Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers

Author(s): Lina Lu, Shuhe Kang, Chao Sun, Chufeng Sun, Zhong Guo, Jia Li, Taofeng Zhang, Xingping Luo, Bin Liu*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 27 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Nanotechnology has revolutionized cancer treatment in both diagnosis and therapy. Since the initial application of nanoparticles (NPs) in cancer treatment, the main objective of nanotechnology was developing effective nanosystems with high selectivity and specificity for cancer treatment and diagnosis. To achieve this, different encapsulation and conjugation strategies along with surface functionalization techniques have been developed to synthesize anticancer drugs loaded NPs with effective targeting to specific tumor cells. The unique physicochemical attributes of NPs make them promising candidates for targeted drug delivery, localized therapies, sensing, and targeting at cellular levels. However, a nanosystem for localized and targeted cancer managements should overcome several biological barriers and biomedical challenges such as endothelial barriers, blood brain barrier, reticuloendothelial system, selective targeting, biocompatibility, acute/chronic toxicity, tumor-targeting efficacy. The NPs for in vivo applications encounter barriers at system, organ, and the cellular level. To overcome these barriers, different strategies during the synthesis and functionalization of NPs should be adapted. Pharmacokinetics and cellular uptake of NPs are largely associated with physicochemical attributes of NPs, morphology, hydrodynamic size, charge, and other surface properties. These properties can be adjusted during different phases of synthesis and functionalization of the NPs. This study reviews the advances in targeted cancer treatment and the parameters influencing the efficacies of NPs as therapeutics. Different strategies for overcoming the biological barriers at cellular, organ and system levels and biomedical challenges are discussed. Moreover, the applications of NPs in preclinical and clinical practice are reviewed.

Keywords: Nanoparticles, Targeted cancer treatment, Physiochemical characteristics, Targeting strategies, Clinical applications, Toxicity.

[1]
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci., 2000, 30, 545-610.
[http://dx.doi.org/10.1146/annurev.matsci.30.1.545]
[2]
Yadollahpour, A. Magnetic nanoparticles in medicine: a review of synthesis methods and important characteristics. Orient. J. Chem., 2015, 31, 271-277.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.33]
[3]
Yadollahpour, A.; Jalilifar, M.; Rashidi, S. A Review of the feasibility and clinical applications of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Int. J. Pharm. Technol., 2016, 8, 14737-14748.
[4]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Dye-doped fluorescent nanoparticles in molecular imaging: a review of recent advances and future opportunities. Mat. Sci. Res. India, 2014, 11(2)
[http://dx.doi.org/10.13005/msri/110203]
[5]
Yadollahpour, A.; Rashidi, S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient. J. Chem., 2015, 31, 25-30.
[http://dx.doi.org/10.13005/ojc/31.Special-Issue1.03]
[6]
Li, S.; Yuan, C.; Chen, J.; Chen, D.; Chen, Z.; Chen, W.; Yan, S.; Hu, P.; Xue, J.; Li, R.; Zheng, K.; Huang, M. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo Release. Theranostics, 2019, 9(3), 884-899.
[http://dx.doi.org/10.7150/thno.29445] [PMID: 30809315]
[7]
Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev., 2008, 60(15), 1638-1649.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[8]
Huber, D.L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5), 482-501.
[http://dx.doi.org/10.1002/smll.200500006] [PMID: 17193474]
[9]
Choo, H.; Jung, Y.; Jeong, Y.; Kim, H.C.; Ku, B-C. Fabrication and applications of carbon nanotube fibers. Carbon Lett., 2012, 13, 191-204.
[10]
Taton, T.A. Nanostructures as tailored biological probes. Trends Biotechnol., 2002, 20(7), 277-279.
[http://dx.doi.org/10.1016/S0167-7799(02)01973-X] [PMID: 12062965]
[11]
Gu, H.; Zheng, R.; Zhang, X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc., 2004, 126(18), 5664-5665.
[http://dx.doi.org/10.1021/ja0496423] [PMID: 15125648]
[12]
Roduner, E. Size matters: why nanomaterials are different. Chem. Soc. Rev., 2006, 35(7), 583-592.
[http://dx.doi.org/10.1039/b502142c] [PMID: 16791330]
[13]
El-Sayed, A.; Kamel, M. Advances in nanomedical applications: diagnostic, therapeutic, immunization, and vaccine production. Environ. Sci. Pollut. Res. Int., 2019, 27, 19200-19213.
[http://dx.doi.org/10.1007/s11356-019-06459-2] [PMID: 31529348]
[14]
Mousa, S.A.; Bharali, D.J.; Armstrong, D. From nutraceuticals to pharmaceuticals to nanopharmaceuticals: a case study in angiogenesis modulation during oxidative stress. Mol. Biotechnol., 2007, 37(1), 72-80.
[http://dx.doi.org/10.1007/s12033-007-0064-7] [PMID: 17914168]
[15]
Yadollahpour, A.; Hosseini, S.A.A.; Jalilifar, M.; Rashidi, S.; Rai, B.M.M. Magnetic nanoparticle-based drug and gene delivery: a review of recent advances and clinical applications. Int. J. Pharm. Technol., 2016, 8, 11451-11466.
[16]
Yadollahpour, A.; Asl, H.M.; Rashidi, S. Applications of nanoparticles in magnetic resonance imaging: a comprehensive review. Asian J. Pharm., 2017, 11, S7-S13.
[17]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[18]
Roco, M.C. Nanoparticles and nanotechnology research. J. Nanopart. Res., 1999, 1, 1-6.
[http://dx.doi.org/10.1023/A:1010093308079]
[19]
Meyer, M.H.F.; Stehr, M.; Bhuju, S.; Krause, H.J.; Hartmann, M.; Miethe, P.; Singh, M.; Keusgen, M. Magnetic biosensor for the detection of Yersinia pestis. J. Microbiol. Methods, 2007, 68(2), 218-224.
[http://dx.doi.org/10.1016/j.mimet.2006.08.004] [PMID: 17011649]
[20]
Kirsch, J.E. Basic principles of magnetic resonance contrast agents. Top. Magn. Reson. Imaging, 1991, 3(2), 1-18.
[http://dx.doi.org/10.1097/00002142-199103000-00003] [PMID: 2025431]
[21]
De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[22]
Alexis, F.; Rhee, J.W.; Richie, J.P.; Radovic-Moreno, A.F.; Langer, R.; Farokhzad, O.C. New frontiers in nanotechnology for cancer treatment. Urol. Oncol., 2008, 26(1), 74-85.
[http://dx.doi.org/10.1016/j.urolonc.2007.03.017] [PMID: 18190835]
[23]
Deng, G. Principles of chemical and biological sensors. Mater. Manuf. Process., 1999, 14, 623-625.
[http://dx.doi.org/10.1080/10426919908907570]
[24]
Mohandas, R.; Gayathri, R.; Priya, V. Cancer nanotechnology: a review. Drug Invent. Today, 2018, 10, 2719-2726.
[25]
Lakshmi, P.J.; Anitha, R.; Lakshmi, T. Targeted drug delivery systems used in dentistry - a short review. Drug Invent. Today, 2018, 10, 2747-2751.
[26]
Whitesides, G.M. The ‘right’ size in nanobiotechnology. Nat. Biotechnol., 2003, 21(10), 1161-1165.
[http://dx.doi.org/10.1038/nbt872] [PMID: 14520400]
[27]
Bárcena, C.; Sra, A.K.; Gao, J. Applications of magnetic nanoparticles in biomedicine. Liu J., Fullerton E., Gutfleisch O., Sellmyer D. Eds. In: Nanoscale Magnetic Materials and Applications. Springer: Boston, MA, 2009.
[28]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. in vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2(1), 47-52.
[http://dx.doi.org/10.1038/nnano.2006.170] [PMID: 18654207]
[29]
Cai, W.; Shin, D.W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S.X.; Gambhir, S.S.; Chen, X. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett., 2006, 6(4), 669-676.
[http://dx.doi.org/10.1021/nl052405t] [PMID: 16608262]
[30]
Cai, W.; Hsu, A.R.; Li, Z.B.; Chen, X. Are quantum dots ready for in vivo imaging in human subjects? Nanoscale Res. Lett., 2007, 2(6), 265-281.
[http://dx.doi.org/10.1007/s11671-007-9061-9] [PMID: 21394238]
[31]
Thorek, D.L.J.; Chen, A.K.; Czupryna, J.; Tsourkas, A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng., 2006, 34(1), 23-38.
[http://dx.doi.org/10.1007/s10439-005-9002-7] [PMID: 16496086]
[32]
Park, J.W.; Benz, C.C.; Martin, F.J. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol., 2004, 31(6)(Suppl. 13), 196-205.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.009] [PMID: 15717745]
[33]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[34]
Grodzinski, P.; Silver, M.; Molnar, L.K. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev. Mol. Diagn., 2006, 6(3), 307-318.
[http://dx.doi.org/10.1586/14737159.6.3.307] [PMID: 16706735]
[35]
Ali, Y.; Zohre, R.; Mostafa, J.; Samaneh, R. Applications of upconversion nanoparticles in molecular imaging: a review of recent advances and future opportunities. Biosci. Biotechnol. Res. Asia, 2015, 12, 131-140.
[http://dx.doi.org/10.13005/bbra/1615]
[36]
Zottel, A.; Paska, A.V.; Jovčevska, I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. Materials, 2019, 12(10), 1588.
[37]
Cai, W.; Chen, X. Nanoplatforms for targeted molecular imaging in living subjects. Small, 2007, 3(11), 1840-1854.
[http://dx.doi.org/10.1002/smll.200700351] [PMID: 17943716]
[38]
Bareford, L.M.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev., 2007, 59(8), 748-758.
[http://dx.doi.org/10.1016/j.addr.2007.06.008] [PMID: 17659804]
[39]
Hu, L.; Mao, Z.; Gao, C. Colloidal particles for cellular uptake and delivery. J. Mater. Chem., 2009, 19, 3108-3115.
[http://dx.doi.org/10.1039/b815958k]
[40]
Maeda, H.; Greish, K.; Fang, J. The epr effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Adv. Polym. Sci., 2006, 193, 103-121.
[http://dx.doi.org/10.1007/12_026]
[41]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[42]
Wang, X.; Li, J.; Wang, Y.; Cho, K.J.; Kim, G.; Gjyrezi, A.; Koenig, L.; Giannakakou, P.; Shin, H.J.C.; Tighiouart, M.; Nie, S.; Chen, Z.G.; Shin, D.M. HFT-T, a targeting nanoparticle, enhances specific delivery of paclitaxel to folate receptor-positive tumors. ACS Nano, 2009, 3(10), 3165-3174.
[http://dx.doi.org/10.1021/nn900649v] [PMID: 19761191]
[43]
Gabizon, A.; Shmeeda, H.; Horowitz, A.T.; Zalipsky, S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv. Drug Deliv. Rev., 2004, 56(8), 1177-1192.
[http://dx.doi.org/10.1016/j.addr.2004.01.011] [PMID: 15094214]
[44]
Salazar, M.D.A.; Ratnam, M. The folate receptor: what does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev., 2007, 26(1), 141-152.
[http://dx.doi.org/10.1007/s10555-007-9048-0] [PMID: 17333345]
[45]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[46]
Abts, H.; Emmerich, M.; Miltenyi, S.; Radbruch, A.; Tesch, H. CD20 positive human B lymphocytes separated with the magnetic cell sorter (MACS) can be induced to proliferation and antibody secretion in vitro. J. Immunol. Methods, 1989, 125(1-2), 19-28.
[http://dx.doi.org/10.1016/0022-1759(89)90073-2] [PMID: 2481694]
[47]
Miltenyi, S.; Müller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry, 1990, 11(2), 231-238.
[http://dx.doi.org/10.1002/cyto.990110203] [PMID: 1690625]
[48]
Wilhelm, C.; Billotey, C.; Roger, J.; Pons, J.N.; Bacri, J-C.; Gazeau, F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 2003, 24(6), 1001-1011.
[http://dx.doi.org/10.1016/S0142-9612(02)00440-4] [PMID: 12504522]
[49]
Schwalbe, M.; Jörke, C.; Buske, N.; Höffken, K.; Pachmann, K.; Clement, J.H. Selective reduction of the interaction of magnetic nanoparticles with leukocytes and tumor cells by human plasma. J. Magn. Magn. Mater., 2005, 293(1), 433-437.
[http://dx.doi.org/10.1016/j.jmmm.2005.02.037]
[50]
Jatzkewitz, H. Incorporation of physiologically-active substances into a colloidal blood plasma substitute. I. incorporation of mescaline peptide into polyvinylpyrrolidone. Hoppe Seylers Z. Physiol. Chem., 1954, 297, 149-156.
[51]
Bangham, A.D.; Horne, R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol., 1964, 8, 660-668.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[52]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-252.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[53]
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci. Polym. Symp., 2007, 51, 135-153.
[http://dx.doi.org/10.1002/polc.5070510111]
[54]
Scheffel, U.; Rhodes, B.A.; Natarajan, T.K.; Wagner, H.N., Jr Albumin microspheres for study of the reticuloendothelial system. J. Nucl. Med., 1972, 13(7), 498-503.
[PMID: 5033902]
[55]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[56]
Kreuter, J. Nanoparticles--a historical perspective. Int. J. Pharm., 2007, 331(1), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.021] [PMID: 17110063]
[57]
Vinogradov, S.V.; Bronich, T.K.; Kabanov, A.V. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv. Drug Deliv. Rev., 2002, 54(1), 135-147.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[58]
Ilium, L.; Davis, S.S.; Wilson, C.G.; Thomas, N.W.; Frier, M.; Hardy, J.G. Blood clearance and organ deposition of intravenously administered colloidal particles. the effects of particle size, nature and shape. Int. J. Pharm., 1982, 12, 135-146.
[http://dx.doi.org/10.1016/0378-5173(82)90113-2]
[59]
Food and Drugs Administration. CFR - Code of Federal Regulations Title. 2018. Available from: http://www.ecfr.gov/
[60]
Kim, T.Y.; Kim, D.W.; Chung, J.Y.; Shin, S.G.; Kim, S.C.; Heo, D.S.; Kim, N.K.; Bang, Y.J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res., 2004, 10(11), 3708-3716.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0655] [PMID: 15173077]
[61]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108(2), 241-250.
[http://dx.doi.org/10.1007/s10549-007-9591-y] [PMID: 17476588]
[62]
Brem, H.; Piantadosi, S.; Burger, P.C.; Walker, M.; Selker, R.; Vick, N.A.; Black, K.; Sisti, M.; Brem, S.; Mohr, G.; Muller, P.; Morawetz, R.; Schold, S.C. The Polymer-brain Tumor Treatment Group. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet, 1995, 345(8956), 1008-1012.
[http://dx.doi.org/10.1016/S0140-6736(95)90755-6] [PMID: 7723496]
[63]
Brem, H.; Kader, A.; Epstein, J.I.; Tamargo, R.J.; Domb, A.; Langer, R.; Leong, K.W. Biocompatibility of a biodegradable, controlled-release polymer in the rabbit brain. Sel. Cancer Ther., 1989, 5(2), 55-65.
[http://dx.doi.org/10.1089/sct.1989.5.55] [PMID: 2772427]
[64]
Dobrovolskaia, M.A.; Aggarwal, P.; Hall, J.B.; McNeil, S.E. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol. Pharm., 2008, 5(4), 487-495.
[http://dx.doi.org/10.1021/mp800032f] [PMID: 18510338]
[65]
Chouly, C.; Pouliquen, D.; Lucet, I.; Jeune, J.J.; Jallet, P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsul., 1996, 13(3), 245-255.
[http://dx.doi.org/10.3109/02652049609026013] [PMID: 8860681]
[66]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[67]
Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release, 2007, 121(1-2), 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[68]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[69]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[70]
Moghimi, S.M.; Hedeman, H.; Muir, I.S.; Illum, L.; Davis, S.S. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim. Biophys. Acta, 1993, 1157(3), 233-240.
[http://dx.doi.org/10.1016/0304-4165(93)90105-H] [PMID: 8323953]
[71]
Porter, C.J.H.; Moghimi, S.M.; Illum, L.; Davis, S.S. The polyoxyethylene/polyoxypropylene block co-polymer poloxamer-407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett., 1992, 305(1), 62-66.
[http://dx.doi.org/10.1016/0014-5793(92)80655-Z] [PMID: 1633861]
[72]
Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304.
[http://dx.doi.org/10.1016/j.addr.2009.11.002] [PMID: 19909778]
[73]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[74]
Decuzzi, P.; Causa, F.; Ferrari, M.; Netti, P.A. The effective dispersion of nanovectors within the tumor microvasculature. Ann. Biomed. Eng., 2006, 34(4), 633-641.
[http://dx.doi.org/10.1007/s10439-005-9072-6] [PMID: 16568349]
[75]
Decuzzi, P.; Lee, S.; Bhushan, B.; Ferrari, M. A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng., 2005, 33(2), 179-190.
[http://dx.doi.org/10.1007/s10439-005-8976-5] [PMID: 15771271]
[76]
Barua, S.; Rege, K. Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small, 2009, 5(3), 370-376.
[http://dx.doi.org/10.1002/smll.200800972] [PMID: 19089841]
[77]
Chavanpatil, M.D.; Khdair, A.; Panyam, J. Nanoparticles for cellular drug delivery: mechanisms and factors influencing delivery. J. Nanosci. Nanotechnol., 2006, 6(9-10), 2651-2663.
[http://dx.doi.org/10.1166/jnn.2006.443] [PMID: 17048473]
[78]
Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.), 2008, 3(5), 703-717.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[79]
Moghimi, S.M. Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv. Drug Deliv. Rev., 1995, 17, 103-115.
[http://dx.doi.org/10.1016/0169-409X(95)00043-7]
[80]
Moghimi, S.M.; Hunter, A.C. Capture of stealth nanoparticles by the body’s defences. Crit. Rev. Ther. Drug Carrier Syst., 2001, 18(6), 527-550.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v18.i6.30] [PMID: 11789674]
[81]
Moghimi, S.M. Exploiting bone marrow microvascular structure for drug delivery and future therapies. Adv. Drug Deliv. Rev., 1995, 17, 61-73.
[http://dx.doi.org/10.1016/0169-409X(95)00041-5]
[82]
Linazasoro, G. Nanotechnologies for Neurodegenerative Diseases Study Group of the Basque Country (NANEDIS). Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat. Disord., 2008, 14(5), 383-392.
[http://dx.doi.org/10.1016/j.parkreldis.2007.11.012] [PMID: 18329315]
[83]
Koo, Y.E.L.; Reddy, G.R.; Bhojani, M.; Schneider, R.; Philbert, M.A.; Rehemtulla, A.; Ross, B.D.; Kopelman, R. Brain cancer diagnosis and therapy with nanoplatforms. Adv. Drug Deliv. Rev., 2006, 58(14), 1556-1577.
[http://dx.doi.org/10.1016/j.addr.2006.09.012] [PMID: 17107738]
[84]
Pardridge, W.M. Drug targeting to the brain. Pharm. Res., 2007, 24(9), 1733-1744.
[http://dx.doi.org/10.1007/s11095-007-9324-2] [PMID: 17554607]
[85]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[86]
Gratton, S.E.A.; Pohlhaus, P.D.; Lee, J.; Guo, J.; Cho, M.J.; Desimone, J.M. Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J. Control. Release, 2007, 121(1-2), 10-18.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.027] [PMID: 17643544]
[87]
Mitragotri, S.; Lahann, J. Physical approaches to biomaterial design. Nat. Mater., 2009, 8(1), 15-23.
[http://dx.doi.org/10.1038/nmat2344] [PMID: 19096389]
[88]
Champion, J.A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res., 2009, 26(1), 244-249.
[http://dx.doi.org/10.1007/s11095-008-9626-z] [PMID: 18548338]
[89]
Muro, S.; Garnacho, C.; Champion, J.A.; Leferovich, J.; Gajewski, C.; Schuchman, E.H.; Mitragotri, S.; Muzykantov, V.R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther., 2008, 16(8), 1450-1458.
[http://dx.doi.org/10.1038/mt.2008.127] [PMID: 18560419]
[90]
Qi, X.; Chen, X.; Sun, Y.; Ma, Z.; Guo, X.; Lu, W.; Duan, Y. Cytotoxicity and cellular uptake evaluation of mitoxantrone-loaded poly(lactic acid-co-lysine) arginine-glycine-aspartic acid nano-particles. J. Appl. Polym. Sci., 2011, 119, 1011-1015.
[http://dx.doi.org/10.1002/app.32588]
[91]
Son, S.J.; Bai, X.; Nan, A.; Ghandehari, H.; Lee, S.B. Template synthesis of multifunctional nanotubes for controlled release. J. Control. Release, 2006, 114(2), 143-152.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.004] [PMID: 16870299]
[92]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[93]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[94]
Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA, 2006, 103(13), 4930-4934.
[http://dx.doi.org/10.1073/pnas.0600997103] [PMID: 16549762]
[95]
Davis, M.E. Non-viral gene delivery systems. Curr. Opin. Biotechnol., 2002, 13(2), 128-131.
[http://dx.doi.org/10.1016/S0958-1669(02)00294-X] [PMID: 11950563]
[96]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[97]
Dobrovolskaia, M.A.; McNeil, S.E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol., 2007, 2(8), 469-478.
[http://dx.doi.org/10.1038/nnano.2007.223] [PMID: 18654343]
[98]
Thevenot, P.; Hu, W.; Tang, L. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem., 2008, 8(4), 270-280.
[http://dx.doi.org/10.2174/156802608783790901] [PMID: 18393890]
[99]
Wang, Y.X.; Robertson, J.L.; Spillman, W.B., Jr; Claus, R.O. Effects of the chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharm. Res., 2004, 21(8), 1362-1373.
[http://dx.doi.org/10.1023/B:PHAM.0000036909.41843.18] [PMID: 15359570]
[100]
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[http://dx.doi.org/10.1002/smll.200700595] [PMID: 18165959]
[101]
Belting, M.; Sandgren, S.; Wittrup, A. Nuclear delivery of macromolecules: barriers and carriers. Adv. Drug Deliv. Rev., 2005, 57(4), 505-527.
[http://dx.doi.org/10.1016/j.addr.2004.10.004] [PMID: 15722161]
[102]
Simberg, D.; Duza, T.; Park, J.H.; Essler, M.; Pilch, J.; Zhang, L.; Derfus, A.M.; Yang, M.; Hoffman, R.M.; Bhatia, S.; Sailor, M.J.; Ruoslahti, E. Biomimetic amplification of nanoparticle homing to tumors. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 932-936.
[http://dx.doi.org/10.1073/pnas.0610298104] [PMID: 17215365]
[103]
Moghimi, S.M.; Davis, S.S. Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Crit. Rev. Ther. Drug Carrier Syst., 1994, 11(1), 31-59.
[PMID: 7704918]
[104]
Souhami, R.L.; Patel, H.M.; Ryman, B.E. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes. Biochim. Biophys. Acta, 1981, 674(3), 354-371.
[http://dx.doi.org/10.1016/0304-4165(81)90366-4] [PMID: 6165399]
[105]
Howard, M.D.; Jay, M.; Dziubla, T.D.; Lu, X. PEGylation of nanocarrier drug delivery systems: state of the art. J. Biomed. Nanotechnol., 2008, 4, 133-148.
[http://dx.doi.org/10.1166/jbn.2008.021]
[106]
Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev., 2003, 55(3), 403-419.
[http://dx.doi.org/10.1016/S0169-409X(02)00226-0] [PMID: 12628324]
[107]
Passirani, C.; Barratt, G.; Devissaguet, J.P.; Labarre, D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res., 1998, 15(7), 1046-1050.
[http://dx.doi.org/10.1023/A:1011930127562] [PMID: 9688058]
[108]
Socha, M.; Lamprecht, A.; El Ghazouani, F.; Emond, E.; Maincent, P.; Barré, J.; Hoffman, M.; Ubrich, N. Increase in the vascular residence time of propranolol-loaded nanoparticles coated with heparin. J. Nanosci. Nanotechnol., 2008, 8(5), 2369-2376.
[http://dx.doi.org/10.1166/jnn.2008.081] [PMID: 18572651]
[109]
Drummond, D.C.; Meyer, O.; Hong, K.; Kirpotin, D.B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev., 1999, 51(4), 691-743.
[PMID: 10581328]
[110]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956] [PMID: 20305636]
[111]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm., 2009, 6(3), 659-668.
[http://dx.doi.org/10.1021/mp900015y] [PMID: 19267452]
[112]
Gratton, S.E.A.; Williams, S.S.; Napier, M.E.; Pohlhaus, P.D.; Zhou, Z.; Wiles, K.B.; Maynor, B.W.; Shen, C.; Olafsen, T.; Samulski, E.T.; Desimone, J.M. The pursuit of a scalable nanofabrication platform for use in material and life science applications. Acc. Chem. Res., 2008, 41(12), 1685-1695.
[http://dx.doi.org/10.1021/ar8000348] [PMID: 18720952]
[113]
Euliss, L.E.; DuPont, J.A.; Gratton, S.; DeSimone, J. Imparting size, shape, and composition control of materials for nanomedicine. Chem. Soc. Rev., 2006, 35(11), 1095-1104.
[http://dx.doi.org/10.1039/b600913c] [PMID: 17057838]
[114]
Napier, M.E.; DeSimone, J.M. Nanoparticle drug delivery platform. Polym. Rev. (Phila. Pa.), 2007, 47, 321-327.
[http://dx.doi.org/10.1080/15583720701454999]
[115]
Oupický, D.; Konák, C.; Ulbrich, K.; Wolfert, M.A.; Seymour, L.W. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. J. Control. Release, 2000, 65(1-2), 149-171.
[http://dx.doi.org/10.1016/S0168-3659(99)00249-7] [PMID: 10699278]
[116]
Gary, D.J.; Puri, N.; Won, Y.Y. Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release, 2007, 121(1-2), 64-73.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.021] [PMID: 17588702]
[117]
Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature, 2003, 422(6927), 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[118]
Petros, R.A.; Ropp, P.A.; DeSimone, J.M. Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J. Am. Chem. Soc., 2008, 130(15), 5008-5009.
[http://dx.doi.org/10.1021/ja801436j] [PMID: 18355010]
[119]
Oh, J.K.; Siegwart, D.J.; Lee, H.I.; Sherwood, G.; Peteanu, L.; Hollinger, J.O.; Kataoka, K.; Matyjaszewski, K. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: synthesis, biodegradation, in vitro release, and bioconjugation. J. Am. Chem. Soc., 2007, 129(18), 5939-5945.
[http://dx.doi.org/10.1021/ja069150l] [PMID: 17439215]
[120]
Kirpotin, D.; Hong, K.; Mullah, N.; Papahadjopoulos, D.; Zalipsky, S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett., 1996, 388(2-3), 115-118.
[http://dx.doi.org/10.1016/0014-5793(96)00521-2] [PMID: 8690067]
[121]
Patri, A.K.; Myc, A.; Beals, J.; Thomas, T.P.; Bander, N.H.; Baker, J.R. Jr Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug. Chem., 2004, 15(6), 1174-1181.
[http://dx.doi.org/10.1021/bc0499127] [PMID: 15546182]
[122]
Chang, S.S.; O’Keefe, D.S.; Bacich, D.J.; Reuter, V.E.; Heston, W.D.W.; Gaudin, P.B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res., 1999, 5(10), 2674-2681.
[PMID: 10537328]
[123]
Milowsky, M.I.; Nanus, D.M.; Kostakoglu, L.; Sheehan, C.E.; Vallabhajosula, S.; Goldsmith, S.J.; Ross, J.S.; Bander, N.H. Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J. Clin. Oncol., 2007, 25(5), 540-547.
[http://dx.doi.org/10.1200/JCO.2006.07.8097] [PMID: 17290063]
[124]
Aina, O.H.; Liu, R.; Sutcliffe, J.L.; Marik, J.; Pan, C.X.; Lam, K.S. From combinatorial chemistry to cancer-targeting peptides. Mol. Pharm., 2007, 4(5), 631-651.
[http://dx.doi.org/10.1021/mp700073y] [PMID: 17880166]
[125]
Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309(5963), 30-33.
[http://dx.doi.org/10.1038/309030a0] [PMID: 6325925]
[126]
Stupack, D.G.; Cheresh, D.A. Integrins and angiogenesis. Curr. Top. Dev. Biol., 2004, 64, 207-238.
[http://dx.doi.org/10.1016/S0070-2153(04)64009-9] [PMID: 15563949]
[127]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[128]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[http://dx.doi.org/10.1073/pnas.0803728105] [PMID: 18607000]
[129]
Schliemann, C.; Roesli, C.; Kamada, H.; Borgia, B.; Fugmann, T.; Klapper, W.; Neri, D. in vivo biotinylation of the vasculature in B-cell lymphoma identifies BST-2 as a target for antibody-based therapy. Blood, 2010, 115(3), 736-744.
[http://dx.doi.org/10.1182/blood-2009-08-239004] [PMID: 19903902]
[130]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[131]
Jacobson, B.S.; Stolz, D.B.; Schnitzer, J.E. Identification of endothelial cell-surface proteins as targets for diagnosis and treatment of disease. Nat. Med., 1996, 2(4), 482-484.
[http://dx.doi.org/10.1038/nm0496-482] [PMID: 8597963]
[132]
Renschler, M.F.; Bhatt, R.R.; Dower, W.J.; Levy, R. Synthetic peptide ligands of the antigen binding receptor induce programmed cell death in a human B-cell lymphoma. Proc. Natl. Acad. Sci. USA, 1994, 91(9), 3623-3627.
[http://dx.doi.org/10.1073/pnas.91.9.3623] [PMID: 8170958]
[133]
Pennell, C.A.; Scott, D.W. Lymphoma models for B cell activation and tolerance. IV. Growth inhibition by anti-Ig of CH31 and CH33 B lymphoma cells. Eur. J. Immunol., 1986, 16(12), 1577-1581.
[http://dx.doi.org/10.1002/eji.1830161217] [PMID: 3493148]
[134]
Miller, R.A.; Maloney, D.G.; Warnke, R.; Levy, R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N. Engl. J. Med., 1982, 306(9), 517-522.
[http://dx.doi.org/10.1056/NEJM198203043060906] [PMID: 6173751]
[135]
Pouton, C.; Wagstaff, K.; Roth, D.; Moseley, G.; Jans, D. Targeted delivery to the nucleus. Adv. Drug Deliv. Rev., 2007, 59, 698-717.
[http://dx.doi.org/10.1016/j.addr.2007.06.010]
[136]
Hodoniczky, J.; Sims, C.G.; Best, W.M.; Bentel, J.M.; Wilce, J.A. The intracellular and nuclear-targeted delivery of an antiandrogen drug by carrier peptides. In Proceedings of the Biopolymers Peptide Science Section, 2008, 90, pp. 595-603.
[http://dx.doi.org/10.1002/bip.20986 ]
[137]
Boddapati, S.V.; D’Souza, G.G.M.; Erdogan, S.; Torchilin, V.P.; Weissig, V. Organelle-targeted nanocarriers: specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett., 2008, 8(8), 2559-2563.
[http://dx.doi.org/10.1021/nl801908y] [PMID: 18611058]
[138]
Yamada, Y.; Harashima, H. Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases. Adv. Drug Deliv. Rev., 2008, 60(13-14), 1439-1462.
[http://dx.doi.org/10.1016/j.addr.2008.04.016] [PMID: 18655816]
[139]
Yousif, L.F.; Stewart, K.M.; Kelley, S.O. Targeting mitochondria with organelle-specific compounds: strategies and applications. ChemBioChem, 2009, 10(12), 1939-1950.
[http://dx.doi.org/10.1002/cbic.200900185] [PMID: 19637148]
[140]
Vasir, J.K.; Labhasetwar, V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev., 2007, 59(8), 718-728.
[http://dx.doi.org/10.1016/j.addr.2007.06.003] [PMID: 17683826]
[141]
Zhang, Z.; Cao, W.; Jin, H.; Lovell, J.F.; Yang, M.; Ding, L.; Chen, J.; Corbin, I.; Luo, Q.; Zheng, G. Biomimetic nanocarrier for direct cytosolic drug delivery. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9171-9175.
[http://dx.doi.org/10.1002/anie.200903112] [PMID: 19876988]
[142]
Terlecky, S.R.; Koepke, J.I. Drug delivery to peroxisomes: employing unique trafficking mechanisms to target protein therapeutics. Adv. Drug Deliv. Rev., 2007, 59(8), 739-747.
[http://dx.doi.org/10.1016/j.addr.2007.06.005] [PMID: 17659806]
[143]
Breunig, M.; Bauer, S.; Goepferich, A. Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur. J. Pharm. Biopharm., 2008, 68(1), 112-128.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.010] [PMID: 17804211]
[144]
Callahan, J.; Kopeček, J. Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules, 2006, 7(8), 2347-2356.
[http://dx.doi.org/10.1021/bm060336m] [PMID: 16903681]
[145]
Hoshino, A.; Fujioka, K.; Oku, T.; Nakamura, S.; Suga, M.; Yamaguchi, Y.; Suzuki, K.; Yasuhara, M.; Yamamoto, K. Quantum dots targeted to the assigned organelle in living cells. Microbiol. Immunol., 2004, 48(12), 985-994.
[http://dx.doi.org/10.1111/j.1348-0421.2004.tb03621.x] [PMID: 15611617]
[146]
Wagstaff, K.M.; Jans, D.A. Importins and beyond: non-conventional nuclear transport mechanisms. Traffic, 2009, 10(9), 1188-1198.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00937.x] [PMID: 19548983]
[147]
Panté, N.; Kann, M. Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol. Biol. Cell, 2002, 13(2), 425-434.
[http://dx.doi.org/10.1091/mbc.01-06-0308] [PMID: 11854401]
[148]
Chan, C.K.; Jans, D.A. Using nuclear targeting signals to enhance non-viral gene transfer. Immunol. Cell Biol., 2002, 80(2), 119-130.
[http://dx.doi.org/10.1046/j.1440-1711.2002.01061.x] [PMID: 11940112]
[149]
Chan, C.K.; Senden, T.; Jans, D.A. Supramolecular structure and nuclear targeting efficiency determine the enhancement of transfection by modified polylysines. Gene Ther., 2000, 7(19), 1690-1697.
[http://dx.doi.org/10.1038/sj.gt.3301275] [PMID: 11083478]
[150]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[151]
Zhang, L.; Granick, S. How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett., 2006, 6(4), 694-698.
[http://dx.doi.org/10.1021/nl052455y] [PMID: 16608266]
[152]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[153]
Moghimi, S.M.; Szebeni, J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res., 2003, 42(6), 463-478.
[http://dx.doi.org/10.1016/S0163-7827(03)00033-X] [PMID: 14559067]
[154]
Northfelt, D.W.; Dezube, B.J.; Thommes, J.A.; Miller, B.J.; Fischl, M.A.; Friedman-Kien, A.; Kaplan, L.D.; Du Mond, C.; Mamelok, R.D.; Henry, D.H. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J. Clin. Oncol., 1998, 16(7), 2445-2451.
[http://dx.doi.org/10.1200/JCO.1998.16.7.2445] [PMID: 9667262]
[155]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[156]
Tanaka, T.; Shiramoto, S.; Miyashita, M.; Fujishima, Y.; Kaneo, Y. Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int. J. Pharm., 2004, 277(1-2), 39-61.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.050] [PMID: 15158968]
[157]
Deguchi, J.O.; Aikawa, M.; Tung, C.H.; Aikawa, E.; Kim, D.E.; Ntziachristos, V.; Weissleder, R.; Libby, P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation, 2006, 114(1), 55-62.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.619056] [PMID: 16801460]
[158]
Davis, F.F. The origin of pegnology. Adv. Drug Deliv. Rev., 2002, 54(4), 457-458.
[http://dx.doi.org/10.1016/S0169-409X(02)00021-2] [PMID: 12052708]
[159]
Harries, M.; Ellis, P.; Harper, P. Nanoparticle albumin-bound paclitaxel for metastatic breast cancer. J. Clin. Oncol., 2005, 23(31), 7768-7771.
[http://dx.doi.org/10.1200/JCO.2005.08.002] [PMID: 16204007]
[160]
Woodle, M.C. Controlling liposome blood clearance by surface-grafted polymers. Adv. Drug Deliv. Rev., 1998, 32(1-2), 139-152.
[http://dx.doi.org/10.1016/S0169-409X(97)00136-1] [PMID: 10837640]
[161]
Sapra, P.; Allen, T.M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res., 2002, 62(24), 7190-7194.
[PMID: 12499256]
[162]
Simões, S.; Moreira, J.N.; Fonseca, C.; Düzgüneş, N.; de Lima, M.C. On the formulation of pH-sensitive liposomes with long circulation times. Adv. Drug Deliv. Rev., 2004, 56(7), 947-965.
[http://dx.doi.org/10.1016/j.addr.2003.10.038] [PMID: 15066754]
[163]
Bissett, D.; Cassidy, J.; de Bono, J.S.; Muirhead, F.; Main, M.; Robson, L.; Fraier, D.; Magnè, M.L.; Pellizzoni, C.; Porro, M.G.; Spinelli, R.; Speed, W.; Twelves, C. Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a polymeric derivative of camptothecin (CPT). Br. J. Cancer, 2004, 91(1), 50-55.
[http://dx.doi.org/10.1038/sj.bjc.6601922] [PMID: 15187995]
[164]
Hoekstra, R.; Dumez, H.; Eskens, F.A.L.M.; van der Gaast, A.; Planting, A.S.T.; de Heus, G.; Sizer, K.C.; Ravera, C.; Vaidyanathan, S.; Bucana, C.; Fidler, I.J.; van Oosterom, A.T.; Verweij, J. Phase I and pharmacologic study of PKI166, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. Clin. Cancer Res., 2005, 11(19 Pt 1), 6908-6915.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0720] [PMID: 16203782]
[165]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.A.; Matthews, B.R.; Holan, G. Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318.
[http://dx.doi.org/10.1021/mp050023q] [PMID: 16053334]
[166]
Tiwari, S.B.; Amiji, M.M. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3215-3221.
[http://dx.doi.org/10.1166/jnn.2006.440] [PMID: 17048539]
[167]
Seiler, M.P.; Gottschalk, S.; Cerullo, V.; Ratnayake, M.; Mane, V.P.; Clarke, C.; Palmer, D.J.; Ng, P.; Rooney, C.M.; Lee, B. Dendritic cell function after gene transfer with adenovirus-calcium phosphate co-precipitates. Mol. Ther., 2007, 15(2), 386-392.
[http://dx.doi.org/10.1038/sj.mt.6300029] [PMID: 17235318]
[168]
Farokhzad, O.C.; Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[169]
Chichieveishvili, N.; Khubulava, S.; Korsantiya, B.; Kristesashvili, G.; Pichhaia, G. The possibility of silver nanoparticle use in medicine. Drug Invent. Today, 2018, 10, 1222-1226.
[170]
Kishore, M.; Abdulqader, A.T.; Shihab Ahmad, H.; Hanumantharao, Y. Anticancer and antibacterial potential of green silver nanoparticles synthesized from maytenus senegalensis (l.) leaf extract and their characterization. Drug Invent. Today, 2018, 10, 554-561.
[171]
Cetin, M.; Aytekin, E.; Yavuz, B.; Bozda-Pehlivan, S. Nanoscience in targeted brain drug delivery. InNanotechnology Methods for Neurological Diseases and Brain Tumors: Drug Delivery across the Blood-Brain Barrier; Elsevier: Amsterdam, 2017, pp. 117-147.
[172]
Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci., 2003, 92(7), 1343-1355.
[http://dx.doi.org/10.1002/jps.10397] [PMID: 12820139]
[173]
Torchilin, V.P. Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res., 2007, 24(1), 1-16.
[http://dx.doi.org/10.1007/s11095-006-9132-0] [PMID: 17109211]
[174]
Kabanov, A.V.; Batrakova, E.V.; Alakhov, V.Y. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release, 2002, 82(2-3), 189-212.
[http://dx.doi.org/10.1016/S0168-3659(02)00009-3] [PMID: 12175737]
[175]
Gu, F.X.; Karnik, R.; Wang, A.Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R.S.; Farokhzad, O.C. Targeted nanoparticles for cancer therapy. Nano Today, 2007, 2, 14-21.
[http://dx.doi.org/10.1016/S1748-0132(07)70083-X]
[176]
Fonseca, M.J.; Jagtenberg, J.C.; Haisma, H.J.; Storm, G. Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm. Res., 2003, 20(3), 423-428.
[http://dx.doi.org/10.1023/A:1022608321861] [PMID: 12669963]
[177]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[178]
Kukowska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R., Jr Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res., 2005, 65(12), 5317-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[179]
Bhadra, D.; Bhadra, S.; Jain, N.K. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm. Res., 2006, 23(3), 623-633.
[http://dx.doi.org/10.1007/s11095-005-9396-9] [PMID: 16374532]
[180]
Dutta, T.; Agashe, H.B.; Garg, M.; Balakrishnan, P.; Kabra, M.; Jain, N.K. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target., 2007, 15(1), 89-98.
[http://dx.doi.org/10.1080/10611860600965914] [PMID: 17365278]
[181]
Wosikowski, K.; Biedermann, E.; Rattel, B.; Breiter, N.; Jank, P.; Löser, R.; Jansen, G.; Peters, G.J. In vitro and in vivo antitumor activity of methotrexate conjugated to human serum albumin in human cancer cells. Clin. Cancer Res., 2003, 9(5), 1917-1926.
[PMID: 12738750]
[182]
Xie, Y.L.; Lu, W.; Jiang, X.G. Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice. Behav. Brain Res., 2006, 173(1), 76-84.
[http://dx.doi.org/10.1016/j.bbr.2006.06.001] [PMID: 16828890]
[183]
Chavanpatil, M.D.; Khdair, A.; Panyam, J. Surfactant-polymer nanoparticles: a novel platform for sustained and enhanced cellular delivery of water-soluble molecules. Pharm. Res., 2007, 24(4), 803-810.
[http://dx.doi.org/10.1007/s11095-006-9203-2] [PMID: 17318416]
[184]
Hyung Park, J.; Kwon, S.; Lee, M.; Chung, H.; Kim, J.H.; Kim, Y.S.; Park, R.W.; Kim, I.S.; Bong Seo, S.; Kwon, I.C.; Young Jeong, S. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials, 2006, 27(1), 119-126.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.028] [PMID: 16023198]
[185]
Raja, K.S.; Wang, Q.; Gonzalez, M.J.; Manchester, M.; Johnson, J.E.; Finn, M.G. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules, 2003, 4(3), 472-476.
[http://dx.doi.org/10.1021/bm025740+] [PMID: 12741758]
[186]
Liu, Z.; Qiao, J.; Niu, Z.; Wang, Q. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem. Soc. Rev., 2012, 41(18), 6178-6194.
[http://dx.doi.org/10.1039/c2cs35108k] [PMID: 22880206]
[187]
Villagrana-Escareño, M.V.; Reynaga-Hernández, E.; Galicia-Cruz, O.G.; Durán-Meza, A.L.; De la Cruz-González, V.; Hernández-Carballo, C.Y.; Ruíz-García, J. VLPs derived from the ccmv plant virus can directly transfect and deliver heterologous genes for translation into mammalian cells. BioMed Res. Int., 2019, 20194630891
[http://dx.doi.org/10.1155/2019/4630891] [PMID: 31781617]
[188]
Everts, M.; Saini, V.; Leddon, J.L.; Kok, R.J.; Stoff-Khalili, M.; Preuss, M.A.; Millican, C.L.; Perkins, G.; Brown, J.M.; Bagaria, H.; Nikles, D.E.; Johnson, D.T.; Zharov, V.P.; Curiel, D.T. Covalently linked Au nanoparticles to a viral vector: potential for combined photothermal and gene cancer therapy. Nano Lett., 2006, 6(4), 587-591.
[http://dx.doi.org/10.1021/nl0500555] [PMID: 16608249]
[189]
Jordan, A.; Scholz, R.; Maier-Hauff, K.; van Landeghem, F.K.H.; Waldoefner, N.; Teichgraeber, U.; Pinkernelle, J.; Bruhn, H.; Neumann, F.; Thiesen, B.; von Deimling, A.; Felix, R. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol., 2006, 78(1), 7-14.
[http://dx.doi.org/10.1007/s11060-005-9059-z] [PMID: 16314937]
[190]
Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter, 2006, 18(38), S2893-S2902.
[191]
Wu, M.; Chen, J.; Huang, W.; Yan, B.; Peng, Q.; Liu, J.; Chen, L.; Zeng, H. Injectable and self-healing nanocomposite hydrogels with ultrasensitive ph-responsiveness and tunable mechanical properties: implications for controlled drug delivery. Biomacromolecules, 2020, 21(6), 2409-2420.
[http://dx.doi.org/10.1021/acs.biomac.0c00347] [PMID: 32310635]
[192]
Roy, I.; Ohulchanskyy, T.Y.; Pudavar, H.E.; Bergey, E.J.; Oseroff, A.R.; Morgan, J.; Dougherty, T.J.; Prasad, P.N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J. Am. Chem. Soc., 2003, 125(26), 7860-7865.
[http://dx.doi.org/10.1021/ja0343095] [PMID: 12823004]
[193]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.A.; Sershen, S.R.; Rivera, B.; Price, R.E.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13549-13554.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 27
Year: 2020
Page: [2427 - 2441]
Pages: 15
DOI: 10.2174/1568026620666200825170030
Price: $65

Article Metrics

PDF: 18
HTML: 2
EPUB: 2
PRC: 2