Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Developments in the Principles, Modification and Application Prospects of Functionalized Ethosomes for Topical Delivery

Author(s): Jianying Lu, Teng Guo, Yunlong Fan, Zhe Li, Zehui He, Shuo Yin and Nianping Feng*

Volume 18, Issue 5, 2021

Published on: 25 August, 2020

Page: [570 - 582] Pages: 13

DOI: 10.2174/1567201817666200826093102

Price: $65

Abstract

Transdermal drug delivery helps to circumvent the first-pass effect of drugs and to avoid drug-induced gastrointestinal tract irritation, compared with oral administration. With the extensive application of ethosomes in transdermal delivery, the shortages of them have been noticed continuously. Due to the high concentration of volatile ethanol in ethosomes, there are problems of drug leakage, system instability, and ethosome-induced skin irritation. Thus, there is a growing interest in the development of new generations of ethosomal systems. Functionalized ethosomes have the advantages of increased stability, improved transdermal performances, an extended prolonged drug release profile and site-specific delivery, due to their functional materials. To comprehensively understand this novel carrier, this review summarizes the properties of functionalized ethosomes, their mechanism through the skin and their modifications with different materials, validating their potential as promising transdermal drug delivery carriers. Although functionalized ethosomes have presented a greater role for enhanced topical delivery, challenges regarding their design and future perspectives are also discussed.

Keywords: Functionalized ethosomes, transdermal drug delivery system, transdermal mechanism, modification, applications, site-specific delivery.

Graphical Abstract
[1]
Benbow, T.; Campbell, J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): A literature review. Drug Dev. Ind. Pharm., 2019, 45(12), 1849-1855.
[http://dx.doi.org/10.1080/03639045.2019.1680996] [PMID: 31617433]
[2]
Alkilani, A.Z.; McCrudden, M.T.C.; Donnelly, R.F. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[3]
Carter, P.; Narasimhan, B.; Wang, Q. Biocompatible nanoparticles and vesicular systems in transdermal drug delivery for various skin diseases. Int. J. Pharm., 2019, 555(4), 49-62.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.032] [PMID: 30448309]
[4]
Jain, S.; Patel, N.; Shah, M.K.; Khatri, P.; Vora, N. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application. J. Pharm. Sci., 2017, 106(2), 423-445.
[http://dx.doi.org/10.1016/j.xphs.2016.10.001] [PMID: 27865609]
[5]
Zylberberg, C.; Matosevic, S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv., 2016, 23(9), 3319-3329.
[http://dx.doi.org/10.1080/10717544.2016.1177136] [PMID: 27145899]
[6]
Zorec, B.; Zupančič, Š.; Kristl, J.; Pavšelj, N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur. J. Pharm. Biopharm., 2018, 127, 387-397.
[http://dx.doi.org/10.1016/j.ejpb.2018.03.008] [PMID: 29581043]
[7]
Yang, L.; Wu, L.; Wu, D.; Shi, D.; Wang, T.; Zhu, X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int. J. Nanomedicine, 2017, 12, 3357-3364.
[http://dx.doi.org/10.2147/IJN.S134708] [PMID: 28490875]
[8]
Akhtar, N.; Varma, A.; Pathak, K. Ethosomes as vesicles for effective transdermal delivery: from bench to clinical implementation. Curr. Clin. Pharmacol., 2016, 11(3), 168-190.
[http://dx.doi.org/10.2174/1574884711666160813231352] [PMID: 27526697]
[9]
Chu, G.J.; Murad, A. A case of ethanol-induced systemic allergic dermatitis. Contact Dermat., 2017, 76(3), 182-184.
[http://dx.doi.org/10.1111/cod.12668] [PMID: 28220569]
[10]
Ita, K. Current status of ethosomes and elastic liposomes in dermal and transdermal drug delivery. Curr. Pharm. Des., 2016, 22(33), 5120-5126.
[http://dx.doi.org/10.2174/1381612822666160511150228] [PMID: 27165164]
[11]
Touitou, E. Compositions for applying active substances to or through the skin United States patent US 5540934 A, 1996.
[12]
May, J.P.; Hysi, E.; Wirtzfeld, L.A.; Undzys, E.; Li, S.D.; Kolios, M.C. Photoacoustic imaging of cancer treatment response: early detection of therapeutic effect from thermosensitive liposomes. PLoS One, 2016, 11(10)e0165345
[http://dx.doi.org/10.1371/journal.pone.0165345] [PMID: 27788199]
[13]
Wu, P.S.; Li, Y.S.; Kuo, Y.C.; Tsai, S.J.J.; Lin, C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules, 2019, 24(3), 600-611.
[http://dx.doi.org/10.3390/molecules24030600] [PMID: 30743989]
[14]
Lugović-Mihić, L.; Novak-Bilić, G.; Vučić, M.; Japundžić, I.; Bukvić, I. CD44 expression in human skin: High expression in irritant and allergic contact dermatitis and moderate expression in psoriasis lesions in comparison with healthy controls. Contact Dermat., 2020, 82(5), 297-306.
[http://dx.doi.org/10.1111/cod.13463] [PMID: 31900953]
[15]
Suri, R.; Neupane, Y.R.; Kohli, K.; Jain, G.K. Polyoliposomes: novel polyol-modified lipidic nanovesicles for dermal and transdermal delivery of drugs. Nanotechnology, 2020, 31(35), 355103-355140.
[http://dx.doi.org/10.1088/1361-6528/ab912d] [PMID: 32380490]
[16]
Natsheh, H.; Vettorato, E.; Touitou, E. Ethosomes for dermal administration of natural active molecules. Curr. Pharm. Des., 2019, 25(21), 2338-2348.
[http://dx.doi.org/10.2174/1381612825666190716095826] [PMID: 31333087]
[17]
Das, S.K.; Chakraborty, S.; Roy, C.; Rajabalaya, R.; Mohaimin, A.W.; Khanam, J.; Nanda, A.; David, S.R. Ethosomes as novel vesicular carrier: an overview of the principle, preparation and its applications. Curr. Drug Deliv., 2018, 15(6), 795-817.
[http://dx.doi.org/10.2174/1567201815666180116091604] [PMID: 29336262]
[18]
Zhou, Y.; Wei, Y.; Liu, H.; Zhang, G.; Wu, X. Preparation and in vitro evaluation of ethosomal total alkaloids of Sophora alopecuroides loaded by a transmembrane pH-gradient method. AAPS PharmSciTech, 2010, 11(3), 1350-1358.
[http://dx.doi.org/10.1208/s12249-010-9509-6] [PMID: 20740333]
[19]
Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm., 2019, 560, 78-91.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.067] [PMID: 30742987]
[20]
Guo, X.X; He, W.; Li, H.; Zhang, L.L. Optimization of formulation and in vitro properties of testosterone undecanoate binary ethosomes. Chinese pharmacist, 2015, 18(8), 1280-1283.
[21]
Song, L.; Zhang, L.L.; Yuan, L.F. Effect of sinomenine hydrochloride binary ethosomal gels on anti-inflammation, analgesia and skin irritation. Guangdong Yaoxueyuan Xuebao, 2013, 29(4), 403-406.
[22]
Carita, A.C.; Eloy, J.O.; Chorilli, M.; Lee, R.J.; Leonardi, G.R. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr. Med. Chem., 2018, 25(5), 606-635.
[http://dx.doi.org/10.2174/0929867324666171009120154] [PMID: 28990515]
[23]
Zhao, Y.Z.; Zhang, L.; Gupta, P.K.; Tian, F.R.; Mao, K.L.; Qiu, K.Y.; Yang, W.; Lv, C.Z.; Lu, C.T. Using PG-liposome-based system to enhance puerarin liver-targeted therapy for alcohol-induced liver disease. AAPS PharmSciTech, 2016, 17(6), 1376-1382.
[http://dx.doi.org/10.1208/s12249-015-0427-5] [PMID: 26753818]
[24]
Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: a new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[25]
Shen, L.N.; Zhang, Y.T.; Wang, Q.; Xu, L.; Feng, N.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm., 2014, 460(1-2), 280-288.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.017] [PMID: 24269286]
[26]
Suzuki, Y.; Ogasawara, T.; Tanaka, Y.; Takeda, H.; Sawasaki, T.; Mogi, M.; Liu, S.; Maeyama, K. Functional G-Protein-Coupled Receptor (GPCR) synthesis: the pharmacological analysis of Human Histamine H1 Receptor (HRH1) synthesized by a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. Front. Pharmacol., 2018, 9(9), 38.
[http://dx.doi.org/10.3389/fphar.2018.00038] [PMID: 29467651]
[27]
Marin-Penalver, A.; Gomez-Guillen, M.C. Carboxymethyl cellulose films containing nanoliposomes loaded with an angiotensin-converting enzyme inhibitory collagen hydrolysate. Food Hydrocoll., 2019, 94(9), 553-560.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.009]
[28]
Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm., 2017, 114(2), 278-287.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.004] [PMID: 28192250]
[29]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces, 2012, 92, 299-304.
[http://dx.doi.org/10.1016/j.colsurfb.2011.12.004] [PMID: 22205066]
[30]
Wang, H.; Zhang, X.H.; Zhang, Y.; Yang, M.M.; Chen, Y.C. Comparison of ethosomes, binary ethosomes and transfersomes in the transdermal delivery of donepezil. Chin. Hosp. Pharm. J., 2018, 38(3), 219-222.
[31]
Liu, T.F.; Liu, X.Y.; Xiong, H.; Xu, C.; Yao, J.X.; Zhu, X.M.; Zhou, J.P.; Yao, J. Mechanisms of TPGS and its derivatives inhibiting p-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma. Polym. Chem-UK, 2018, 9(14), 1827-1839.
[http://dx.doi.org/10.1039/C8PY00344K]
[32]
Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent advances in the application of vitamin e TPGS for drug delivery. Theranostics, 2018, 8(2), 464-485.
[http://dx.doi.org/10.7150/thno.22711] [PMID: 29290821]
[33]
Neophytou, C.M.; Constantinou, A.I. Drug delivery innovations for enhancing the anticancer potential of vitamin e isoforms and their derivatives. BioMed Res. Int., 2015, 2015584862
[http://dx.doi.org/10.1155/2015/584862] [PMID: 26137487]
[34]
Zhu, Y.N.; Wang, M.; Wang, L.L.; Ju, J.M.; Zhang, Z.H. Preparation of colchicine ethosomes containing TPGS and in vitro transdermal permeation. Chin. Tradit. Herbal Drugs, 2015, 46(24), 3655-3660.
[35]
Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, characterization and properties of hemp seed oil and its emulsions. Molecules, 2017, 22(5), 1-13.
[http://dx.doi.org/10.3390/molecules22050700] [PMID: 28448475]
[36]
Abdel-Messih, H.A.; Ishak, R.A.H.; Geneidi, A.S.; Mansour, S. Tailoring novel soft nano-vesicles ‘Flexosomes’ for enhanced transdermal drug delivery: Optimization, characterization and comprehensive ex vivo-in vivo evaluation. Int. J. Pharm., 2019, 560(1), 101-115.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.072] [PMID: 30753931]
[37]
Descamps, V. What’s new in dermatological treatment?. Ann. Dermatol. Venereol., 2018, 145(Suppl. 7), S47-S55.
[http://dx.doi.org/10.1016/S0151-9638(18)31289-4] [PMID: 30583757]
[38]
Ma, L.; Wang, X.; Wu, J.; Zhang, D.; Zhang, L.; Song, X.; Hong, H.; He, C.; Mo, X.; Wu, S.; Kai, G.; Wang, H. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery. Nanomedicine (Lond.), 2019, 14(18), 2395-2408.
[http://dx.doi.org/10.2217/nnm-2018-0398] [PMID: 31456475]
[39]
Hu, L.J.; Liu, F.L.; Li, L.C.; Feng, F.; Qu, W. Preparation of amphiphilic hyaluronic acid derivatives and their applications in anti-tumor nano-drug delivery systems. Prog. Pharm. Sci., 2017, 41(11), 804-811.
[40]
Parodi, A.; Corbo, C.; Cevenini, A.; Molinaro, R.; Palomba, R.; Pandolfi, L.; Agostini, M.; Salvatore, F.; Tasciotti, E. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond.), 2015, 10(12), 1923-1940.
[http://dx.doi.org/10.2217/nnm.15.39] [PMID: 26139126]
[41]
Kawar, D.; Abdelkader, H. Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen. Pharm. Dev. Technol., 2019, 24(8), 947-953.
[http://dx.doi.org/10.1080/10837450.2019.1572761] [PMID: 30676142]
[42]
Xie, J.; Ji, Y.; Xue, W.; Ma, D.; Hu, Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids Surf. B Biointerfaces, 2018, 172, 323-329.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.061] [PMID: 30176512]
[43]
Yang, X.; Wang, X.; Yu, F.; Ma, L.; Luo, G.; Pan, X.; Wang, H. Galactosylated chitosan-modified ethosomes as a dendritic cell-targeted carrier for transcutaneous immunization. J. Control. Release, 2017, 259(3), E157-E157.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.314]
[44]
Mbah, C.; Builders, P.; Nzekwe, I.; Kunle, O.; Adikwu, M.; Attama, A. Formulation and in vitro evaluation of pH-responsive ethosomes for vaginal delivery of metronidazole. Drug Deliv. Sci. Technol., 2014, 24(6), 565-571.
[http://dx.doi.org/10.1016/S1773-2247(14)50120-7]
[45]
Niu, X.Q.; Zhang, D.P.; Bian, Q.; Feng, X.F.; Li, H.; Rao, Y.F.; Shen, Y.M.; Geng, F.N.; Yuan, A.R.; Ying, X.Y.; Gao, J.Q. Mechanism investigation of ethosomes transdermal permeation. Int J Pharm X, 2019, 1(1), 100027-100036.
[http://dx.doi.org/10.1016/j.ijpx.2019.100027] [PMID: 31517292]
[46]
Pilch, E.; Musiał, W. Liposomes with an ethanol fraction as an application for drug delivery. Int. J. Mol. Sci., 2018, 19(12), 1008-1020.
[http://dx.doi.org/10.3390/ijms19123806] [PMID: 30501085]
[47]
Ramkar, S.; Sah, A.K.; Bhuwane, N.; Choudhary, I.; Hemnani, N.; Suresh, P.K. Nano-lipidic carriers as a tool for drug targeting to the pilosebaceous units. Curr. Pharm. Des., 2020, 3251-3268.
[http://dx.doi.org/10.2174/1381612826666200515133142] [PMID: 32410556]
[48]
Nainwal, N.; Jawla, S.; Singh, R.; Saharan, V.A. Transdermal applications of ethosomes - A detailed review. J. Liposome Res., 2019, 29(2), 103-113.
[http://dx.doi.org/10.1080/08982104.2018.1517160] [PMID: 30156120]
[49]
Shah, S.M.; Ashtikar, M.; Jain, A.S.; Makhija, D.T.; Nikam, Y.; Gude, R.P.; Steiniger, F.; Jagtap, A.A.; Nagarsenker, M.S.; Fahr, A. LeciPlex, invasomes, and liposomes: A skin penetration study. Int. J. Pharm., 2015, 490(1-2), 391-403.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.042] [PMID: 26002568]
[50]
Nakata, S.; Deguchi, A.; Seki, Y.; Furuta, M.; Fukuhara, K.; Nishihara, S.; Inoue, K.; Kumazawa, N.; Mashiko, S.; Fujihira, S.; Goto, M.; Denda, M. Characteristic responses of a phospholipid molecular layer to polyols. Colloids Surf. B Biointerfaces, 2015, 136, 594-599.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.035] [PMID: 26454550]
[51]
Chacko, I.A.; Ghate, V.M.; Dsouza, L.; Lewis, S.A. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications. Colloids Surf. B Biointerfaces, 2020, 195, 111262-111329.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111262] [PMID: 32736123]
[52]
Haque, T.; Talukder, M.M.U. Chemical enhancer: a simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[53]
Mohammed, D.; Hirata, K.; Hadgraft, J.; Lane, M.E. Influence of skin penetration enhancers on skin barrier function and skin protease activity. Eur. J. Pharm. Sci., 2014, 51, 118-122.
[http://dx.doi.org/10.1016/j.ejps.2013.09.009] [PMID: 24063883]
[54]
Abdelbary, G.A.; Khowessah, O.M.; Abu Bakr, A.H.; Abu-Elyazid, S.K. Potential treatment of arthritis with an optimized mometasone furoate loaded-ethosomal gel in carrageenan-induced rat joint arthritis. J. Drug Deliv. Sci. Technol., 2020, 57, 101771-101783.
[http://dx.doi.org/10.1016/j.jddst.2020.101771]
[55]
Richard, C.; Souloumiac, E.; Jestin, J.; Blanzat, M.; Cassel, S. Influence of dermal formulation additives on the physicochemical characteristics of catanionic vesicles. Colloid Surface A., 2018, 558, 373-383.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.007]
[56]
Ventura, S.A.; Kasting, G.B. Dynamics of glycerine and water transport across human skin from binary mixtures. Int. J. Cosmet. Sci., 2017, 39(2), 165-178.
[http://dx.doi.org/10.1111/ics.12362] [PMID: 27566278]
[57]
Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 3521-3532.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[58]
Chen, J.; Jiang, Q.D.; Chai, Y.P.; Zhang, H.; Peng, P.; Yang, X.X. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules, 2016, 21(12), 2223-2229.
[http://dx.doi.org/10.3390/molecules21121709] [PMID: 27973428]
[59]
Rambharose, S.; Kalhapure, R.S.; Jadhav, M.; Govender, T. Exploring unsaturated fatty acid cholesteryl esters as transdermal permeation enhancers. Drug Deliv. Transl. Res., 2017, 7(2), 333-345.
[http://dx.doi.org/10.1007/s13346-017-0360-0] [PMID: 28160257]
[60]
Behtash Oskuie, A.; Nasrollahi, S.A.; Nafisi, S. Design, synthesis of novel vesicular systems using turpentine as a skin permeation enhancer. J. Drug Deliv. Sci. Technol., 2017, 43, 327-332.
[http://dx.doi.org/10.1016/j.jddst.2017.10.015]
[61]
Kim, J.E.; Oh, G.H.; Jang, G.H.; Kim, Y.M.; Park, Y.J. Transformer-ethosomes with palmitoyl pentapeptide for improved transdermal delivery. J. Drug Deliv. Sci. Technol., 2019, 52, 460-467.
[http://dx.doi.org/10.1016/j.jddst.2019.04.039]
[62]
Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm., 2018, 535(1-2), 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[63]
Molinaro, R.; Gagliardi, A.; Mancuso, A.; Cosco, D.; Soliman, M.E.; Casettari, L.; Paolino, D. Development and in vivo evaluation of multidrug ultradeformable vesicles for the treatment of skin inflammation. Pharmaceutics, 2019, 11(12), 644.
[http://dx.doi.org/10.3390/pharmaceutics11120644] [PMID: 31816840]
[64]
Duinkerken, S.; Li, R.E.; van Haften, F.J.; de Gruijl, T.D.; Chiodo, F.; Schetters, S.T.T.; van Kooyk, Y. Chemically engineered glycan-modified cancer vaccines to mobilize skin dendritic cells. Curr. Opin. Chem. Biol., 2019, 53, 167-172.
[http://dx.doi.org/10.1016/j.cbpa.2019.10.001] [PMID: 31678713]
[65]
Sapudom, J.; Nguyen, K.T.; Martin, S.; Wippold, T.; Möller, S.; Schnabelrauch, M.; Anderegg, U.; Pompe, T. Biomimetic tissue models reveal the role of hyaluronan in melanoma proliferation and invasion. Biomater. Sci., 2020, 8(5), 1405-1417.
[http://dx.doi.org/10.1039/C9BM01636H] [PMID: 31939453]
[66]
Tian, T.; Zhang, X.; Sun, Y.; Li, X.; Wang, Q. Synthesis, characterization, and evaluation of novel cell-penetrating peptides based on TD-34. J. Pept. Sci., 2019, 25(10)e3205
[http://dx.doi.org/10.1002/psc.3205] [PMID: 31612571]
[67]
Wang, K.; Zhao, X.; Yang, F.; Liu, P.; Xing, J. Percutaneous delivery application of acylated steric acid-9-p(arginine) cell penetrating peptides used as transdermal penetration enhancer. J. Biomed. Nanotechnol., 2019, 15(3), 417-430.
[http://dx.doi.org/10.1166/jbn.2019.2658] [PMID: 31165689]
[68]
Allolio, C.; Magarkar, A.; Jurkiewicz, P.; Baxová, K.; Javanainen, M.; Mason, P.E.; Šachl, R.; Cebecauer, M.; Hof, M.; Horinek, D.; Heinz, V.; Rachel, R.; Ziegler, C.M.; Schröfel, A.; Jungwirth, P. Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore. Proc. Natl. Acad. Sci. USA, 2018, 115(47), 11923-11928.
[http://dx.doi.org/10.1073/pnas.1811520115] [PMID: 30397112]
[69]
Zhang, Q.L.; Fu, B.M.; Zhang, Z.J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability. Drug Deliv., 2017, 24(1), 1037-1044.
[http://dx.doi.org/10.1080/10717544.2017.1346002] [PMID: 28687052]
[70]
Yin, Y.; Cao, L.; Ge, H.; Duanmu, W.; Tan, L.; Yuan, J.; Tunan, C.; Li, F.; Hu, R.; Gao, F.; Feng, H. L-Borneol induces transient opening of the blood-brain barrier and enhances the therapeutic effect of cisplatin. Neuroreport, 2017, 28(9), 506-513.
[http://dx.doi.org/10.1097/WNR.0000000000000792] [PMID: 28471848]
[71]
Ye, T.; Wu, Y.; Shang, L.; Deng, X.; Wang, S. Improved lymphatic targeting: effect and mechanism of synthetic borneol on lymph node uptake of 7-ethyl-10-hydroxycamptothecin nanoliposomes following subcutaneous administration. Drug Deliv., 2018, 25(1), 1461-1471.
[http://dx.doi.org/10.1080/10717544.2018.1482973] [PMID: 29902927]
[72]
Yi, Q.F.; Yan, J.; Tang, S.Y.; Huang, H.; Kang, L.Y. Effect of borneol on the transdermal permeation of drugs with differing lipophilicity and molecular organization of stratum corneum lipids. Drug Dev. Ind. Pharm., 2016, 42(7), 1086-1093.
[http://dx.doi.org/10.3109/03639045.2015.1107095] [PMID: 26635061]
[73]
Song, H. Transdermal Delivery of Sinomenine Hydrochloride Transfersomes Based on Ascorbic Acid Modification; Peking Union Medical College, beijing, China , 2019.
[74]
Bnyan, R.; Khan, I.; Ehtezazi, T.; Saleem, I.; Gordon, S.; O’Neill, F.; Roberts, M. Formulation and optimisation of novel transfersomes for sustained release of local anaesthetic. J. Pharm. Pharmacol., 2019, 71(10), 1508-1519.
[http://dx.doi.org/10.1111/jphp.13149] [PMID: 31373700]
[75]
Rady, M.; Gomaa, I.; Afifi, N.; Abdel-Kader, M. Dermal delivery of Fe-chlorophyllin via ultradeformable nanovesicles for photodynamic therapy in melanoma animal model. Int. J. Pharm., 2018, 548(1), 480-490.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.057] [PMID: 29959090]
[76]
Zhang, Y.; Zhang, N.; Song, H.; Li, H.; Wen, J.; Tan, X.; Zheng, W. Design, characterization and comparison of transdermal delivery of colchicine via borneol-chemically-modified and borneol-physically-modified ethosome. Drug Deliv., 2019, 26(1), 70-77.
[http://dx.doi.org/10.1080/10717544.2018.1559258] [PMID: 30744424]
[77]
Sahu, K.; Kaurav, M.; Pandey, R.S. Protease loaded permeation enhancer liposomes for treatment of skin fibrosis arisen from second degree burn. Biomed. Pharmacother., 2017, 94(21), 747-757.
[http://dx.doi.org/10.1016/j.biopha.2017.07.141] [PMID: 28800544]
[78]
Manconi, M.; Caddeo, C.; Nacher, A.; Diez-Sales, O.; Peris, J.E.; Ferrer, E.E.; Fadda, A.M.; Manca, M.L. Eco-scalable baicalin loaded vesicles developed by combining phospholipid with ethanol, glycerol, and propylene glycol to enhance skin permeation and protection. Colloids Surf. B Biointerfaces, 2019, 184110504
[http://dx.doi.org/10.1016/j.colsurfb.2019.110504] [PMID: 31539753]
[79]
Manca, M.L.; Usach, I.; Peris, J.E.; Ibba, A.; Orrù, G.; Valenti, D.; Escribano-Ferrer, E.; Gomez-Fernandez, J.C.; Aranda, F.J.; Fadda, A.M.; Manconi, M. Optimization of innovative three-dimensionally-structured hybrid vesicles to improve the cutaneous delivery of clotrimazole for the treatment of topical candidiasis. Pharmaceutics, 2019, 11(6), 132-142.
[http://dx.doi.org/10.3390/pharmaceutics11060263] [PMID: 31174342]
[80]
Bremer, A.; Wolff, M.; Thalhammer, A.; Hincha, D.K. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. FEBS J., 2017, 284(6), 919-936.
[http://dx.doi.org/10.1111/febs.14023] [PMID: 28109185]
[81]
Iizhar, S.A.; Syed, I.A.; Satar, R.; Ansari, S.A. In vitro assessment of pharmaceutical potential of ethosomes entrapped with terbinafine hydrochloride. J. Adv. Res., 2016, 7(3), 453-461.
[http://dx.doi.org/10.1016/j.jare.2016.03.003] [PMID: 27222750]
[82]
Frenzel, M.; Steffen-Heins, A. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices. Food Chem., 2015, 173(3), 1090-1099.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.076] [PMID: 25466129]
[83]
Salem, H.F.; Kharshoum, R.M.; Abou-Taleb, H.A.; AbouTaleb, H.A.; AbouElhassan, K.M. Progesterone-loaded nanosized transethosomes for vaginal permeation enhancement: Formulation, statistical optimization, and clinical evaluation in anovulatory polycystic ovary syndrome. J. Liposome Res., 2019, 29(2), 183-194.
[http://dx.doi.org/10.1080/08982104.2018.1524483] [PMID: 30221566]
[84]
El-Kayal, M.; Nasr, M.; Elkheshen, S.; Mortada, N. Colloidal (-)-epigallocatechin-3-gallate vesicular systems for prevention and treatment of skin cancer: A comprehensive experimental study with preclinical investigation. Eur. J. Pharm. Sci., 2019, 137(2)104972
[http://dx.doi.org/10.1016/j.ejps.2019.104972] [PMID: 31252049]
[85]
Kaur, M.; Singh, K.; Jain, S.K. Luliconazole vesicular based gel formulations for its enhanced topical delivery. J. Liposome Res., 2019, 22, 1-19.
[http://dx.doi.org/10.1080/08982104.2019.1682602] [PMID: 31631734]
[86]
Ahmed, O.A.A.; Badr-Eldin, S.M. Development of an optimized avanafil-loaded invasomal transdermal film: Ex vivo skin permeation and in vivo evaluation. Int. J. Pharm., 2019, 570118657
[http://dx.doi.org/10.1016/j.ijpharm.2019.118657] [PMID: 31491483]
[87]
Zhang, Z.J.; Michniak-Kohna, B. Flavosomes, Novel Deformable Liposomes for the Co-delivery of Antiinflammatory Compounds to Skin. Int. J. Pharm., 2020, 21, 1-10.
[88]
F, A.G.; Sayed, O.M.; Abo El-Ela, F.I.; Kharshoum, R.M.; Salem, H.F. Treatment of basal cell carcinoma via binary ethosomes of vismodegib: in vitro and in vivo studies. AAPS PharmSciTech, 2020, 2(21), 21-51.
[89]
Lei, M.Z. Study on Transfersome for the Treatment of Cutaneous Melanoma; Tianjin University, tianjin, China , 2016.
[90]
Nasr, S.; Rady, M.; Gomaa, I.; Syrovets, T.; Simmet, T.; Fayad, W.; Abdel-Kader, M. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. Int. J. Pharm., 2019, 568118528
[http://dx.doi.org/10.1016/j.ijpharm.2019.118528] [PMID: 31323373]
[91]
Giacometti, G.; Marini, M.; Papadopoulos, K.; Ferreri, C.; Chatgilialoglu, C. Trans-double bond-containing liposomes as potential carriers for drug delivery. Molecules, 2017, 22(12), 2082.
[http://dx.doi.org/10.3390/molecules22122082] [PMID: 29182583]
[92]
Luo, G.P.; Meng, H.N.; Yan, M.R.; Wang, X.N.; Xue, Q.Q.; Chen, C.; Gao, J.F.; Ma, Y.T.; Chen, M.Y. Preparation of thermosensitive ethosomes of triptolide. Sci. & Tech. Chem. Indus., 2020, 2, 1-9.
[93]
Bhargava, A.; Mishra, D.K.; Jain, S.K.; Srivastava, R.K.; Lohiya, N.K.; Mishra, P.K. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol. Immunol., 2016, 79, 98-112.
[http://dx.doi.org/10.1016/j.molimm.2016.10.003] [PMID: 27764711]
[94]
Fathi, S.; Oyelere, A.K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice? Future Med. Chem., 2016, 8(17), 2091-2112.
[http://dx.doi.org/10.4155/fmc-2016-0135] [PMID: 27774793]
[95]
Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.K.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine, 2016, 11, 2279-2304.
[http://dx.doi.org/10.2147/IJN.S105016] [PMID: 27307730]
[96]
Yang, M.; Gu, Y.; Tang, X.; Wang, T.; Liu, J. Advancement of lipid-based nanocarriers and combination application with physical penetration technique. Curr. Drug Deliv., 2019, 16(4), 312-324.
[http://dx.doi.org/10.2174/1567201816666190118125427] [PMID: 30657039]
[97]
Cui, Y.; Mo, Y.; Zhang, Q.; Tian, W.; Xue, Y.; Bai, J.; Du, S. Microneedle-assisted percutaneous delivery of paeoniflorin-loaded ethosomes. Molecules, 2018, 23(12), 3371-3386.
[http://dx.doi.org/10.3390/molecules23123371] [PMID: 30572626]
[98]
Mohammed, M.I.; Makky, A.M.A.; Teaima, M.H.M.; Abdellatif, M.M.; Hamzawy, M.A.; Khalil, M.A.F. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: in vitro and in vivo study. Drug Deliv., 2016, 23(5), 1558-1564.
[PMID: 25726990]
[99]
Nasr, S.; Rady, M.; Sebak, A.; Gomaa, I.; Fayad, W.; Gaafary, M.E.; Abdel-Kader, M.; Syrovets, T.; Simmet, T. A Naturally derived carrier for photodynamic treatment of squamous cell carcinoma: in vitro and in vivo models. Pharmaceutics, 2020, 12(6), 1-15.
[http://dx.doi.org/10.3390/pharmaceutics12060494] [PMID: 32485800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy