Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Nanocarriers in the Delivery of Hydroxychloroquine to the Respiratory System: An Alternative to COVID-19

Author(s): Iago Dillion Lima Cavalcanti*, Sandrelli Meridiana de Fátima Ramos dos Santos Medeiros, Daniel Charles dos Santos Macêdo, Isabella Macário Ferro Cavalcanti and Mariane Cajubá de Britto Lira Nogueira*

Volume 18, Issue 5, 2021

Published on: 27 August, 2020

Page: [583 - 595] Pages: 13

DOI: 10.2174/1567201817666200827110445

Price: $65

Abstract

In response to the global outbreak caused by SARS-CoV-2, this article aims to propose the development of nanosystems for the delivery of hydroxychloroquine in the respiratory system to the treatment of COVID-19. A descriptive literature review was conducted, using the descriptors “COVID-19”, “Nanotechnology”, “Respiratory Syndrome” and “Hydroxychloroquine”, in the PubMed, ScienceDirect and SciElo databases. After analyzing the articles according to the inclusion and exclusion criteria, they were divided into 3 sessions: Coronavirus: definitions, classifications and epidemiology, pharmacological aspects of hydroxychloroquine and pharmaceutical nanotechnology in targeting of drugs. We used 131 articles published until July 18, 2020. Hydroxychloroquine seems to promote a reduction in viral load, in vivo studies, preventing the entry of SARS-CoV-2 into lung cells, and the safety of its administration is questioned due to the toxic effects that it can develop, such as retinopathy, hypoglycemia and even cardiotoxicity. Nanosystems for the delivery of drugs in the respiratory system may be a viable alternative for the administration of hydroxychloroquine, which may enhance the therapeutic effect of the drug with a consequent decrease in its toxicity, providing greater safety for implementation in the clinic in the treatment of COVID-19.

Keywords: SARS-CoV-2, COVID-19, nanotechnology, respiratory syndrome, hydroxychloroquine, epidemiology.

Graphical Abstract
[1]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[2]
Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses, 2019, 12(1), E14.
[http://dx.doi.org/10.3390/v12010014] [PMID: 31861926]
[3]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[4]
Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci., 2020, 250, 117583.
[http://dx.doi.org/10.1016/j.lfs.2020.117583] [PMID: 32217117]
[5]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[6]
WHO. Statement on the meeting of the international health regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV) 2020, 2020.https://www.who.int/news-room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency- committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
[7]
WHO. Middle east respiratory syndrome coronavirus (MERS- CoV). MERS Global summary and assessment of risk, 2019.https://www.who.int/emergencies/mers-cov/en/
[8]
Sahin, A.R.; Erdogan, A.; Agaoglu, P.M.; Dineri, Y.; Cakirci, A.Y.; Senel, M.E. 2019 novel Coronavirus (COVID-19) outbreak: A review of the current literature. EJMO, 2020, 4, 1-7.
[http://dx.doi.org/10.14744/ejmo.2020.12220]
[9]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[10]
WHO. World Health Organization. Coronavirus disease 2019 (cOVID-19) Situation Report - 84, 2020.https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports b
[11]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al- Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[12]
Monteiro, W.M.; Brito-Sousa, J.D.; Baía-da-Silva, D.; Melo, G.C.D.; Siqueira, A.M.; Val, F.; Daniel-Ribeiro, C.T.; Guimarães Lacerda, M.V. Driving forces for COVID-19 clinical trials using chloroquine: the need to choose the right research questions and outcomes. Rev. Soc. Bras. Med. Trop., 2020, 53, e20200155.
[http://dx.doi.org/10.1590/0037-8682-0155-2020] [PMID: 32267301]
[13]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[14]
Joyce, E.; Fabre, A.; Mahon, N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: key diagnostic features and literature review. Eur. Heart J. Acute Cardiovasc. Care, 2013, 2(1), 77-83.
[http://dx.doi.org/10.1177/2048872612471215] [PMID: 24062937]
[15]
Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr., 2020, 14(3), 247-250.
[http://dx.doi.org/10.1016/j.dsx.2020.03.013] [PMID: 32247212]
[16]
Lakkireddy, D.R.; Chung, M.K.; Gopinathannair, R.; Patton, K.K.; Gluckman, T.J.; Turagam, M.; Cheung, J.; Patel, P.; Sotomonte, J.; Lampert, R.; Han, J.K.; Rajagopalan, B.; Eckhardt, L.; Joglar, J.; Sandau, K.; Olshansky, B.; Wan, E.; Noseworthy, P.A.; Leal, M.; Kaufman, E.; Gutierrez, A.; Marine, J.M.; Wang, P.J.; Russo, A.M. Guidance for cardiac electrophysiology during the coronavirus (COVID-19) pandemic from the heart rhythm society COVID-19 task force; electrophysiology section of the American College of Cardiology; and the electrocardiography and arrhythmias committee of the council on clinical cardiology, american heart association. Heart Rhythm, 2020, S1547-5271(20)30289-7.
[http://dx.doi.org/10.1016/j.hrthm.2020.03.028] [PMID: 32247013]
[17]
Siepmann, J.; Faham, A.; Clas, S.D.; Boyd, B.J.; Jannin, V.; Bernkop-Schnürch, A.; Zhao, H.; Lecommandoux, S.; Evans, J.C.; Allen, C.; Merkel, O.M.; Costabile, G.; Alexander, M.R.; Wildman, R.D.; Roberts, C.J.; Leroux, J.C. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int. J. Pharm., 2019, 558, 128-142.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.080] [PMID: 30639218]
[18]
Hu, T.Y.; Frieman, M.; Wolfram, J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat. Nanotechnol., 2020, 15(4), 247-249.
[http://dx.doi.org/10.1038/s41565-020-0674-9] [PMID: 32203437]
[19]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; Groot, R.J.; Drosten, C.; Gulyaeva, A.A. Coronaviridae study group of the international committee on taxonomy of viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[20]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[21]
Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol., 2020, 92(5), 479-490.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[22]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. Adv. Virus Res., 2011, 81, 85-164.
[http://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2] [PMID: 22094080]
[23]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6), 105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[24]
Chan, J.F.W.; Yuan, S.; Kok, K.H.; To, K.K.W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.; Poon, R.W.; Tsoi, H.W.; Lo, S.K.; Chan, K.H.; Poon, V.K.; Chan, W.M.; Ip, J.D.; Cai, J.P.; Cheng, V.C.; Chen, H.; Hui, C.K.; Yuen, K.Y. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 2020, 395(10223), 514-523.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[25]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[26]
Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol., 2020, 92(4), 441-447.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[27]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[28]
Liu, P.; Chen, W.; Chen, J.P. Viral metagenomics revealed sendai vírus and coronavirus infection of Malayan Pangolins (Manis javanica). Viruses, 2019, 11(11), 979.
[http://dx.doi.org/10.3390/v11110979] [PMID: 31652964]
[29]
Zhang, T.; Wu, Q.; Zhang, Z. Probable pangolin origin of SARS- CoV-2 associated with the COVID-19 outbreak. Curr. Biol., 2020, 30(7), 1346-1351.e2.
[http://dx.doi.org/10.1016/j.cub.2020.03.022] [PMID: 32197085]
[30]
Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS- CoV-2 infection. J. Med. Virol., 2020, 92(6), 589-594.
[http://dx.doi.org/10.1002/jmv.25725] [PMID: 32100876]
[31]
Xiao, F; Tang, M; Zheng, X; Liu, Y; Li, X; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterol, 2020, 158(6), 1831-1833.
[32]
Wang, J; Zhao, S; Liu, M; Zhao, Z; Xu, Y; Wang, P ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism medRxiv, 2020.
[33]
Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.; Samore, M.H.; Fisman, D.; Murray, M. Transmission dynamics and control of severe acute respiratory syndrome. Science, 2003, 300(5627), 1966-1970.
[http://dx.doi.org/10.1126/science.1086616] [PMID: 12766207]
[34]
Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet, 2020, 395(10225), 689-697.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[35]
Majumder, M; Mandl, KD Early transmissibility assessment of a novel coronavirus in Wuhan, China. China 2020.
[36]
Zhao, S.; Lin, Q.; Ran, J.; Musa, S.S.; Yang, G.; Wang, W.; Lou, Y.; Gao, D.; Yang, L.; He, D.; Wang, M.H. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis., 2020, 92, 214-217.
[http://dx.doi.org/10.1016/j.ijid.2020.01.050] [PMID: 32007643]
[37]
Majumder, M.S.; Rivers, C.; Lofgren, E.; Fisman, D. Estimation of MERS-Coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia Outbreak: Insights from publicly available data. PLoS Curr., 2014. PMC4322060.
[http://dx.doi.org/10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c] [PMID: 25685622]
[38]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[39]
Qian, Z.; Travanty, E.A.; Oko, L.; Edeen, K.; Berglund, A.; Wang, J.; Ito, Y.; Holmes, K.V.; Mason, R.J. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am. J. Respir. Cell Mol. Biol., 2013, 48(6), 742-748.
[http://dx.doi.org/10.1165/rcmb.2012-0339OC] [PMID: 23418343]
[40]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.; Zaki, A.; Fouchier, R.A.; Thiel, V.; Drosten, C.; Rottier, P.J.; Osterhaus, A.D.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[41]
Scobey, T.; Yount, B.L.; Sims, A.C.; Donaldson, E.F.; Agnihothram, S.S.; Menachery, V.D.; Graham, R.L.; Swanstrom, J.; Bove, P.F.; Kim, J.D.; Grego, S.; Randell, S.H.; Baric, R.S. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA, 2013, 110(40), 16157-16162.
[http://dx.doi.org/10.1073/pnas.1311542110] [PMID: 24043791]
[42]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[43]
Jiang, F.; Deng, L.; Zhang, L.; Cai, Y.; Cheung, C.W.; Xia, Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med., 2020, 35(5), 1545-1549.
[http://dx.doi.org/10.1007/s11606-020-05762-w] [PMID: 32133578]
[44]
Chen, J. Pathogenicity and transmissibility of 2019-nCoV-a quick overview and comparison with other emerging viruses. 2020, 22(2), 69-71.
[http://dx.doi.org/10.1016/j.micinf.2020.01.004]
[45]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv, 2020, 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[46]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[47]
Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; Seilmaier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.; Hoelscher, M. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382(10), 970-971.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[48]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3), 2000045.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[49]
Pang, J.; Wang, M.X.; Ang, I.Y.H.; Tan, S.H.X.; Lewis, R.F.; Chen, J.I.P.; Gutierrez, R.A.; Gwee, S.X.W.; Chua, P.E.Y.; Yang, Q.; Ng, X.Y.; Yap, R.K.; Tan, H.Y.; Teo, Y.Y.; Tan, C.C.; Cook, A.R.; Yap, J.C.; Hsu, L.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): a systematic review. J. Clin. Med., 2020, 9(3), 623.
[http://dx.doi.org/10.3390/jcm9030623] [PMID: 32110875]
[50]
Romanelli, F.; Smith, K.M.; Hoven, A.D. Chloroquine and hydroxychloroquine as inhibitors of human immunodeficiency virus (HIV-1) activity. Curr. Pharm. Des., 2004, 10(21), 2643-2648.
[http://dx.doi.org/10.2174/1381612043383791] [PMID: 15320751]
[51]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19) a review. JAMA, 2020, 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[52]
Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23(5), 231-269.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[53]
Silva, J.C.D.; Mariz, H.Á.; Rocha, L.F., Jr; Oliveira, P.S.S.D.; Dantas, A.T.; Duarte, A.L.B.P.; Pitta, Ida.R.; Galdino, S.L.; Pitta, M.G. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics (São Paulo), 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[54]
Taherian, E.; Rao, A.; Malemud, C.J.; Askari, A.D. The biological and clinical activity of anti-malarial drugs in autoimmune disorders. Curr. Rheumatol. Rev., 2013, 9(1), 45-62.
[http://dx.doi.org/10.2174/1573397111309010010] [PMID: 25198367]
[55]
González-Hernández, I.; Aguirre-Cruz, L.; Sotelo, J.; López-Arellano, R.; Morales-Hipólito, A.; Jung-Cook, H. Distribution of hydroxychloroquine in lymphoid tissue in a rabbit model for HIV infection. Antimicrob. Agents Chemother., 2014, 58(1), 584-586.
[http://dx.doi.org/10.1128/AAC.01440-13] [PMID: 24145523]
[56]
Somer, M.; Kallio, J.; Pesonen, U.; Pyykkö, K.; Huupponen, R.; Scheinin, M. Influence of hydroxychloroquine on the bioavailability of oral metoprolol. Br. J. Clin. Pharmacol., 2000, 49(6), 549-554.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00197.x] [PMID: 10848718]
[57]
Ben-Zvi, I.; Kivity, S.; Langevitz, P.; Shoenfeld, Y. Hydroxychloquine: from malaria to autoimmunity; Clinic Rev Allerg Immunol, 2012, pp. 42145-42153.
[58]
Browning, D.J. Pharmacology of chloroquine and hydroxychloroquine.Hydroxychloroquine and Chloroquine Retinopathy; Springer, 2014, pp. 35-63.
[http://dx.doi.org/10.1007/978-1-4939-0597-3_2]
[59]
Solitro, A.R.; Mackeigan, J.P. Tissue distribution and tumor concentrations of hydroxychloroquine and quinacrine analogs in mice. bioRxiv, 2018, 496018
[http://dx.doi.org/10.1101/496018]
[60]
Rosa, S.G.V.; Santos, W.C. Clinical trials on drug repositioning for COVID-19 treatment. Rev. Panam. Salud Publica, 2020, 44, e40.
[http://dx.doi.org/10.26633/RPSP.2020.40] [PMID: 32256547]
[61]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[62]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[63]
Lai, C.C.; Liu, Y.H.; Wang, C.Y.; Wang, Y.H.; Hsueh, S.C.; Yen, M.Y.; Ko, W.C.; Hsueh, P.R. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect., 2020, 53(3), 404-412.
[http://dx.doi.org/10.1016/j.jmii.2020.02.012] [PMID: 32173241]
[64]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[65]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[66]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of Ebola vírus, middle east respiratory syndrome coronavírus (MERS-CoV), and severe acute respiratory sindrome coronavírus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[67]
Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov., 2020, 6, 16.
[http://dx.doi.org/10.1038/s41421-020-0156-0] [PMID: 32194981]
[68]
Yao, X; Ye, F; Zhang, M; Cui, C; Huang, B; Niu, P. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavírus 2 (SARS-CoV-2) Clin Infect Dis, 2020, 71(15), 732-739.
[69]
Marmor, M.F.; Kellner, U.; Lai, T.Y.; Melles, R.B.; Mieler, W.F. American Academy of Ophthalmology. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology, 2016, 123(6), 1386-1394.
[http://dx.doi.org/10.1016/j.ophtha.2016.01.058] [PMID: 26992838]
[70]
Wolfe, F.; Marmor, M.F. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res. (Hoboken), 2010, 62(6), 775-784.
[http://dx.doi.org/10.1002/acr.20133] [PMID: 20535788]
[71]
Frie, K.; Gbinigie, K. Chloroquine and hydroxychloroquine: current evidence for their effectiveness in treating COVID-19. Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences; University of Oxford, 2020.
[72]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[73]
Melles, R.B.; Marmor, M.F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol., 2014, 132(12), 1453-1460.
[http://dx.doi.org/10.1001/jamaophthalmol.2014.3459] [PMID: 25275721]
[74]
Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye (Lond.), 2017, 31(6), 828-845.
[http://dx.doi.org/10.1038/eye.2016.298] [PMID: 28282061]
[75]
Wallace, D.J.; Gudsoorkar, V.S.; Weisman, M.H.; Venuturupalli, S.R. New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat. Rev. Rheumatol., 2012, 8(9), 522-533.
[http://dx.doi.org/10.1038/nrrheum.2012.106] [PMID: 22801982]
[76]
Avina-Zubieta, J.A.; Johnson, E.S.; Suarez-Almazor, M.E.; Russell, A.S. Incidence of myopathy in patients treated with antimalarials. A report of three cases and a review of the literature. Br. J. Rheumatol., 1995, 34(2), 166-170.
[http://dx.doi.org/10.1093/rheumatology/34.2.166] [PMID: 7704464]
[77]
Yogasundaram, H.; Putko, B.N.; Tien, J.; Paterson, D.I.; Cujec, B.; Ringrose, J.; Oudit, G.Y. Hydroxychloroquine-induced cardiomyopathy: case report, pathophysiology, diagnosis, and treatment. Can. J. Cardiol., 2014, 30(12), 1706-1715.
[http://dx.doi.org/10.1016/j.cjca.2014.08.016] [PMID: 25475472]
[78]
Makin, A.J.; Wendon, J.; Fitt, S.; Portmann, B.C.; Williams, R. Fulminant hepatic failure secondary to hydroxychloroquine. Gut, 1994, 35(4), 569-570.
[http://dx.doi.org/10.1136/gut.35.4.569] [PMID: 8175002]
[79]
Giner Galvañ, V.; Oltra, M.R.; Rueda, D.; Esteban, M.J.; Redón, J. Severe acute hepatitis related to hydroxychloroquine in a woman with mixed connective tissue disease. Clin. Rheumatol., 2007, 26(6), 971-972.
[http://dx.doi.org/10.1007/s10067-006-0218-1] [PMID: 16575495]
[80]
Chatre, C.; Roubille, F.; Vernhet, H.; Jorgensen, C.; Pers, Y.M. Cardiac complications attributed to chloroquine and hydroxychloroquine: A systematic review of the literature. Drug Saf., 2018, 41(10), 919-931.
[http://dx.doi.org/10.1007/s40264-018-0689-4] [PMID: 29858838]
[81]
Boettler, T.; Newsome, P.N.; Mondelli, M.U.; Maticic, M.; Cordero, E.; Cornberg, M.; Berg, T. Care of patients with liver disease during the COVID-19 pandemic: EASL-ESCMID position paper. JHEP Rep, 2020, 2(3), 100113.
[http://dx.doi.org/10.1016/j.jhepr.2020.100113] [PMID: 32289115]
[82]
Cardoso, C.D.; Bonato, O.S. Enantioselective metabolismo of hydroxychloroquine employing rats and mice hepatic microsomes. Braz. J. Pharm. Sci., 2009, 45, 659-667.
[http://dx.doi.org/10.1590/S1984-82502009000400008]
[83]
Brocks, D.R.; Mehvar, R. Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs. Clin. Pharmacokinet., 2003, 42(15), 1359-1382.
[http://dx.doi.org/10.2165/00003088-200342150-00004] [PMID: 14674788]
[84]
Chhonker, Y.S.; Sleightholm, R.L.; Li, J.; Oupický, D.; Murry, D.J. Simultaneous quantitation of hydroxychloroquine and its metabolites in mouse blood and tissues using LC-ESI-MS/MS: An application for pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1072, 320-327.
[http://dx.doi.org/10.1016/j.jchromb.2017.11.026] [PMID: 29207305]
[85]
Munster, T.; Gibbs, J.P.; Shen, D.; Baethge, B.A.; Botstein, G.R.; Caldwell, J.; Dietz, F.; Ettlinger, R.; Golden, H.E.; Lindsley, H.; McLaughlin, G.E.; Moreland, L.W.; Roberts, W.N.; Rooney, T.W.; Rothschild, B.; Sack, M.; Sebba, A.I.; Weisman, M.; Welch, K.E.; Yocum, D.; Furst, D.E. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum., 2002, 46(6), 1460-1469.
[http://dx.doi.org/10.1002/art.10307] [PMID: 12115175]
[86]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[87]
Kumar, CSSR Nanotechnology tools in pharmaceutical R&D. Mater. Today, 2010, 12, 24-30.
[http://dx.doi.org/10.1016/S1369-7021(10)70142-5]
[88]
Alexander, A.; Ajazuddin, ; Patel, R.J.; Saraf, S.; Saraf, S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J. Control. Release, 2016, 241, 110-124.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.017] [PMID: 27663228]
[89]
Souto, E.B.; Severino, P.; Santana, M.H.A. Preparação de nanopartículas poliméricas a partir da polimerização de monômeros - Parte I. Polímeros, 2012, 22, 96-100.
[http://dx.doi.org/10.1590/S0104-14282012005000006]
[90]
Batista, C.M.; Carvalho, C.M.B.; Magalhães, N.S.S. Lipossomas e suas aplicações terapêuticas: estado da arte. Rev Bras Cienc Farm, 2007, 43
[http://dx.doi.org/10.1590/S1516-93322007000200003]
[91]
Rodrigues, F.V.; Diniz, L.S.; Sousa, R.M.; Honorato, T.D.; Simão, D.O.; Araújo, C.R. Preparation and characterization of nanoemulsion containing a natural naphthoquinone. Quim. Nova, 2018, 41, 756-761.
[http://dx.doi.org/10.21577/0100-4042.20170247]
[92]
Estanqueiro, M.; Vasconcelos, H.; Lobo, J.M.S. Amaral, H Delivering miRNA modulators for cancer treatment; Drug Targeting and Stimuli Sensitive Drug Delivery Systems, 2018, pp. 517-565.
[93]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3, 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[94]
Smola, M.; Vandamme, T.; Sokolowski, A. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int. J. Nanomedicine, 2008, 3(1), 1-19.
[PMID: 18488412]
[95]
Maruyama, K.; Holmberg, E.; Kennel, S.J.; Klibanov, A.; Torchilin, V.P.; Huang, L. Characterization of in vivo immunoliposome targeting to pulmonary endothelium. J. Pharm. Sci., 1990, 79(11), 978-984.
[http://dx.doi.org/10.1002/jps.2600791107] [PMID: 2292774]
[96]
Ritter, D.; Knebel, J.; Niehof, M.; Loinaz, I.; Marradi, M.; Gracia, R.; Te Welscher, Y.; van Nostrum, C.F.; Falciani, C.; Pini, A.; Strandh, M.; Hansen, T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol. In Vitro, 2020, 63, 104714.
[http://dx.doi.org/10.1016/j.tiv.2019.104714] [PMID: 31706036]
[97]
Hsu, C.Y.; Sung, C.T.; Aljuffali, I.A.; Chen, C.H.; Hu, K.Y.; Fang, J.Y. Intravenous anti-MRSA phosphatiosomes mediate enhanced affinity to pulmonary surfactants for effective treatment of infectious pneumonia. Nanomedicine (Lond.), 2018, 14(2), 215-225.
[http://dx.doi.org/10.1016/j.nano.2017.10.006] [PMID: 29128664]
[98]
Jiang, H.L.; Kang, M.L.; Quan, J.S.; Kang, S.G.; Akaike, T.; Yoo, H.S.; Cho, C.S. The potential of mannosylated chitosan microspheres to target macrophage mannose receptors in an adjuvant-delivery system for intranasal immunization. Biomaterials, 2008, 29(12), 1931-1939.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.025] [PMID: 18221992]
[99]
Luo, Y.; Zhai, X.; Ma, C.; Sun, P.; Fu, Z.; Liu, W.; Xu, J. An inhalable β-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J. Control. Release, 2012, 162(1), 28-36.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.005] [PMID: 22698944]
[100]
Pellosi, D.S.; d’Angelo, I.; Maiolino, S.; Mitidieri, E.; d’Emmanuele di Villa Bianca, R.; Sorrentino, R.; Quaglia, F.; Ungaro, F. In vitro/in vivo investigation on the potential of Pluronic® mixed micelles for pulmonary drug delivery. Eur. J. Pharm. Biopharm., 2018, 130, 30-38.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.006] [PMID: 29890256]
[101]
Pontes, J.F.; Grenha, A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials (Basel), 2020, 10(2), 183.
[http://dx.doi.org/10.3390/nano10020183] [PMID: 31973051]
[102]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[103]
Shah, K.; Chan, L.W.; Wong, T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv., 2017, 24(1), 1631-1647.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[104]
Melis, V.; Manca, M.L.; Bullita, E.; Tamburini, E.; Castangia, I.; Cardia, M.C.; Valenti, D.; Fadda, A.M.; Peris, J.E.; Manconi, M. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs. Colloids Surf. B Biointerfaces, 2016, 143, 301-308.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.044] [PMID: 27022870]
[105]
Maretti, E.; Costantino, L.; Buttini, F.; Rustichelli, C.; Leo, E.; Truzzi, E.; Iannuccelli, V. Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Deliv. Transl. Res., 2019, 9(1), 298-310.
[http://dx.doi.org/10.1007/s13346-018-00607-w] [PMID: 30484257]
[106]
Gaspar, D.P.; Gaspar, M.M.; Eleutério, C.V.; Grenha, A.; Blanco, M.; Gonçalves, L.M.D.; Taboada, P.; Almeida, A.J.; Remuñán-López, C. Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol. Pharm., 2017, 14(9), 2977-2990.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00169] [PMID: 28809501]
[107]
Pourshahab, P.S.; Gilani, K.; Moazeni, E.; Eslahi, H.; Fazeli, M.R.; Jamalifar, H. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J. Microencapsul., 2011, 28(7), 605-613.
[http://dx.doi.org/10.3109/02652048.2011.599437] [PMID: 21793647]
[108]
Rawal, T.; Patel, S.; Butani, S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur. J. Pharm. Sci., 2018, 124, 273-287.
[http://dx.doi.org/10.1016/j.ejps.2018.08.038] [PMID: 30176365]
[109]
Mirza, A.Z.; Siddiqui, F.A. Nanomedicine and drug delivery: a mini review. Int. Nano Lett., 2014, 4, 94.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[110]
Joshi, M.; Nagarsenkar, M.; Prabhakar, B. Albumin nanocarriers for pulmonary drug delivery: An attractive approach; J Drug Deliv Sci Tec, 2020, p. 101529.
[111]
Wartlick, H.; Spänkuch-Schmitt, B.; Strebhardt, K.; Kreuter, J.; Langer, K. Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. J. Control. Release, 2004, 96(3), 483-495.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.029] [PMID: 15120904]
[112]
Yang, F.; Zhang, Y.; Liang, H. Interactive association of drugs binding to human serum albumin. Int. J. Mol. Sci., 2014, 15(3), 3580-3595.
[http://dx.doi.org/10.3390/ijms15033580] [PMID: 24583848]
[113]
Chow, M.Y.T.; Qiu, Y.; Liao, Q.; Kwok, P.C.L.; Chow, S.F.; Chan, H.K.; Lam, J.K.W. High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. Int. J. Pharm., 2019, 572, 118818.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118818] [PMID: 31678379]
[114]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[115]
Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost., 2020, 18(4), 844-847.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[116]
Levi, M.; van der Poll, T. Coagulation and sepsis. Thromb. Res., 2017, 149, 38-44.
[http://dx.doi.org/10.1016/j.thromres.2016.11.007] [PMID: 27886531]
[117]
Schmitt, F.C.F.; Manolov, V.; Morgenstern, J.; Fleming, T.; Heitmeier, S.; Uhle, F.; Al-Saeedi, M.; Hackert, T.; Bruckner, T.; Schöchl, H.; Weigand, M.A.; Hofer, S.; Brenner, T. Acute fibrinolysis shutdown occurs early in septic shock and is associated with increased morbidity and mortality: results of an observational pilot study. Ann. Intensive Care, 2019, 9(1), 19.
[http://dx.doi.org/10.1186/s13613-019-0499-6] [PMID: 30701381]
[118]
Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost., 2020, 18(5), 1094-1099.
[http://dx.doi.org/10.1111/jth.14817] [PMID: 32220112]
[119]
Shanghai Clinical Treatment Expert Group for COVID-19. Comprehensive treatment and management of coronavirus disease 2019: Expert consensus statement from Shanghai (in Chinese) Chin J Infect, 2019.
[120]
Cao, L.; Wang, J.; Hou, J.; Xing, W.; Liu, C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials, 2014, 35(2), 684-698.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.005] [PMID: 24140042]
[121]
Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Potential of intensification techniques for the extraction and depolymerization of fucoidan. Algal Res., 2018, 30, 128-148.
[http://dx.doi.org/10.1016/j.algal.2018.01.002]
[122]
Mansour, M.B.; Balti, R.; Yacoubi, L.; Ollivier, V.; Chaubet, F.; Maaroufi, R.M. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii. Int. J. Biol. Macromol., 2019, 121, 1145-1153.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.129] [PMID: 30340002]
[123]
Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 2016, 14(3), 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[124]
Sezer, A.D.; Cevher, E. Fucoidan: A versatile biopolymer for biomedical applications.Active Implants and Scaffolds for Tissue Regeneration; Springer: Berlin, Heidelberg, 2011, pp. 377-406.
[http://dx.doi.org/10.1007/8415_2011_67]
[125]
Lira, M.C.B.; Santos-Magalhães, N.S.; Nicolas, V.; Marsaud, V.; Silva, M.P.C.; Ponchel, G.; Vauthier, C. Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur. J. Pharm. Biopharm., 2011, 79(1), 162-170.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.013] [PMID: 21349331]
[126]
Chiang, C.S.; Lin, Y.J.; Lee, R.; Lai, Y.H.; Cheng, H.W.; Hsieh, C.H.; Shyu, W.C.; Chen, S.Y. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol., 2018, 13(8), 746-754.
[http://dx.doi.org/10.1038/s41565-018-0146-7] [PMID: 29760523]
[127]
da Silva, L.C.; Garcia, T.; Mori, M.; Sandri, G.; Bonferoni, M.C.; Finotelli, P.V.; Cinelli, L.P.; Caramella, C.; Cabral, L.M. Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. Int. J. Nanomedicine, 2012, 7, 2975-2986.
[http://dx.doi.org/10.2147/IJN.S31632] [PMID: 22787393]
[128]
Liu, T.; Hu, Y.; Tan, J.; Liu, S.; Chen, J.; Guo, X.; Pan, C.; Li, X. Surface biomimetic modification with laminin-loaded heparin/poly-l-lysine nanoparticles for improving the biocompatibility. Mater. Sci. Eng. C, 2017, 71, 929-936.
[http://dx.doi.org/10.1016/j.msec.2016.11.010] [PMID: 27987790]
[129]
Babazada, H.; Yanamoto, S.; Hashida, M.; Yamashita, F. Binding and structure-kinetic relationship analysis of selective TLR4-targeted immunosuppressive self-assembling heparin nanoparticles. Int. J. Pharm., 2018, 552(1-2), 76-83.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.054] [PMID: 30253213]
[130]
Li, C.; Zhang, M.; Liu, X.; Zhao, W.; Zhao, C. Immobilization of heparin-mimetic biomacromolecules on Fe3O4 nanoparticles as magnetic anticoagulant via mussel-inspired coating. Mater. Sci. Eng. C, 2020, 109, 110516.
[http://dx.doi.org/10.1016/j.msec.2019.110516] [PMID: 32228930]
[131]
Lima, T.L.C.; Feitosa, R.C.; Dos Santos-Silva, E.; Dos Santos-Silva, A.M.; Siqueira, E.M.D.S.; Machado, P.R.L.; Cornélio, A.M.; do Egito, E.S.T.; Fernandes-Pedrosa, M.F.; Farias, K.J.S.; da Silva-Júnior, A.A. Improving encapsulation of hydrophilic chloroquine diphosphate into biodegradable nanoparticles: A promising approach against herpes virus simplex-1 infection. Pharmaceutics, 2018, 10(4), 255.
[http://dx.doi.org/10.3390/pharmaceutics10040255] [PMID: 30513856]
[132]
Miller, S.E.; Mathiasen, S.; Bright, N.A.; Pierre, F.; Kelly, B.T.; Kladt, N.; Schauss, A.; Merrifield, C.J.; Stamou, D.; Höning, S.; Owen, D.J. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell, 2015, 33(2), 163-175.
[http://dx.doi.org/10.1016/j.devcel.2015.03.002] [PMID: 25898166]
[133]
Wolfram, J.; Nizzero, S.; Liu, H.; Li, F.; Zhang, G.; Li, Z.; Shen, H.; Blanco, E.; Ferrari, M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci. Rep., 2017, 7(1), 13738.
[http://dx.doi.org/10.1038/s41598-017-14221-2] [PMID: 29062065]
[134]
Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release, 2010, 145(3), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[135]
Patel, S.; Kim, J.; Herrera, M.; Mukherjee, A.; Kabanov, A.V.; Sahay, G. Brief update on endocytosis of nanomedicines. Adv. Drug Deliv. Rev., 2019, 144, 90-111.
[http://dx.doi.org/10.1016/j.addr.2019.08.004] [PMID: 31419450]
[136]
NIH – National Library of Medicine. Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for prophylaxis of SARS-CoV-2 infection (COVID-19) Clinical Trials, 2020.https://clinicaltrials.gov/ct2/show/NCT04283461

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy