Antidepressant Drug Design on TCAs and Phenoxyphenylpropylamines Utilizing QSAR and Pharmacophore Modeling

(E-pub Ahead of Print)

Author(s): Amit Kumar, Sisir Nandi*, Anil Kumar Saxena

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Become EABM
Become Reviewer
Call for Editor


Background: Depression is a mental illness caused by the imbalance of important neurotransmitters such as serotonin (5-HT) and norepinephrine (NE). It is a serious neurological disorder that could be treated by antidepressant drugs.

Objective: There are two major classes such as TCAs and phenoxyphenylpropylamines which have been proven to be broad-spectrum antidepressant compounds. Several attempts were made to design, synthesize and discover potent antidepressant compounds having the least toxicity and most selectivity towards serotonin and norepinephrine transporters. But there is hardly any drug design based on quantitative structure-activity relationship (QSAR) and pharmacophore modeling attempted yet.

Method: In the present study, many TCAs (dibenzoazepine) and phenoxyphenylpropylamine derivatives are taken into consideration for pharmacophore feature generation followed by pharmacophoric distant related descriptors based QSAR modeling. Further, several five new congeners have been designed which are subjected to the prediction of biological activities in terms of serotonin receptor affinity utilizing validated QSAR models developed by us.

Results: An important pharmacophoric feature point C followed by the generation of a topography of the TCAs and phenoxyphenylpropylamine has been predicted. The developed pharmacophoric feature-based QSAR can explain 64.2% of the variances of 5-HT receptor antagonism. The best training model has been statistically validated by the prediction of test set compounds. This training model has been used for the prediction of some newly designed congeneric compounds which are comparable with the existed drugs.

Conclusion: The newly designed compounds may be proposed for further synthesis and biological screening as antidepressant agents.

Keywords: TCAs (dibenzoazepine), phenoxyphenylpropylamine, pharmacophore, QSAR, pharmacophoric distance-based topograph, antidepressant drug design

Rights & PermissionsPrintExport Cite as

Article Details

Published on: 31 August, 2020
(E-pub Ahead of Print)
DOI: 10.2174/1386207323666200901104222
Price: $95

Article Metrics

PDF: 135