10
Year: 2020
Published on: 01 September, 2020
Page: [768 - 777]
Pages: 10
DOI: 10.2174/1389200221999200901202945
Price: $65

Article Metrics

PDF: 17
HTML: 1