Current Neuropharmacological Interventions in Autism: Potential Drug Targets from Pre-clinical and Clinical Findings

Author(s): Ramit Sharma, Aarti Tiwari, Saloni Rahi, Sidharth Mehan*

Journal Name: Current Psychopharmacology

Volume 10 , Issue 2 , 2021


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Autism spectrum disorder is the term used in the most recent edition of the diagnostic and statistical manual of neurodevelopmental disorders, which includes conditions such as autism. Etiological factors such as environmental toxins, food, genes, bacterial infections, and viruses are the reasons behind autism. In the lack of diagnostic criteria, early studies of the disorder reported differences in motor and cognitive abilities in persons with autism. Autism neuropathological features are correlated with different brain areas, such as the cerebral cortex, amygdala, and hippocampus. Autism is associated with mitochondrial dysfunction, oxidative stress, neuroinflammatory reactions, neuroexcitation, and abnormal synapse formation. Pre-clinically, the administration of propionic acid in the brains of rats by stereotaxic technique exacerbates autistic behavioral and neurochemical alterations. Prescription drugs to alleviate neurological disorders for autism are risperidone (Blocks D2 and 5HT2A receptors) and aripiprazole (D2 and 5HT1A partial agonist) approved by the US-FDA, which comes with limited therapeutic intervention. Findings suggest that malfunctions of propionic acid-disrupted neuronal mitochondrial coenzyme Q10 (CoQ10) and etc-complexes are the most pathogenic events for autism. As a result, the current review focused on the history of disease, clinical and pre-clinical drugs under investigation and suggested mediating neuroprotective intervention in autism with mitochondrial CoQ10 activation. Additionally, a greater understanding of the mitochondrial signaling pathway is an effort to improve successful treatment not only for Autism but also for other neurological disorders.

Keywords: Autism, mitochondrial dysfunction, coenzyme Q10, propionic acid, ATP neuroinflammation, immune dysregulation.

[1]
Sharma SR, Gonda X, Tarazi FI. Autism spectrum disorder: classification, diagnosis and therapy. Pharmacol Ther 2018; 190: 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.007] [PMID: 29763648]
[2]
Matson JL, Horovitz M. Stability of autism spectrum disorders symptoms over time. J Dev Phys Disabil 2010; 22(4): 331-42.
[http://dx.doi.org/10.1007/s10882-010-9188-y]
[3]
The Hans India. 1 in 68 kids in India diagnosed with autism: Experts. 2017. Available at: https://www.thehansindia.com/posts/index/Life-Style/2017-10-14/1-in-68-kids-in-India-diagnosed-with-autism-Experts/333190
[4]
World Health Organization. Autism spectrum disorders. 2021. Available at: https://www.who.int/en/news-room/fact-sheets/detail/autism-spectrum-disorders
[5]
Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 2009; 42(10-11): 1032-40.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.03.011] [PMID: 19306862]
[6]
Ozonoff S, Iosif AM, Baguio F, et al. A prospective study of the emergence of early behavioral signs of autism. J Am Acad Child Adolesc Psychiatry 2010; 49(3): 256-66.e1, 2.
[7]
Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P. Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 2005; 23(2-3): 143-52.
[http://dx.doi.org/10.1016/j.ijdevneu.2004.05.001] [PMID: 15749241]
[8]
Bryson SE, Zwaigenbaum L, Brian J, et al. A prospective case series of high-risk infants who developed autism. J Autism Dev Disord 2007; 37(1): 12-24.
[http://dx.doi.org/10.1007/s10803-006-0328-2] [PMID: 17211728]
[9]
Landa RJ, Holman KC, Garrett-Mayer E. Social and communication development in toddlers with early and later diagnosis of autism spectrum disorders. Arch Gen Psychiatry 2007; 64(7): 853-64.
[http://dx.doi.org/10.1001/archpsyc.64.7.853] [PMID: 17606819]
[10]
Lintas C, Sacco R, Persico AM. Genome-wide expression studies in autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiol Dis 2012; 45(1): 57-68.
[http://dx.doi.org/10.1016/j.nbd.2010.11.010] [PMID: 21130877]
[11]
Griffiths KK, Levy RJ. Evidence of mitochondrial dysfunction in autism: biochemical links, genetic-based associations, and non-energy-related mechanisms. Oxid Med Cell Longev 2017; 2017: 4314025.
[http://dx.doi.org/10.1155/2017/4314025] [PMID: 28630658]
[12]
Frye RE, Rossignol DA. Mitochondrial dysfunction can connect the diverse medical symptoms associated with autism spectrum disorders. Pediatr Res 2011; 69(5 Pt 2): 41R-7R.
[http://dx.doi.org/10.1203/PDR.0b013e318212f16b] [PMID: 21289536]
[13]
Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion 2014; 17: 150-6.
[http://dx.doi.org/10.1016/j.mito.2014.07.001] [PMID: 25010387]
[14]
Sarmiento A, Diaz-Castro J, Pulido-Moran M, Kajarabille N, Guisado R, Ochoa JJ. Coenzyme Q10 supplementation and exercise in healthy humans: a systematic review. Curr Drug Metab 2016; 17(4): 345-58.
[http://dx.doi.org/10.2174/1389200216666151103115654] [PMID: 26526835]
[15]
Liu HT, Huang YC, Cheng SB, Huang YT, Lin PT. Effects of coenzyme Q10 supplementation on antioxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: a randomized, placebo-controlled trial. Nutr J 2016; 15(1): 85.
[http://dx.doi.org/10.1186/s12937-016-0205-6] [PMID: 27716246]
[16]
Littarru GP, Bruge F, Tiano L. Biochemistry of coenzyme Q10 Antioxidants in AndrologyCham: Springer 2017; 23-34.
[http://dx.doi.org/10.1007/978-3-319-41749-3_2]
[17]
Kaplan BJ, Rucklidge JJ, Romijn A, McLeod K. The emerging field of nutritional mental health: Inflammation, the microbiome, oxidative stress, and mitochondrial function. Clin Psychol Sci 2015; 3(6): 964-80.
[http://dx.doi.org/10.1177/2167702614555413]
[18]
Forester BP, Harper DG, Georgakas J, Ravichandran C, Madurai N, Cohen BM. Antidepressant effects of open label treatment with coenzyme Q10 in geriatric bipolar depression. J Clin Psychopharmacol 2015; 35(3): 338-40.
[http://dx.doi.org/10.1097/JCP.0000000000000326] [PMID: 25874916]
[19]
Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J. Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 2016; 68: 694-713.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.040] [PMID: 27377693]
[20]
Mousavinejad E, Ghaffari MA, Payami SA. Coenzyme-Q10 deficiency and stress oxidative in children with autism spectrum disorders. J NeurolNeurorehabil Res 2017; 2(2): 25-9.
[http://dx.doi.org/10.35841/neurology-neurorehabilitation.2.2.64-68]
[21]
Rajdev K, Mehan S. Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS Neurol Disord Drug Targets 2019; 18(6): 446-65.
[http://dx.doi.org/10.2174/1871527318666190610101144] [PMID: 31187715]
[22]
Mehan S, Monga V, Rani M, Dudi R, Ghimire K. Neuroprotective effect of solanesol against 3-nitropropionic acid-induced Huntington’s disease-like behavioral, biochemical, and cellular alterations: Restoration of coenzyme-Q10-mediated mitochondrial dysfunction. Indian J Pharmacol 2018; 50(6): 309-19.
[http://dx.doi.org/10.4103/ijp.IJP_11_18] [PMID: 30783323]
[23]
Park SM, Park HR, Lee JH. MAPK3 at the autism-linked human 16p11. 2 locus influences precise synaptic target selection at drosophila larval neuromuscular junctions. Mol Cells 2017; 40(2): 151-61.
[http://dx.doi.org/10.14348/molcells.2017.2307] [PMID: 28196412]
[24]
Burette AC, Judson MC, Li AN, et al. Subcellular organization of UBE3A in human cerebral cortex. Mol Autism 2018; 9(1): 54.
[http://dx.doi.org/10.1186/s13229-018-0238-0] [PMID: 30364390]
[25]
Allen LH, Miller JW, De Groot L, et al. Biomarkers of Nutrition for Development (BOND): vitamin B-12 review. J Nutr 2018; 148(suppl_4): 1995S-2027S.
[26]
Waly M, Olteanu H, Banerjee R, et al. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 2004; 9(4): 358-70.
[http://dx.doi.org/10.1038/sj.mp.4001476] [PMID: 14745455]
[27]
Edelson SB, Cantor DS. Autism: xenobiotic influences. Toxicol Ind Health 1998; 14(6): 799-811.
[http://dx.doi.org/10.1177/074823379801400603] [PMID: 9891912]
[28]
Carpita B, Muti D, Dell’Osso L. Oxidative stress, maternal diabetes, and autism spectrum disorders. Oxid Med Cell Longev 2018; 2018: 3717215.
[http://dx.doi.org/10.1155/2018/3717215] [PMID: 30524654]
[29]
Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 1996; 216: 132-48.
[http://dx.doi.org/10.3109/00365529609094568] [PMID: 8726286]
[30]
Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16(4): 444-53.
[http://dx.doi.org/10.1016/j.anaerobe.2010.06.008] [PMID: 20603222]
[31]
Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 2002; 35(Suppl. 1): S6-S16.
[http://dx.doi.org/10.1086/341914] [PMID: 12173102]
[32]
Hobson DW, Hobson VL. Normal and abnormal intestinal absorption by humans 1986.
[33]
Blaurock-Busch E, Amin OR, Rabah T. Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. Maedica (Bucur) 2011; 6(4): 247-57.
[PMID: 22879836]
[34]
Sakon H, Nagai F, Morotomi M, Tanaka R. Sutterella parvirubra sp. nov. and Megamonas funiformis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58(Pt 4): 970-5.
[http://dx.doi.org/10.1099/ijs.0.65456-0] [PMID: 18398204]
[35]
Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011; 77(18): 6718-21.
[http://dx.doi.org/10.1128/AEM.05212-11] [PMID: 21784919]
[36]
Liu F, Li J, Wu F, Zheng H, Peng Q, Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Transl Psychiatry 2019; 9(1): 43.
[http://dx.doi.org/10.1038/s41398-019-0389-6] [PMID: 30696816]
[37]
Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 2013; 4(1): 42.
[http://dx.doi.org/10.1186/2040-2392-4-42] [PMID: 24188502]
[38]
Novelli A, Reilly JA, Lysko PG, Henneberry RC. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451(1-2): 205-12.
[http://dx.doi.org/10.1016/0006-8993(88)90765-2] [PMID: 2472189]
[39]
Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev 2000; 80(1): 315-60.
[http://dx.doi.org/10.1152/physrev.2000.80.1.315] [PMID: 10617771]
[40]
Marin I, Kipnis J. Learning and memory ... and the immune system. Learn Mem 2013; 20(10): 601-6.
[http://dx.doi.org/10.1101/lm.028357.112] [PMID: 24051097]
[41]
Choudhury PR, Lahiri S, Rajamma U. Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacol Biochem Behav 2012; 100(4): 841-9.
[http://dx.doi.org/10.1016/j.pbb.2011.06.023] [PMID: 21756930]
[42]
Ulfig N. Calcium-binding proteins in the human developing brain. 2012.
[43]
Souza BR, Tropepe V. The role of dopaminergic signalling during larval zebrafish brain development: a tool for investigating the developmental basis of neuropsychiatric disorders. Rev Neurosci 2011; 22(1): 107-19.
[http://dx.doi.org/10.1515/rns.2011.012] [PMID: 21615265]
[44]
Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 2017; 42(1): 193-215.
[http://dx.doi.org/10.1038/npp.2016.199] [PMID: 27629368]
[45]
Luscher B, Fuchs T. GABAergic control of depression-related brain states. Adv Pharmacol 2015; 73: 97-144.
[http://dx.doi.org/10.1016/bs.apha.2014.11.003] [PMID: 25637439]
[46]
Valenstein E. Valenstein E Blaming the brain: the truth about drugs and mental health New York: Simon and Schuster 2002.
[47]
Pickett J. Current investigations in autism brain tissue research. J Autism Dev Disord 2001; 31(6): 521-7.
[http://dx.doi.org/10.1023/A:1013282524687] [PMID: 11814261]
[48]
Bailey A, Luthert P, Dean A, et al. A clinicopathological study of autism. Brain 1998; 121(Pt 5): 889-905.
[http://dx.doi.org/10.1093/brain/121.5.889] [PMID: 9619192]
[49]
Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML. Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 2001; 31(6): 537-43.
[http://dx.doi.org/10.1023/A:1013238809666] [PMID: 11814263]
[50]
Granot E, Kohen R. Oxidative stress in childhood--in health and disease states. Clin Nutr 2004; 23(1): 3-11.
[http://dx.doi.org/10.1016/S0261-5614(03)00097-9] [PMID: 14757387]
[51]
Stohs SJ. The role of free radicals in toxicity and disease. J Basic Clin Physiol Pharmacol 1995; 6(3-4): 205-28.
[http://dx.doi.org/10.1515/JBCPP.1995.6.3-4.205] [PMID: 8852268]
[52]
Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys 1986; 247(1): 1-11.
[http://dx.doi.org/10.1016/0003-9861(86)90526-6] [PMID: 3010872]
[53]
McCord JM, Day ED Jr. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett 1978; 86(1): 139-42.
[http://dx.doi.org/10.1016/0014-5793(78)80116-1] [PMID: 202505]
[54]
Gutteridge JMC. The protective action of superoxide dismutase on metal-ion catalysed peroxidation of phospholipids. Biochem Biophys Res Commun 1977; 77(1): 379-86.
[http://dx.doi.org/10.1016/S0006-291X(77)80208-8] [PMID: 883984]
[55]
Vendemiale G, Grattagliano I, Altomare E. An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res 1999; 29(2): 49-55.
[http://dx.doi.org/10.1007/s005990050063] [PMID: 10436261]
[56]
Ono H, Sakamoto A, Sakura N. Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clin Chim Acta 2001; 312(1-2): 227-9.
[http://dx.doi.org/10.1016/S0009-8981(01)00596-4] [PMID: 11580931]
[57]
Hroudová J, Fišar Z. Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 2013; 8(4): 363-75.
[PMID: 25206677]
[58]
Blaylock RL, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surg Neurol Int 2011; 2: 107.
[http://dx.doi.org/10.4103/2152-7806.83391] [PMID: 21886880]
[59]
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults 2016. Oxid Med Cell Longev 2016; 2016: 3164734.
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[60]
Li X, Chauhan A, Sheikh AM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009; 207(1-2): 111-6.
[http://dx.doi.org/10.1016/j.jneuroim.2008.12.002] [PMID: 19157572]
[61]
Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology 2006; 13(3): 171-81.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.007] [PMID: 16766163]
[62]
Nehls M. Unified theory of Alzheimer’s disease (UTAD): implications for prevention and curative therapy. J Mol Psychiatry 2016; 4(1): 3.
[http://dx.doi.org/10.1186/s40303-016-0018-8] [PMID: 27429752]
[63]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[64]
Martin LJ. Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel) 2010; 3(4): 839-915.
[http://dx.doi.org/10.3390/ph3040839] [PMID: 21258649]
[65]
Horton AA, Fairhurst S. Lipid peroxidation and mechanisms of toxicity. Crit Rev Toxicol 1987; 18(1): 27-79.
[http://dx.doi.org/10.3109/10408448709089856] [PMID: 3311640]
[66]
Lopez-Hurtado E, Prieto JJ. Immunocytochemical analysis of interneurons in the cerebral cortex of autistic patients International Meeting for Autism Research. Sacramento, California. May 7-8, 2004; 153.
[67]
Víctor VM, Rubio D, de la Fuente M. Comparative study of several lymphocyte functions in two strains of mice with different models of endotoxic shock. Physiol Res 2002; 51(3): 291-8.
[PMID: 12234122]
[68]
De la Fuente M, Victor VM. Ascorbic acid and N-acetylcysteine improve in vitro the function of lymphocytes from mice with endotoxin-induced oxidative stress. Free Radic Res 2001; 35(1): 73-84.
[http://dx.doi.org/10.1080/10715760100300611] [PMID: 11697119]
[69]
Anderson GM, Horne WC, Chatterjee D, Cohen DJ. The hyperserotonemia of autism. Ann N Y Acad Sci 1990; 600: 331-40.
[http://dx.doi.org/10.1111/j.1749-6632.1990.tb16893.x] [PMID: 2252319]
[70]
Janusonis S. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities. Theor Biol Med Model 2005; 2: 27.
[http://dx.doi.org/10.1186/1742-4682-2-27] [PMID: 16029508]
[71]
Young MR, Kut JL, Coogan MP, Wright MA, Young ME, Matthews J. Stimulation of splenic T-lymphocyte function by endogenous serotonin and by low-dose exogenous serotonin. Immunology 1993; 80(3): 395-400.
[PMID: 8288316]
[72]
Kut JL, Young MR, Crayton JW, Wright MA, Young ME. Regulation of murine T-lymphocyte function by spleen cell-derived and exogenous serotonin. Immunopharmacol Immunotoxicol 1992; 14(4): 783-96.
[http://dx.doi.org/10.3109/08923979209009235] [PMID: 1294623]
[73]
Stubbs EG, Crawford ML. Depressed lymphocyte responsiveness in autistic children. J Autism Child Schizophr 1977; 7(1): 49-55.
[http://dx.doi.org/10.1007/BF01531114] [PMID: 139400]
[74]
Warren RP, Margaretten NC, Pace NC, Foster A. Immune abnormalities in patients with autism. J Autism Dev Disord 1986; 16(2): 189-97.
[http://dx.doi.org/10.1007/BF01531729] [PMID: 2941410]
[75]
Sweeten TL, Posey DJ, McDougle CJ. High blood monocyte counts and neopterin levels in children with autistic disorder. Am J Psychiatry 2003; 160(9): 1691-3.
[http://dx.doi.org/10.1176/appi.ajp.160.9.1691] [PMID: 12944347]
[76]
Messahel S, Pheasant AE, Pall H, Ahmed-Choudhury J, Sungum-Paliwal RS, Vostanis P. Urinary levels of neopterin and biopterin in autism. Neurosci Lett 1998; 241(1): 17-20.
[http://dx.doi.org/10.1016/S0304-3940(97)00976-2] [PMID: 9502205]
[77]
Gupta S, Aggarwal S, Heads C. Dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics. J Autism Dev Disord 1996; 26(4): 439-52.
[http://dx.doi.org/10.1007/BF02172828] [PMID: 8863094]
[78]
Ashwood P, Wakefield AJ. Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 2006; 173(1-2): 126-34.
[http://dx.doi.org/10.1016/j.jneuroim.2005.12.007] [PMID: 16494951]
[79]
Singh VK, Warren RP, Odell JD, Warren WL, Cole P. Antibodies to myelin basic protein in children with autistic behavior. Brain Behav Immun 1993; 7(1): 97-103.
[http://dx.doi.org/10.1006/brbi.1993.1010] [PMID: 7682457]
[80]
Singh VK, Warren R, Averett R, Ghaziuddin M. Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol 1997; 17(1): 88-90.
[http://dx.doi.org/10.1016/S0887-8994(97)00045-3] [PMID: 9308986]
[81]
Vojdani A, Campbell AW, Anyanwu E, Kashanian A, Bock K, Vojdani E. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J Neuroimmunol 2002; 129(1-2): 168-77.
[http://dx.doi.org/10.1016/S0165-5728(02)00180-7] [PMID: 12161033]
[82]
Schaefer GB, Mendelsohn NJ. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet Med 2013; 15(5): 399-407.
[http://dx.doi.org/10.1038/gim.2013.32] [PMID: 23519317]
[83]
Tammimies K, Marshall CR, Walker S, et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with autism spectrum disorder. JAMA 2015; 314(9): 895-903.
[http://dx.doi.org/10.1001/jama.2015.10078] [PMID: 26325558]
[84]
Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9(5): 341-55.
[http://dx.doi.org/10.1038/nrg2346] [PMID: 18414403]
[85]
Hallmayer J, Cleveland S, Torres A, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 2011; 68(11): 1095-102.
[http://dx.doi.org/10.1001/archgenpsychiatry.2011.76] [PMID: 21727249]
[86]
Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A. The familial risk of autism. JAMA 2014; 311(17): 1770-7.
[http://dx.doi.org/10.1001/jama.2014.4144] [PMID: 24794370]
[87]
Hall L, Kelley E. The contribution of epigenetics to understanding genetic factors in autism. Autism 2014; 18(8): 872-81.
[http://dx.doi.org/10.1177/1362361313503501] [PMID: 24126868]
[88]
Chen C, Chen Y, Guan MX. A peep into mitochondrial disorder: multifaceted from mitochondrial DNA mutations to nuclear gene modulation. Protein Cell 2015; 6(12): 862-70.
[http://dx.doi.org/10.1007/s13238-015-0175-z] [PMID: 26084519]
[89]
Smith M, Flodman PL, Gargus JJ, et al. Mitochondrial and ion channel gene alterations in autism. Biochim Biophys Acta 2012; 1817(10): 1796-802.
[http://dx.doi.org/10.1016/j.bbabio.2012.04.004] [PMID: 22538295]
[90]
Filipek PA, Juranek J, Smith M, et al. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol 2003; 53(6): 801-4.
[http://dx.doi.org/10.1002/ana.10596] [PMID: 12783428]
[91]
Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J. The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Commun 2013; 1(1): 61.
[http://dx.doi.org/10.1186/2051-5960-1-61] [PMID: 24252310]
[92]
Ezugha H, Goldenthal M, Valencia I, Anderson CE, Legido A, Marks H. 5q14.3 deletion manifesting as mitochondrial disease and autism: case report. J Child Neurol 2010; 25(10): 1232-5.
[http://dx.doi.org/10.1177/0883073809361165] [PMID: 20179003]
[93]
Frye RE, Cox D, Slattery J, et al. Mitochondrial Dysfunction may explain symptom variation in Phelan-McDermid Syndrome. Sci Rep 2016; 6: 19544.
[http://dx.doi.org/10.1038/srep19544] [PMID: 26822410]
[94]
Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem 2009; 42(10-11): 1032-40.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.03.011] [PMID: 19306862]
[95]
Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther 2018; 22(5): 571-93.
[http://dx.doi.org/10.1007/s40291-018-0352-x] [PMID: 30039193]
[96]
Rossi M, El-Khechen D, Black MH, Farwell Hagman KD, Tang S, Powis Z. Outcomes of diagnostic exome sequencing in patients with diagnosed or suspected autism spectrum disorders. Pediatr Neurol 2017; 70: 34-43.e2.
[http://dx.doi.org/10.1016/j.pediatrneurol.2017.01.033] [PMID: 28330790]
[97]
Patowary A, Nesbitt R, Archer M, Bernier R, Brkanac Z. Next generation sequencing mitochondrial DNA analysis in autism spectrum disorder. Autism Res 2017; 10(8): 1338-43.
[http://dx.doi.org/10.1002/aur.1792] [PMID: 28419775]
[98]
Piryaei F, Houshmand M, Aryani O, Dadgar S, Soheili ZS. Investigation of the mitochondrial ATPase 6/8 and tRNALys genes mutations in autism. Cell J 2012; 14(2): 98-101.
[PMID: 23508290]
[99]
Avdjieva-Tzavella D, Mihailova S, Lukanov C, et al. Mitochondrial DNA mutations in two bulgarian children with autistic spectrum disorders. Balkan J Med Genet 2012; 15(2): 47-54.
[http://dx.doi.org/10.2478/bjmg-2013-0006] [PMID: 24052731]
[100]
Hollis F, Kanellopoulos AK, Bagni C. Mitochondrial dysfunction in Autism Spectrum Disorder: clinical features and perspectives. Curr Opin Neurobiol 2017; 45: 178-87.
[http://dx.doi.org/10.1016/j.conb.2017.05.018] [PMID: 28628841]
[101]
Wong S, Napoli E, Krakowiak P, Tassone F, Hertz-Picciotto I, Giulivi C. Role of p53, mitochondrial DNA deletions, and paternal age in autism: a case-control study. Pediatrics 2016; 137(4): e20151888.
[http://dx.doi.org/10.1542/peds.2015-1888] [PMID: 27033107]
[102]
Thompson GN, Walter JH, Bresson JL, et al. Sources of propionate in inborn errors of propionate metabolism. Metabolism 1990; 39(11): 1133-7.
[http://dx.doi.org/10.1016/0026-0495(90)90084-P] [PMID: 2233273]
[103]
Kuijper EJ, Coignard B, Tüll P. Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect 2006; 12(Suppl. 6): 2-18.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01580.x] [PMID: 16965399]
[104]
Jan G, Belzacq AS, Haouzi D, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ 2002; 9(2): 179-88.
[http://dx.doi.org/10.1038/sj.cdd.4400935] [PMID: 11840168]
[105]
Zárate G, González S, Chaia AP. Assessing survival of dairy propionibacteria in gastrointestinal conditions and adherence to intestinal epithelia. Methods Mol Biol 2004; 268: 423-32.
[http://dx.doi.org/10.1385/1-59259-766-1:423] [PMID: 15156053]
[106]
Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep 2019; 9(1): 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[107]
Olson JE, Mishler L, Dimlich RV. Brain water content, brain blood volume, blood chemistry, and pathology in a model of cerebral edema. Ann Emerg Med 1990; 19(10): 1113-21.
[http://dx.doi.org/10.1016/S0196-0644(05)81514-8] [PMID: 2221516]
[108]
Conn AR, Fell DI, Steele RD. Characterization of alpha-keto acid transport across blood-brain barrier in rats. Am J Physiol 1983; 245(3): E253-60.
[PMID: 6614164]
[109]
Karuri AR, Dobrowsky E, Tannock IF. Selective cellular acidification and toxicity of weak organic acids in an acidic microenvironment. Br J Cancer 1993; 68(6): 1080-7.
[http://dx.doi.org/10.1038/bjc.1993.485] [PMID: 8260358]
[110]
Rörig B, Klausa G, Sutor B. Intracellular acidification reduced gap junction coupling between immature rat neocortical pyramidal neurones. J Physiol 1996; 490(Pt 1): 31-49.
[http://dx.doi.org/10.1113/jphysiol.1996.sp021125] [PMID: 8745277]
[111]
Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019; 16(8): 461-78.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[112]
DeCastro M, Nankova BB, Shah P, et al. Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res Mol Brain Res 2005; 142(1): 28-38.
[http://dx.doi.org/10.1016/j.molbrainres.2005.09.002] [PMID: 16219387]
[113]
Maurer MH, Canis M, Kuschinsky W, Duelli R. Correlation between local monocarboxylate transporter 1 (MCT1) and glucose transporter 1 (GLUT1) densities in the adult rat brain. Neurosci Lett 2004; 355(1-2): 105-8.
[http://dx.doi.org/10.1016/j.neulet.2003.10.056] [PMID: 14729246]
[114]
Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol 2007; 13(20): 2826-32.
[http://dx.doi.org/10.3748/wjg.v13.i20.2826] [PMID: 17569118]
[115]
Wajner M, Latini A, Wyse AT, Dutra-Filho CS. The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 2004; 27(4): 427-48.
[http://dx.doi.org/10.1023/B:BOLI.0000037353.13085.e2] [PMID: 15303000]
[116]
Hara H, Haga S, Aoyama Y, Kiriyama S. Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 1999; 129(5): 942-8.
[http://dx.doi.org/10.1093/jn/129.5.942] [PMID: 10222383]
[117]
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 2003; 278(28): 25481-9.
[http://dx.doi.org/10.1074/jbc.M301403200] [PMID: 12711604]
[118]
Benvenuto A, Moavero R, Alessandrelli R, Manzi B, Curatolo P. Syndromic autism: causes and pathogenetic pathways. World J Pediatr 2009; 5(3): 169-76.
[http://dx.doi.org/10.1007/s12519-009-0033-2] [PMID: 19693459]
[119]
Parab S, Nankova BB, La Gamma EF. Differential regulation of the tyrosine hydroxylase and enkephalin neuropeptide transmitter genes in rat PC12 cells by short chain fatty acids: concentration-dependent effects on transcription and RNA stability. Brain Res 2007; 1132(1): 42-50.
[http://dx.doi.org/10.1016/j.brainres.2006.11.013] [PMID: 17174279]
[120]
Tamiji J, Crawford DA. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 2010; 18(2): 98-112.
[http://dx.doi.org/10.1159/000323189] [PMID: 21346377]
[121]
Mally P, Mishra R, Gandhi S, Decastro MH, Nankova BB, Lagamma EF. Stereospecific regulation of tyrosine hydroxylase and proenkephalin genes by short-chain fatty acids in rat PC12 cells. Pediatr Res 2004; 55(5): 847-54.
[http://dx.doi.org/10.1203/01.PDR.0000119365.21770.45] [PMID: 14739357]
[122]
de Mattos-Dutra A, Meirelles R, Bevilaqua da Rocha B, et al. Methylmalonic and propionic acids increase the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats through NMDA glutamate receptors. Brain Res 2000; 856(1-2): 111-8.
[http://dx.doi.org/10.1016/S0006-8993(99)02380-X] [PMID: 10677617]
[123]
Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA. The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 2002; 132(5): 1012-7.
[http://dx.doi.org/10.1093/jn/132.5.1012] [PMID: 11983830]
[124]
Nicot A, Otto T, Brabet P, Dicicco-Bloom EM. Altered social behavior in pituitary adenylate cyclase-activating polypeptide type I receptor-deficient mice. J Neurosci 2004; 24(40): 8786-95.
[http://dx.doi.org/10.1523/JNEUROSCI.1910-04.2004] [PMID: 15470144]
[125]
Brass EP, Beyerinck RA. Interactions of propionate and carnitine metabolism in isolated rat hepatocytes. Metabolism 1987; 36(8): 781-7.
[http://dx.doi.org/10.1016/0026-0495(87)90117-X] [PMID: 3110541]
[126]
Brass EP, Beyerinck RA. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids. Biochem J 1988; 250(3): 819-25.
[http://dx.doi.org/10.1042/bj2500819] [PMID: 3134008]
[127]
Shams S, Foley KA, Kavaliers M, MacFabe DF, Ossenkopp KP. Systemic treatment with the enteric bacterial metabolic product propionic acid results in reduction of social behavior in juvenile rats: Contribution to a rodent model of autism spectrum disorder. Dev Psychobiol 2019; 61(5): 688-99.
[http://dx.doi.org/10.1002/dev.21825] [PMID: 30689218]
[128]
Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 2003; 73(13): 1683-90.
[http://dx.doi.org/10.1016/S0024-3205(03)00490-9] [PMID: 12875900]
[129]
Shultz SR, Macfabe DF, Martin S, et al. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long-Evans rat: further development of a rodent model of autism. Behav Brain Res 2009; 200(1): 33-41.
[http://dx.doi.org/10.1016/j.bbr.2008.12.023] [PMID: 19154758]
[130]
Thomas RH, Meeking MM, Mepham JR, et al. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders. J Neuroinflammation 2012; 9(1): 153.
[http://dx.doi.org/10.1186/1742-2094-9-153] [PMID: 22747852]
[131]
MacFabe DF, Cain DP, Rodriguez-Capote K, et al. Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav Brain Res 2007; 176(1): 149-69.
[http://dx.doi.org/10.1016/j.bbr.2006.07.025] [PMID: 16950524]
[132]
MacFabe DF, Cain NE, Boon F, Ossenkopp KP, Cain DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 2011; 217(1): 47-54.
[http://dx.doi.org/10.1016/j.bbr.2010.10.005] [PMID: 20937326]
[133]
Al-Ghamdi M, Al-Ayadhi L, El-Ansary A. Selected biomarkers as predictive tools in testing efficacy of melatonin and coenzyme Q on propionic acid - induced neurotoxicity in rodent model of autism. BMC Neurosci 2014; 15(1): 34.
[http://dx.doi.org/10.1186/1471-2202-15-34] [PMID: 24568717]
[134]
Siddiqi NJ, Abdelhalim MA, El-Ansary AK, Alhomida AS, Ong WY. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J Neuroinflammation 2012; 9(1): 123.
[http://dx.doi.org/10.1186/1742-2094-9-123] [PMID: 22691312]
[135]
N-Acetylcysteine reduces the neurotoxic effects of propionic acid in rat pups. J King Saud University-Science 2014; 26(4): 254-60.
[http://dx.doi.org/10.1016/j.jksus.2013.08.006]
[136]
Alfawaz H, Al-Onazi M, Bukhari SI, et al. The independent and combined effects of omega-3 and vitamin b12 in ameliorating propionic acid induced biochemical features in juvenile rats as rodent model of autism. J Mol Neurosci 2018; 66(3): 403-13.
[http://dx.doi.org/10.1007/s12031-018-1186-z] [PMID: 30284229]
[137]
Choi J, Lee S, Won J, et al. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One 2018; 13(2): e0192925.
[http://dx.doi.org/10.1371/journal.pone.0192925] [PMID: 29447237]
[138]
Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 2012; 23(1): 19260.
[PMID: 23990817]
[139]
El-Ansary AK, Ben Bacha A, Kotb M. Etiology of autistic features: the persisting neurotoxic effects of propionic acid. J Neuroinflammation 2012; 9(1): 74.
[http://dx.doi.org/10.1186/1742-2094-9-74] [PMID: 22531301]
[140]
Foley KA, Ossenkopp KP, Kavaliers M, Macfabe DF. Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS One 2014; 9(1): e87072.
[http://dx.doi.org/10.1371/journal.pone.0087072] [PMID: 24466331]
[141]
El-Ansary A, Al-Ghamdi M, Bhat RS, Al-Daihan S, Al-Ayadhi L. Potency of pre-post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism. Food Nutr Res 2016; 60(1): 28127.
[http://dx.doi.org/10.3402/fnr.v60.28127] [PMID: 26945230]
[142]
Thomas RH, Foley KA, Mepham JR, Tichenoff LJ, Possmayer F, MacFabe DF. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: further development of a potential model of autism spectrum disorders. J Neurochem 2010; 113(2): 515-29.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06614.x] [PMID: 20405543]
[143]
Aldbass AM, Bhat RS, El-Ansary A. Protective and therapeutic potency of N-acetyl-cysteine on propionic acid-induced biochemical autistic features in rats. J Neuroinflammation 2013; 10(1): 42.
[http://dx.doi.org/10.1186/1742-2094-10-42] [PMID: 23537042]
[144]
Neuro Needs. Coenzyme q10 (also known as COQ10, vitamin q, or ubidecarenone, including the varieties of ubiquinone and ubiquinol). Available at: https://neuroneeds.com/index.php/active-ingredients/37-coenzyme-q10-also-known-as-coq10-vitamin-q-or-ubidecarenone-including-the-varieties-of-ubiquinone-and-ubiquinol
[145]
Santos GCD, Antunes LMG, Santos ACD, Bianchi MDLP. Coenzyme Q10 and its effects in the treatment of neurodegenerative diseases. Braz J Pharm Sci 2009; 45(4): 607-18.
[http://dx.doi.org/10.1590/S1984-82502009000400002]
[146]
Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 2010; 19(4): 535-54.
[http://dx.doi.org/10.1517/13543781003727495] [PMID: 20367194]
[147]
Shulman RG, Rothman DL, Behar KL, Hyder F. Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 2004; 27(8): 489-95.
[http://dx.doi.org/10.1016/j.tins.2004.06.005] [PMID: 15271497]
[148]
Rodick TC, Seibels DR, Babu JR, Huggins KW, Ren G, Mathews ST. Potential role of coenzyme Q10 in health and disease conditions. Dove Press 2018; 2018: 1-11.
[149]
Saini R. Coenzyme Q10: The essential nutrient. J Pharm Bioallied Sci 2011; 3(3): 466-7.
[http://dx.doi.org/10.4103/0975-7406.84471] [PMID: 21966175]
[150]
Ferrante RJ, Andreassen OA, Dedeoglu A, et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci 2002; 22(5): 1592-9.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01592.2002] [PMID: 11880489]
[151]
Müller T, Büttner T, Gholipour AF, Kuhn W. Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neurosci Lett 2003; 341(3): 201-4.
[http://dx.doi.org/10.1016/S0304-3940(03)00185-X] [PMID: 12697283]
[152]
Ishrat T, Khan MB, Hoda MN, et al. Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 2006; 171(1): 9-16.
[http://dx.doi.org/10.1016/j.bbr.2006.03.009] [PMID: 16621054]
[153]
Tawfik MK. Coenzyme Q10 enhances the anticonvulsant effect of phenytoin in pilocarpine-induced seizures in rats and ameliorates phenytoin-induced cognitive impairment and oxidative stress. Epilepsy Behav 2011; 22(4): 671-7.
[http://dx.doi.org/10.1016/j.yebeh.2011.09.018] [PMID: 22036465]
[154]
Ely JT, Fudenberg HH, Bliznakov EG, Branch JD. Hemorrhagic stroke in human pretreated with coenzyme Q10: Exceptional recovery as seen in animal models. J Orthomol Med 1998; 13(2): 105-9.
[155]
Langsjoen PH. Introduction to Coenzyme Q10 1995. http://weber.u.washington.edu/~ely
[156]
Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Jazayeri S, Reza Gohari M. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. Int J Neurosci 2013; 123(11): 776-82.
[http://dx.doi.org/10.3109/00207454.2013.801844] [PMID: 23659338]
[157]
Lee D, Shim MS, Kim KY, et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 2014; 55(2): 993-1005.
[http://dx.doi.org/10.1167/iovs.13-12564] [PMID: 24458150]
[158]
Rose J, Brian C, Woods J, et al. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology 2017; 391: 109-15.
[http://dx.doi.org/10.1016/j.tox.2017.06.011] [PMID: 28655545]
[159]
Li X, Zhan J, Hou Y, et al. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-κB signaling pathway after spinal cord injury in rats. Am J Transl Res 2019; 11(10): 6544-52.
[PMID: 31737205]
[160]
Sharma R, Rahi S, Mehan S. Neuroprotective potential of solanesol in intracerebroventricular propionic acid induced experimental model of autism: Insights from behavioral and biochemical evidence. Toxicol Rep 2019; 6: 1164-75.
[http://dx.doi.org/10.1016/j.toxrep.2019.10.019] [PMID: 31763180]
[161]
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf 2020; 19(2): 574-94.
[http://dx.doi.org/10.1111/1541-4337.12539] [PMID: 33325173]
[162]
Kreiman BL, Boles RG. State of the Art of Genetic Testing for Patients with Autism: A Practical Guide for Clinicians. Semin Pediatr Neurol 2020; 34: 100804.
[163]
Phagava H, Muratori F, Einspieler C, et al. General movements in infants with autism spectrum disorders. Georgian Med News 2008; (156): 100-5.
[PMID: 18403821]
[164]
Tsai KL, Huang YH, Kao CL, et al. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. J Nutr Biochem 2012; 23(5): 458-68.
[http://dx.doi.org/10.1016/j.jnutbio.2011.01.011] [PMID: 21684136]
[165]
Morris G, Anderson G, Berk M, Maes M. Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48(3): 883-903.
[http://dx.doi.org/10.1007/s12035-013-8477-8] [PMID: 23761046]
[166]
Lee BJ, Huang YC, Chen SJ, Lin PT. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 2012; 28(3): 250-5.
[http://dx.doi.org/10.1016/j.nut.2011.06.004] [PMID: 21996047]
[167]
Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol 2016; 7(3): 122-37.
[http://dx.doi.org/10.1159/000446586] [PMID: 27587988]
[168]
Rossignol DA, Bradstreet JJ. Evidence of mitochondrial dysfunction in autism and implications for treatment. Am J Biochem Biotechnol 2008; 4(2): 208-17.
[http://dx.doi.org/10.3844/ajbbsp.2008.208.217]
[169]
Crane FL, Löw H, Sun I, Navas P, Gvozdjáková A. Plasma membrane coenzyme Q: evidence for a role in autism. Biologics 2014; 8: 199-205.
[PMID: 24920882]
[170]
Guevara-Campos J, González-Guevara L, Cauli O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int J Mol Sci 2015; 16(2): 3870-84.
[http://dx.doi.org/10.3390/ijms16023870] [PMID: 25679448]
[171]
Blankenship K, Erickson CA, Stigler KA, Posey DJ, McDougle CJ. Aripiprazole for irritability associated with autistic disorder in children and adolescents aged 6-17 years. Ped Health 2010; 4(4): 375-81.
[http://dx.doi.org/10.2217/phe.10.45] [PMID: 21359119]
[172]
Marazziti D, Baroni S, Palego L, et al. Clozapine effects on adenylyl cyclase activity and serotonin type 1A receptors in human brain post-mortem. J Psychopharmacol 2014; 28(4): 320-8.
[http://dx.doi.org/10.1177/0269881113515065] [PMID: 24429224]
[173]
Horacek J, Bubenikova-Valesova V, Kopecek M, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs 2006; 20(5): 389-409.
[http://dx.doi.org/10.2165/00023210-200620050-00004] [PMID: 16696579]
[174]
Donnelly C, Bangs M, Trzepacz P, et al. Safety and tolerability of atomoxetine over 3 to 4 years in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2009; 48(2): 176-85.
[http://dx.doi.org/10.1097/CHI.0b013e318193060e] [PMID: 20040824]
[175]
Casey AB, Canal CE. Classics in chemical neuroscience: aripiprazole. ACS Chem Neurosci 2017; 8(6): 1135-46.
[http://dx.doi.org/10.1021/acschemneuro.7b00087] [PMID: 28368577]
[176]
Ketter TA. Strategies for monitoring outcomes in patients with bipolar disorder. Prim Care Companion J Clin Psychiatry 2010; 12(Suppl. 1): 10-6.
[http://dx.doi.org/10.4088/PCC.9064su1c.02] [PMID: 20628501]
[177]
Aman MG, De Smedt G, Derivan A, Lyons B, Findling RL. Double-blind, placebo-controlled study of risperidone for the treatment of disruptive behaviors in children with subaverage intelligence. Am J Psychiatry 2002; 159(8): 1337-46.
[http://dx.doi.org/10.1176/appi.ajp.159.8.1337] [PMID: 12153826]
[178]
Coppola D, Russo LJ, Kwarta RF Jr, Varughese R, Schmider J. Evaluating the postmarketing experience of risperidone use during pregnancy: pregnancy and neonatal outcomes. Drug Saf 2007; 30(3): 247-64.
[http://dx.doi.org/10.2165/00002018-200730030-00006] [PMID: 17343431]
[179]
Cheng-Shannon J, McGough JJ, Pataki C, McCracken JT. Second-generation antipsychotic medications in children and adolescents. J Child Adolesc Psychopharmacol 2004; 14(3): 372-94.
[http://dx.doi.org/10.1089/cap.2004.14.372] [PMID: 15650494]
[180]
Scahill L, Leckman JF, Schultz RT, Katsovich L, Peterson BS. A placebo-controlled trial of risperidone in Tourette syndrome. Neurology 2003; 60(7): 1130-5.
[http://dx.doi.org/10.1212/01.WNL.0000055434.39968.67] [PMID: 12682319]
[181]
Kinon BJ, Gilmore JA, Liu H, Halbreich UM. Prevalence of hyperprolactinemia in schizophrenic patients treated with conventional antipsychotic medications or risperidone. Psychoneuroendocrinology 2003; 28(Suppl. 2): 55-68.
[http://dx.doi.org/10.1016/S0306-4530(02)00127-0] [PMID: 12650681]
[182]
Martin A, Scahill L, Anderson GM, et al. Weight and leptin changes among risperidone-treated youths with autism: 6-month prospective data. Am J Psychiatry 2004; 161(6): 1125-7.
[http://dx.doi.org/10.1176/appi.ajp.161.6.1125] [PMID: 15169706]
[183]
Naidoo U, Goff DC, Klibanski A. Hyperprolactinemia and bone mineral density: the potential impact of antipsychotic agents. Psychoneuroendocrinology 2003; 28(Suppl. 2): 97-108.
[http://dx.doi.org/10.1016/S0306-4530(02)00129-4] [PMID: 12650684]
[184]
Bartram LA, Lozano J, Coury DL. Aripiprazole for treating irritability associated with autism spectrum disorders. Expert Opin Pharmacother 2019; 20(12): 1421-7.
[http://dx.doi.org/10.1080/14656566.2019.1626825] [PMID: 31180743]
[185]
LeClerc S, Easley D. Pharmacological therapies for autism spectrum disorder: a review. P&T 2015; 40(6): 389-97.
[PMID: 26045648]
[186]
Farmer CA, Aman MG. Aripiprazole for the treatment of irritability associated with autism. Expert Opin Pharmacother 2011; 12(4): 635-40.
[http://dx.doi.org/10.1517/14656566.2011.557661] [PMID: 21294670]
[187]
Burke SP, Stratton K, Baciu A, Eds. The future of drug safety: promoting and protecting the health of the public. Washington, D.C.: National Academies Press 2007.
[188]
Hirsch LE, Pringsheim T. Aripiprazole for autism spectrum disorders (ASD). Cochrane Database Syst Rev 2016; (6): CD009043.
[PMID: 27344135]
[189]
Erickson CA, Stigler KA, Posey DJ, McDougle CJ. Aripiprazole in autism spectrum disorders and fragile X syndrome. Neurotherapeutics 2010; 7(3): 258-63.
[http://dx.doi.org/10.1016/j.nurt.2010.04.001] [PMID: 20643378]
[190]
Health of the public. National Academies Press 2007. Mar 27
[191]
Nirogi R, Kandikere V, Jayarajan P, et al. Aripiprazole in an animal model of chronic alcohol consumption and dopamine D₂ receptor occupancy in rats. Am J Drug Alcohol Abuse 2013; 39(2): 72-9.
[http://dx.doi.org/10.3109/00952990.2012.730590] [PMID: 23421566]
[192]
Nowakowska E, Kus K, Ratajczak P, Cichocki M, Woźniak A. The influence of aripiprazole, olanzapine and enriched environment on depressant-like behavior, spatial memory dysfunction and hippocampal level of BDNF in prenatally stressed rats. Pharmacol Rep 2014; 66(3): 404-11.
[http://dx.doi.org/10.1016/j.pharep.2013.12.008] [PMID: 24905516]
[193]
Akhondzadeh S, Tajdar H, Mohammadi MR, et al. A double-blind placebo controlled trial of piracetam added to risperidone in patients with autistic disorder. Child Psychiatry Hum Dev 2008; 39(3): 237-45.
[http://dx.doi.org/10.1007/s10578-007-0084-3] [PMID: 17929164]
[194]
Aman MG, Arnold LE, McDougle CJ, et al. Acute and long-term safety and tolerability of risperidone in children with autism. J Child Adolesc Psychopharmacol 2005; 15(6): 869-84.
[http://dx.doi.org/10.1089/cap.2005.15.869] [PMID: 16379507]
[195]
Anderson GM, Scahill L, McCracken JT, et al. Effects of short- and long-term risperidone treatment on prolactin levels in children with autism. Biol Psychiatry 2007; 61(4): 545-50.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.032] [PMID: 16730335]
[196]
Gagliano A, Germanò E, Pustorino G, et al. Risperidone treatment of children with autistic disorder: effectiveness, tolerability, and pharmacokinetic implications. J Child Adolesc Psychopharmacol 2004; 14(1): 39-47.
[http://dx.doi.org/10.1089/104454604773840472] [PMID: 15142390]
[197]
Aman MG, Lam KS, Collier-Crespin A. Prevalence and patterns of use of psychoactive medicines among individuals with autism in the Autism Society of Ohio. J Autism Dev Disord 2003; 33(5): 527-34.
[http://dx.doi.org/10.1023/A:1025883612879] [PMID: 14594332]
[198]
McCracken JT, McGough J, Shah B, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med 2002; 347(5): 314-21.
[http://dx.doi.org/10.1056/NEJMoa013171] [PMID: 12151468]
[199]
Bardgett ME, Franks-Henry JM, Colemire KR, et al. Adult rats treated with risperidone during development are hyperactive. Exp Clin Psychopharmacol 2013; 21(3): 259-67.
[http://dx.doi.org/10.1037/a0031972] [PMID: 23750695]
[200]
Chadman KK. Fluoxetine but not risperidone increases sociability in the BTBR mouse model of autism. Pharmacol Biochem Behav 2011; 97(3): 586-94.
[http://dx.doi.org/10.1016/j.pbb.2010.09.012] [PMID: 20863848]
[201]
Crawley JN. Translational animal models of autism and neurodevelopmental disorders. Dialogues Clin Neurosci 2012; 14(3): 293-305.
[http://dx.doi.org/10.31887/DCNS.2012.14.3/jcrawley] [PMID: 23226954]
[202]
Miura I, Takeuchi S, Katsumi A, et al. Effect of switching to risperidone after unsuccessful treatment with aripiprazole on plasma monoamine metabolites level in the treatment of acute schizophrenia. Hum Psychopharmacol 2012; 27(5): 517-20.
[http://dx.doi.org/10.1002/hup.2251] [PMID: 22927115]
[203]
Horska K, Ruda-Kucerova J, Drazanova E, et al. Aripiprazole-induced adverse metabolic alterations in polyI:C neurodevelopmental model of schizophrenia in rats. Neuropharmacology 2017; 123: 148-58.
[http://dx.doi.org/10.1016/j.neuropharm.2017.06.003] [PMID: 28595931]
[204]
Autism Speaks. Medicines for treating autism's core symptoms. Available at: https://www.autismspeaks.org/medicines-treating-autisms-core-symptoms
[205]
Finley JW, Gao S. A perspective on Crocus sativus L.(Saffron) constituent crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem 2017; 65(5): 1005-20.
[http://dx.doi.org/10.1021/acs.jafc.6b04398] [PMID: 28098452]
[206]
Kanbayashi T, Sugiyama T, Aizawa R, et al. Effects of donepezil (Aricept) on the rapid eye movement sleep of normal subjects. Psychiatry Clin Neurosci 2002; 56(3): 307-8.
[http://dx.doi.org/10.1046/j.1440-1819.2002.01008.x] [PMID: 12047608]
[207]
Mizuno S, Kameda A, Inagaki T, Horiguchi J. Effects of donepezil on Alzheimer’s disease: the relationship between cognitive function and rapid eye movement sleep. Psychiatry Clin Neurosci 2004; 58(6): 660-5.
[http://dx.doi.org/10.1111/j.1440-1819.2004.01317.x] [PMID: 15601392]
[208]
Moraes WdosS, Poyares DR, Guilleminault C, Ramos LR, Bertolucci PH, Tufik S. The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep 2006; 29(2): 199-205.
[http://dx.doi.org/10.1093/sleep/29.2.199] [PMID: 16494088]
[209]
Schredl M, Weber B, Leins ML, Heuser I. Donepezil-induced REM sleep augmentation enhances memory performance in elderly, healthy persons. Exp Gerontol 2001; 36(2): 353-61.
[http://dx.doi.org/10.1016/S0531-5565(00)00206-0] [PMID: 11226748]
[210]
Amidfar M, Réus GZ, Quevedo J, Kim YK. The role of memantine in the treatment of major depressive disorder: Clinical efficacy and mechanisms of action. Eur J Pharmacol 2018; 827: 103-11.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.023] [PMID: 29551658]
[211]
Gerster H. The potential role of lycopene for human health. J Am Coll Nutr 1997; 16(2): 109-26.
[http://dx.doi.org/10.1080/07315724.1997.10718661] [PMID: 9100211]
[212]
Rao AV, Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 2000; 19(5): 563-9.
[http://dx.doi.org/10.1080/07315724.2000.10718953] [PMID: 11022869]
[213]
Foote CS, Denny RW. Chemistry of singlet oxygen. VII. Quenching by beta.-carotene. J Am Chem Soc 1968; 90(22): 6233-5.
[http://dx.doi.org/10.1021/ja01024a061]
[214]
Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996; 384(3): 240-2.
[http://dx.doi.org/10.1016/0014-5793(96)00323-7] [PMID: 8617362]
[215]
Basselin M, Nguyen HN, Chang L, Bell JM, Rapoport SI. Acute but not chronic donepezil increases muscarinic receptor-mediated signaling via arachidonic acid in unanesthetized rats. J Alzheimers Dis 2009; 17(2): 369-82.
[http://dx.doi.org/10.3233/JAD-2009-1058] [PMID: 19363262]
[216]
Burt T, Sachs GS, Demopulos C. Donepezil in treatment-resistant bipolar disorder. Biol Psychiatry 1999; 45(8): 959-64.
[http://dx.doi.org/10.1016/S0006-3223(98)00320-5] [PMID: 10386177]
[217]
Buckley AW, Sassower K, Rodriguez AJ, et al. An open label trial of donepezil for enhancement of rapid eye movement sleep in young children with autism spectrum disorders. J Child Adolesc Psychopharmacol 2011; 21(4): 353-7.
[http://dx.doi.org/10.1089/cap.2010.0121] [PMID: 21851192]
[218]
Handen BL, Johnson CR, McAuliffe-Bellin S, Murray PJ, Hardan AY. Safety and efficacy of donepezil in children and adolescents with autism: neuropsychological measures. J Child Adolesc Psychopharmacol 2011; 21(1): 43-50.
[http://dx.doi.org/10.1089/cap.2010.0024] [PMID: 21309696]
[219]
Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer’s disease - results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10(3): 237-44.
[http://dx.doi.org/10.1159/000017126] [PMID: 10325453]
[220]
Kim JW, Seung H, Kwon KJ, et al. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism. PLoS One 2014; 9(8): e104927.
[http://dx.doi.org/10.1371/journal.pone.0104927] [PMID: 25133713]
[221]
Yoo JH, Valdovinos MG, Williams DC. Relevance of donepezil in enhancing learning and memory in special populations: a review of the literature. J Autism Dev Disord 2007; 37(10): 1883-901.
[http://dx.doi.org/10.1007/s10803-006-0322-8] [PMID: 17221321]
[222]
Nirogi R, Daripelli S, Benade V, Tirumalasetty C, Bhyrapuneni G, Jayarajan P. Simultaneous monitoring of electroencephalographic characteristics in animals subjected to behavioral tests: a preclinical investigation. Behav Pharmacol 2017; 28(8): 661-9.
[http://dx.doi.org/10.1097/FBP.0000000000000364] [PMID: 29099402]
[223]
Procyshyn RM, Bezchlibnyk-Butler KZ, Jeffries JJ, Eds. Clinical handbook of psychotropic drugs. Canada: Hogrefe Publishing 2017.
[http://dx.doi.org/10.1027/00496-000]
[224]
Armenteros JL, Lewis JE. Citalopram treatment for impulsive aggression in children and adolescents: an open pilot study. J Am Acad Child Adolesc Psychiatry 2002; 41(5): 522-9.
[http://dx.doi.org/10.1097/00004583-200205000-00009] [PMID: 12014784]
[225]
McPheeters ML, Warren Z, Sathe N, et al. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics 2011; 127(5): e1312-21.
[http://dx.doi.org/10.1542/peds.2011-0427] [PMID: 21464191]
[226]
Verhoeven WM, Veendrik-Meekes MJ, Jacobs GA, van den Berg YW, Tuinier S. Citalopram in mentally retarded patients with depression: a long-term clinical investigation. Eur Psychiatry 2001; 16(2): 104-8.
[http://dx.doi.org/10.1016/S0924-9338(01)00547-8] [PMID: 11311174]
[227]
Benvenuto A, Battan B, Porfirio MC, Curatolo P. Pharmacotherapy of autism spectrum disorders. Brain Dev 2013; 35(2): 119-27.
[http://dx.doi.org/10.1016/j.braindev.2012.03.015] [PMID: 22541665]
[228]
Rodriguez-Porcel F, Green D, Khatri N, et al. Neonatal exposure of rats to antidepressants affects behavioral reactions to novelty and social interactions in a manner analogous to autistic spectrum disorders. Anat Rec (Hoboken) 2011; 294(10): 1726-35.
[http://dx.doi.org/10.1002/ar.21402] [PMID: 21905242]
[229]
Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram--a review of pharmacological and clinical effects. J Psychiatry Neurosci 2000; 25(3): 241-54.
[PMID: 10863884]
[230]
Nutt DJ. Overview of diagnosis and drug treatments of anxiety disorders. CNS Spectr 2005; 10(1): 49-56.
[http://dx.doi.org/10.1017/S1092852900009901] [PMID: 15618947]
[231]
Montgomery SA, Loft H, Sánchez C, Reines EH, Papp M. Escitalopram (S-enantiomer of citalopram): clinical efficacy and onset of action predicted from a rat model. Pharmacol Toxicol 2001; 88(5): 282-6.
[http://dx.doi.org/10.1034/j.1600-0773.2001.d01-118.x] [PMID: 11393591]
[232]
Njung’e K, Handley SL. Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. Br J Pharmacol 1991; 104(1): 105-12.
[http://dx.doi.org/10.1111/j.1476-5381.1991.tb12392.x] [PMID: 1686200]
[233]
Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging 2009; 4: 367-77.
[PMID: 19851512]
[234]
Zdanys K, Tampi RR. A systematic review of off-label uses of memantine for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(6): 1362-74.
[http://dx.doi.org/10.1016/j.pnpbp.2008.01.008] [PMID: 18262702]
[235]
Findling RL, McNamara NK, Stansbrey RJ, et al. A pilot evaluation of the safety, tolerability, pharmacokinetics, and effectiveness of memantine in pediatric patients with attention-deficit/hyperactivity disorder combined type. J Child Adolesc Psychopharmacol 2007; 17(1): 19-33.
[http://dx.doi.org/10.1089/cap.2006.0044] [PMID: 17343551]
[236]
Erickson CA, Early M, Stigler KA, Wink LK, Mullett JE, McDougle CJ. An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. J Child Adolesc Psychopharmacol 2011; 21(6): 565-9.
[http://dx.doi.org/10.1089/cap.2011.0034] [PMID: 22136091]
[237]
Safety and efficacy of memantine in children with autism: Randomized, placebo-controlled study and open-label extension. J Child Adolescent Psychopharmacol 2017; 27(5): 403-12. b. Minkeviciene R, Banerjee P, Tanila H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2004; 311(2): 677-82.
[PMID: 15192085]
[238]
Minkeviciene R, Banerjee P, Tanila H. Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 2004; 311(2): 677-82.
[http://dx.doi.org/10.1124/jpet.104.071027] [PMID: 15192085]
[239]
Réus GZ, Stringari RB, Kirsch TR, et al. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: Further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 2010; 81(6): 585-9.
[http://dx.doi.org/10.1016/j.brainresbull.2009.11.013] [PMID: 19954760]
[240]
Zoladz PR, Campbell AM, Park CR, Schaefer D, Danysz W, Diamond DM. Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol Biochem Behav 2006; 85(2): 298-306.
[http://dx.doi.org/10.1016/j.pbb.2006.08.011] [PMID: 17045636]
[241]
Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology 1999; 38(6): 735-67.
[http://dx.doi.org/10.1016/S0028-3908(99)00019-2] [PMID: 10465680]
[242]
Devaraj S, Mathur S, Basu A, et al. A dose-response study on the effects of purified lycopene supplementation on biomarkers of oxidative stress. J Am Coll Nutr 2008; 27(2): 267-73.
[http://dx.doi.org/10.1080/07315724.2008.10719699] [PMID: 18689558]
[243]
Rao LG, Guns E, Rao AV. Lycopene: its role in human health and disease. Agro Food 2003; 7: 25-30.
[244]
Petyaev IM. Lycopene deficiency in ageing and cardiovascular disease. Oxid Med Cell Longev 2016; 2016: 3218605.
[http://dx.doi.org/10.1155/2016/3218605] [PMID: 26881023]
[245]
Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer’s disease. J Nutr Biochem 2015; 26(7): 736-44.
[http://dx.doi.org/10.1016/j.jnutbio.2015.01.012] [PMID: 25869595]
[246]
Prakash A, Kumar A. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer׳s disease. Eur J Pharmacol 2014; 741: 104-11.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.036] [PMID: 25066110]
[247]
Gvozdjáková A, Kucharská J, Ostatníková D, Babinská K, Nakládal D, Crane FL. Ubiquinol improves symptoms in children with autism. Oxid Med Cell Longev 2014; 2014: 798957.
[http://dx.doi.org/10.1155/2014/798957] [PMID: 24707344]
[248]
Kumar P, Kumar A. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: a novel nitric oxide mechanism. Food Chem Toxicol 2009; 47(10): 2522-30.
[http://dx.doi.org/10.1016/j.fct.2009.07.011] [PMID: 19616597]
[249]
Bala R, Khanna D, Mehan S, Kalra S. Experimental evidence for the potential of lycopene in the management of scopolamine induced amnesia. RSC Advances 2015; 5(89): 72881-92.
[http://dx.doi.org/10.1039/C5RA13160J]
[250]
Göncü T, Oğuz E, Sezen H, et al. Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats. Arq Bras Oftalmol 2016; 79(6): 357-62.
[PMID: 28076559]
[251]
Prakash A, Kumar A. Lycopene protects against memory impairment and mito-oxidative damage induced by colchicine in rats: an evidence of nitric oxide signaling. Eur J Pharmacol 2013; 721(1-3): 373-81.
[http://dx.doi.org/10.1016/j.ejphar.2013.08.016] [PMID: 24075937]
[252]
Kolevzon A, Mathewson KA, Hollander E. Selective serotonin reuptake inhibitors in autism: a review of efficacy and tolerability. J Clin Psychiatry 2006; 67(3): 407-14.
[http://dx.doi.org/10.4088/JCP.v67n0311] [PMID: 16649827]
[253]
Ilg AK, Enkel T, Bartsch D, Bähner F. Behavioral effects of acute systemic low-dose clozapine in wild-type rats: implications for the use of DREADDs in behavioral neuroscience. Front Behav Neurosci 2018; 12: 173.
[http://dx.doi.org/10.3389/fnbeh.2018.00173] [PMID: 30154702]
[254]
Calapai G, Mannucci C, Chinou I, et al. Preclinical and clinical evidence supporting use of cannabidiol in psychiatry. Evid Based Complement Alternat Med 2019; 2019: 2509129.
[http://dx.doi.org/10.1155/2019/2509129] [PMID: 31558911]
[255]
Indah Winarni T, Chonchaiya W, Adams E, et al. Sertraline may improve language developmental trajectory in young children with fragile x syndrome: a retrospective chart review. Autism Res Treat 2012; 2012: 104317.
[http://dx.doi.org/10.1155/2012/104317] [PMID: 22934167]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 2
Year: 2021
Published on: 20 August, 2020
Page: [98 - 114]
Pages: 17
DOI: 10.2174/1389203721999200820165117
Price: $65

Article Metrics

PDF: 483
HTML: 1