Risk Assessment of Veterinary Drug Residues in Meat Products

Author(s): Hui Zhang, Qin Chen*, Bing Niu*

Journal Name: Current Drug Metabolism

Volume 21 , Issue 10 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.

Keywords: Veterinary drug residues, risk assessment, human health, qualitative assessment, quantitative assessment, food safety.

[1]
Hygreeva, D.; Pandey, M.C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-a review. Trends Food Sci. Technol., 2016, 54, 175-185.
[http://dx.doi.org/10.1016/j.tifs.2016.06.002]
[2]
Aendo, P.; Thongyuan, S.; Songserm, T.; Tulayakul, P. Carcinogenic and non-carcinogenic risk assessment of heavy metals contamination in duck eggs and meat as a warning scenario in Thailand. Sci. Total Environ., 2019, 689, 215-222.
[http://dx.doi.org/10.1016/j.scitotenv.2019.06.414] [PMID: 31271987]
[3]
Giri, S.; Singh, A.K. Heavy metals in eggs and chicken and the associated human health risk assessment in the mining areas of Singhbhum copper belt, India. Arch. Environ. Occup. Health, 2019, 74(4), 161-170.
[http://dx.doi.org/10.1080/19338244.2017.1407284] [PMID: 29236582]
[4]
Raicu, F.; Vlagioiu, C.; Tudor, N. A review on the results obtained from the analisis of animal food products frm meat in some European countries using GFAAS and FAAS techniques. Sci. Papers-Series D-Animal Science, 2018, 61(1), 307-311.
[5]
Lee, K.T. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci., 2010, 86(1), 138-150.
[http://dx.doi.org/10.1016/j.meatsci.2010.04.035] [PMID: 20510533]
[6]
Wang, J.; Yue, H.L.; Zhou, Z.N. An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 2017, 79, 363-370.
[http://dx.doi.org/10.1016/j.foodcont.2017.04.013]
[7]
Orubu, E.S.F.; Zaman, M.H.; Rahman, M.T.; Wirtz, V.J. Veterinary antimicrobial resistance containment in Bangladesh: evaluating the national action plan and scoping the evidence on implementation. J. Glob. Antimicrob. Resist., 2020, 21, 105-115.
[http://dx.doi.org/10.1016/j.jgar.2019.09.020] [PMID: 31600599]
[8]
Chen, H.; Liu, S.; Xu, X.R.; Diao, Z.H.; Sun, K.F.; Hao, Q.W.; Liu, S.S.; Ying, G.G. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. J. Hazard. Mater., 2018, 343, 140-148.
[http://dx.doi.org/10.1016/j.jhazmat.2017.09.017] [PMID: 28946134]
[9]
Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol., 2019, 125, 462-466.
[http://dx.doi.org/10.1016/j.fct.2019.01.033] [PMID: 30710599]
[10]
Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 2006, 65(5), 725-759.
[http://dx.doi.org/10.1016/j.chemosphere.2006.03.026] [PMID: 16677683]
[11]
Wu, D.; Du, D.; Lin, Y. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. Trends Analyt. Chem., 2016, 83, 95-101.
[http://dx.doi.org/10.1016/j.trac.2016.08.006]
[12]
Waltner-Toews, D.; McEwen, S.A. Residues of antibacterial and antiparasitic drugs in foods of animal origin: a risk assessment. Prev. Vet. Med., 1994, 20(3), 219-234.
[http://dx.doi.org/10.1016/0167-5877(94)90084-1]
[13]
Chen, J.; Ying, G.G.; Deng, W.J. Antibiotic residues in food: extraction, analysis, and human health concerns. J. Agric. Food Chem., 2019, 67(27), 7569-7586.
[http://dx.doi.org/10.1021/acs.jafc.9b01334] [PMID: 31198037]
[14]
MacLachlan, D.J.; Mueller, U. A refined approach to estimate exposure for use in calculating the Maximum Residue Limit of veterinary drugs. Regul. Toxicol. Pharmacol., 2012, 62(1), 99-106.
[15]
Chen, D. Development of a networked mass spectral database for veterinary drug residues. Int. J. Mass Spectrom., 2019, 439, 1-12.
[http://dx.doi.org/10.1016/j.ijms.2018.11.014]
[16]
Moudgil, P. Analysis of antibiotic residues in raw and commercial milk in Punjab, India vis-a-vis human health risk assessment. J. Food Saf., 2019, 39(4), 8.
[http://dx.doi.org/10.1111/jfs.12643]
[17]
Deng, X.J. Multiclass residues screening of 105 veterinary drugs in meat, milk, and egg using ultra high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry. J. Liq. Chromatogr. Relat. Technol., 2011, 34(19), 2286-2303.
[http://dx.doi.org/10.1080/10826076.2011.587224]
[18]
Wang, H.; Yang, J.; Yu, X.; Zhao, G.; Zhao, Q.; Wang, N.; Jiang, Y.; Jiang, F.; He, G.; Chen, Y.; Zhou, Z.; Jiang, Q. Exposure of adults to antibiotics in a Shanghai suburban area and health risk assessment: a biomonitoring-based study. Environ. Sci. Technol., 2018, 52(23), 13942-13950.
[http://dx.doi.org/10.1021/acs.est.8b03979] [PMID: 30388002]
[19]
Likotrafiti, E. Risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. EFSA J., 2018, 16, 8.
[20]
Anderson, S.A.; Woo, R.W.Y.; Crawford, L.M. Risk assessment of the impact on human health of resistant Campylobacter jejuni from fluoroquinolone use in beef cattle. Food Control, 2001, 12(1), 13-25.
[http://dx.doi.org/10.1016/S0956-7135(00)00014-1]
[21]
Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere, 2016, 144, 2290-2301.
[http://dx.doi.org/10.1016/j.chemosphere.2015.10.137] [PMID: 26606183]
[22]
Gu, D.; Feng, Q.; Guo, C.; Hou, S.; Lv, J.; Zhang, Y.; Yuan, S.; Zhao, X. Occurrence and risk assessment of antibiotics in manure, soil, wastewater, groundwater from livestock and poultry farms in Xuzhou, China. Bull. Environ. Contam. Toxicol., 2019, 103(4), 590-596.
[http://dx.doi.org/10.1007/s00128-019-02692-0] [PMID: 31486910]
[23]
De Liguoro, M.; Di Leva, V.; Gallina, G.; Faccio, E.; Pinto, G.; Pollio, A. Evaluation of the aquatic toxicity of two veterinary sulfonamides using five test organisms. Chemosphere, 2010, 81(6), 788-793.
[http://dx.doi.org/10.1016/j.chemosphere.2010.07.003] [PMID: 20673955]
[24]
Wang, N.; Guo, X.; Xu, J.; Kong, X.; Gao, S.; Shan, Z. Pollution characteristics and environmental risk assessment of typical veterinary antibiotics in livestock farms in Southeastern China. J. Environ. Sci. Health B, 2014, 49(7), 468-479.
[http://dx.doi.org/10.1080/03601234.2014.896660] [PMID: 24813981]
[25]
Horvat, A.J.M. Analysis, occurrence and fate of anthelmintics and their transformation products in the environment. Trends Analyt. Chem., 2012, 31, 61-84.
[http://dx.doi.org/10.1016/j.trac.2011.06.023]
[26]
Kim, H-Y.; Lee, I-S.; Oh, J-E. Human and veterinary pharmaceuticals in the marine environment including fish farms in Korea. Sci. Total Environ., 2017, 579, 940-949.
[http://dx.doi.org/10.1016/j.scitotenv.2016.10.039] [PMID: 27894804]
[27]
Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res., 2019, 169, 483-493.
[http://dx.doi.org/10.1016/j.envres.2018.11.040] [PMID: 30530088]
[28]
Zhou, D.; Li, Y.; Huang, L.; Qian, M.; Li, D.; Sun, G.; Yang, B. A reliable and cost-efficient TLC-HPLC method for determining total florfenicol residues in porcine edible tissues. Food Chem., 2020.303125399
[http://dx.doi.org/10.1016/j.foodchem.2019.125399] [PMID: 31470274]
[29]
Hou, X.; Xu, X.; Xu, X.; Han, M.; Qiu, S. Application of a multiclass screening method for veterinary drugs and pesticides using HPLC-QTOF-MS in egg samples. Food Chem., 2020.309125746
[http://dx.doi.org/10.1016/j.foodchem.2019.125746] [PMID: 31718837]
[30]
Andrée, S.; Jira, W.; Schwind, K.H.; Wagner, H.; Schwägele, F. Chemical safety of meat and meat products. Meat Sci., 2010, 86(1), 38-48.
[http://dx.doi.org/10.1016/j.meatsci.2010.04.020] [PMID: 20510527]
[31]
Liu, S. Risk assessment in Chinese food safety. Food Control, 2013, 30(1), 162-167.
[http://dx.doi.org/10.1016/j.foodcont.2012.06.038]
[32]
Caffrey, N. Risk assessments evaluating foodborne antimicrobial resistance in humans: a scoping review. Microb. Risk Anal., 2019, 11, 31-46.
[http://dx.doi.org/10.1016/j.mran.2018.08.002]
[33]
Coleman, M.E.; Marks, H.M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4), 289-297.
[http://dx.doi.org/10.1016/S0956-7135(99)00052-3]
[34]
NHC Provisions on the management of food safety risk assessment; National Health Commission of the People's Pepublic of China, 2010.
[35]
Dor, F. The health risk assessment approach, a tool for managing risks on the scale of a territory: a French experience. Hum. Ecol. Risk Assess., 2013, 19(6), 1456.
[36]
Lindqvist, R. A common approach for ranking of microbiological and chemical hazards in foods based on risk assessment - useful but is it possible? Crit. Rev. Food Sci. Nutr., 2019.
[http://dx.doi.org/10.1080/10408398.2019.1693957]]
[37]
Aiassa, E. Applicability and feasibility of systematic review for performing evidence-based risk assessment in food and feed safety. Crit. Rev. Food Sci. Nutr., 2015, 55(5), 1034.
[http://dx.doi.org/10.1080/10408398.2013.769933]
[38]
Eskola, M. Towards a dietary-exposome assessment of chemicals in food: An update on the chronic health risks for the European consumer. Crit. Rev. Food Sci. Nutr., 2020, 60(11), 1890-1911.
[39]
Soon, J.M.; Baines, R.N. Farm food safety and diseases risk assessments: case studies from the horticultural and salmonid farms. J. Risk Res., 2012, 15(4), 403.
[http://dx.doi.org/10.1080/13669877.2011.634518]
[40]
Nougadère, A. How dietary risk assessment can guide risk management and food monitoring programmes: the approach and results of the French Observatory on Pesticide Residues (ANSES/ORP). Food Control, 2014, 41, 32-48.
[http://dx.doi.org/10.1016/j.foodcont.2013.12.025]
[41]
Chanda, R.R.; Fincham, R.J.; Venter, P. Review of the Regulation of Veterinary Drugs and Residues in South Africa. Crit. Rev. Food Sci. Nutr., 2014, 54(4), 494.
[http://dx.doi.org/10.1080/10408398.2011.588348]
[42]
Rich, K.M.; Dizyee, K.; Huyen Nguyen, T.T.; Ha Duong, N.; Hung Pham, V.; Nga Nguyen, T.D.; Unger, F.; Lapar, M.L. Quantitative value chain approaches for animal health and food safety. Food Microbiol., 2018, 75, 103-113.
[http://dx.doi.org/10.1016/j.fm.2017.09.018] [PMID: 30056954]
[43]
Woodward, K.N. Assessment of user safety, exposure and risk to veterinary medicinal products in the European Union. Regul. Toxicol. Pharmacol., 2008, 50(1), 114-128.
[http://dx.doi.org/10.1016/j.yrtph.2007.10.007] [PMID: 18060673]
[44]
Benford, D.J. Risk assessment of chemical contaminants and residues in food. In: Chemical contaminants and residues in food, 2nd ed; Schrenk, D.; Cartus, A., Eds.; Woodhead Publishing: Cambridge,, 2017, pp. 3-13.
[http://dx.doi.org/10.1016/B978-0-08-100674-0.00001-1]
[45]
Gorris, L.G.M.; Yoe, C. Risk analysis: risk assessment: principles, methods, and applications. In:Encyclopedia of food safety; Motarjemi, Y., Ed.; Academic Press: Waltham, 2014, pp. 65-72.
[http://dx.doi.org/10.1016/B978-0-12-378612-8.00031-7]
[46]
Banach, J.L. European alerting and monitoring data as inputs for the risk assessment of microbiological and chemical hazards in spices and herbs. Food Control, 2016, 69, 249.
[http://dx.doi.org/10.1016/j.foodcont.2016.04.010]
[47]
Dayan, A.D. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop., 2003, 86(2-3), 141-159.
[http://dx.doi.org/10.1016/S0001-706X(03)00031-7] [PMID: 12745134]
[48]
Risk assessment of mixtures of pesticides and similar substances. Committee on toxicity of chemicals in food, consumer products and the environment, 2002; Available at: https://cot.food.gov.uk/sites/default/files/cot/reportindexed.pdf
[49]
Munro, I.C. Renwick, A.G.; Danielewska-Nikiel, B. The Threshold of Toxicological Concern (TTC) in risk assessment. Toxicol. Lett., 2008, 180(2), 151-6.
[50]
Mortensen, A. Levels and risk assessment of chemical contaminants in byproducts for animal feed in Denmark. J. Environ. Sci. Health B, 2014, 49(11), 797-810.
[http://dx.doi.org/10.1080/03601234.2014.938546]
[51]
Zeng, D.; Lin, Z.; Zeng, Z.; Fang, B.; Li, M.; Cheng, Y.H.; Sun, Y. Assessing global human exposure to T-2 toxin via poultry meat consumption using a lifetime physiologically based pharmacokinetic model. J. Agric. Food Chem., 2019, 67(5), 1563-1571.
[http://dx.doi.org/10.1021/acs.jafc.8b07133] [PMID: 30633497]
[52]
Lautz, L.S.; Oldenkamp, R.; Dorne, J.L.; Ragas, A.M.J. Physiologically based kinetic models for farm animals: critical review of published models and future perspectives for their use in chemical risk assessment. Toxicol. In Vitro, 2019, 60, 61-70.
[http://dx.doi.org/10.1016/j.tiv.2019.05.002] [PMID: 31075317]
[53]
Blaauboer, B.J.; Boobis, A.R.; Bradford, B.; Cockburn, A.; Constable, A.; Daneshian, M.; Edwards, G.; Garthoff, J.A.; Jeffery, B.; Krul, C.; Schuermans, J. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem. Toxicol., 2016, 91, 19-35.
[http://dx.doi.org/10.1016/j.fct.2016.02.019] [PMID: 26939913]
[54]
Li, M.; Cheng, Y.H.; Chittenden, J.T.; Baynes, R.E.; Tell, L.A.; Davis, J.L.; Vickroy, T.W.; Riviere, J.E.; Lin, Z. Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug withdrawal interval determination with a mechanistic population-based interactive physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin meglumine administration. Arch. Toxicol., 2019, 93(7), 1865-1880.
[http://dx.doi.org/10.1007/s00204-019-02464-z] [PMID: 31025081]
[55]
Lin, Z.; Gehring, R.; Mochel, J.P.; Lavé, T.; Riviere, J.E. Mathematical modeling and simulation in animal health - Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J. Vet. Pharmacol. Ther., 2016, 39(5), 421-438.
[http://dx.doi.org/10.1111/jvp.12311] [PMID: 27086878]
[56]
Yang, B.; Huang, L.L.; Fang, K.; Wang, Y.L.; Peng, D.P.; Liu, Z.L.; Yuang, Z.H. A physiologically based pharmacokinetic model for the prediction of the depletion of methyl-3-quinoxaline-2-carboxylic acid, the marker residue of olaquindox, in the edible tissues of pigs. J. Vet. Pharmacol. Ther., 2014, 37(1), 66-82.
[http://dx.doi.org/10.1111/jvp.12053] [PMID: 23631588]
[57]
Bian, Q.; Ping, Y.; Jun, W.; Lyu, Z.; Song, Y.; Zhang, L.; Liu, Z. A new method to evaluate toxicological data reliability in risk assessments. Toxicol. Lett., 2019, 311, 125-132.
[http://dx.doi.org/10.1016/j.toxlet.2019.05.002] [PMID: 31063830]
[58]
Jackson, L.A.; Jansen, M. Risk assessment in the international food safety policy arena. Can the multilateral institutions encourage unbiased outcomes? Food Policy, 2010, 35(6), 538-547.
[http://dx.doi.org/10.1016/j.foodpol.2010.07.004]
[59]
Arcella, D.; Boobis, A.; Cressey, P.; Erdely, H.; Fattori, V.; Leblanc, J.C.; Lipp, M.; Reuss, R.; Scheid, S.; Tritscher, A.; Van der Velde-Koerts, T.; Verger, P. Harmonized methodology to assess chronic dietary exposure to residues from compounds used as pesticide and veterinary drug. Crit. Rev. Toxicol., 2019, 49(1), 1-10.
[http://dx.doi.org/10.1080/10408444.2019.1578729] [PMID: 30919727]
[60]
Boobis, A. Characterizing chronic and acute health risks of residues of veterinary drugs in food: latest methodological developments by the joint FAO/WHO expert committee on food additives. Crit. Rev. Toxicol., 2017, 47(10), 885-899.
[61]
Bilandzic, N. Concentrations of veterinary drug residues in milk from individual farms in Croatia. Mljekarstvo, 2011, 61(3), 260-267.
[62]
Davis, J.A.; Gift, J.S.; Zhao, Q.J. Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1. Toxicol. Appl. Pharmacol., 2011, 254(2), 181-191.
[http://dx.doi.org/10.1016/j.taap.2010.10.016] [PMID: 21034758]
[63]
Pouzou, J.G.; Kissel, J.; Yost, M.G.; Fenske, R.A.; Cullen, A.C. Use of benchmark dose models in risk assessment for occupational handlers of eight pesticides used in pome fruit production. Regul. Toxicol. Pharmacol., 2020.110104504
[http://dx.doi.org/10.1016/j.yrtph.2019.104504] [PMID: 31655092]
[64]
Edler, L. Benchmark Dose in Regulatory Toxicology. In:Regulatory Toxicology; Reichl, F.X.; Schwenk, M., Eds.; Springer: Berlin, 2014, pp. 359-375.
[http://dx.doi.org/10.1007/978-3-642-35374-1_93]
[65]
Hardy, A. Update: use of the benchmark dose approach in risk assessment. EFSA J., 2017, 15,e04658.
[66]
Muri, S.D.; Schlatter, J.R.; Brüschweiler, B.J. The benchmark dose approach in food risk assessment: is it applicable and worthwhile? Food Chem. Toxicol., 2009, 47(12), 2906-2925.
[http://dx.doi.org/10.1016/j.fct.2009.08.002] [PMID: 19682530]
[67]
Dorne, J.L.C.M. Combining analytical techniques, exposure assessment and biological effects for risk assessment of chemicals in food. Trends Analyt. Chem., 2009, 28(6), 695-707.
[http://dx.doi.org/10.1016/j.trac.2009.03.008]
[68]
Garcia-Aloy, M. Novel strategies for improving dietary exposure assessment: multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends Food Sci. Technol., 2017, 69, 220-229.
[http://dx.doi.org/10.1016/j.tifs.2017.04.013]
[69]
Schrenk, D. Scientific opinion on the risks for animal and human health related to the presence of quinolizidine alkaloids in feed and food, in particular in lupins and lupin-derived products. EFSA J., 2019, 17(11), 113.
[70]
Petersen, A. The impact of dietary habits on contaminant exposures. Food Chem. Toxicol., 2020, 135,110885.
[http://dx.doi.org/10.1016/j.fct.2019.110885]
[71]
Rico, A.; Van den Brink, P.J. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Sci. Total Environ., 2014, 468-469, 630-641.
[http://dx.doi.org/10.1016/j.scitotenv.2013.08.063] [PMID: 24061054]
[72]
Sanquer, A.; Wackowiez, G.; Havrileck, B. Qualitative assessment of human exposure to consumption of injection site residues. J. Vet. Pharmacol. Ther., 2006, 29(5), 345-353.
[http://dx.doi.org/10.1111/j.1365-2885.2006.00753.x] [PMID: 16958778]
[73]
Kirchsteiger, C. On the use of probabilistic and deterministic methods in risk analysis. J. Loss Prev. Process Ind., 1999, 12(5), 399-419.
[http://dx.doi.org/10.1016/S0950-4230(99)00012-1]
[74]
Cartus, A.; Schrenk, D. Current methods in risk assessment of genotoxic chemicals. Food Chem. Toxicol., 2017, 106(Pt B), 574-582.
[http://dx.doi.org/10.1016/j.fct.2016.09.012] [PMID: 27621049]
[75]
Burden, N.; Mahony, C.; Müller, B.P.; Terry, C.; Westmoreland, C.; Kimber, I. Aligning the 3Rs with new paradigms in the safety assessment of chemicals. Toxicology, 2015, 330, 62-66.
[http://dx.doi.org/10.1016/j.tox.2015.01.014] [PMID: 25932488]
[76]
Gratz, S.W. Multimycotoxin exposure assessment in UK children using urinary biomarkers-a pilot survey. J. Agric. Food Chem., 2019, 68(1), 351-357.
[PMID: 31826612]
[77]
Manning, L.; Soon, J.M. Mechanisms for assessing food safety risk. Br. Food J., 2013, 115(3), 484.
[78]
Hauser, R.; Breidenbach, E.; Stärk, K.D.C. Swiss Federal Veterinary Office Risk Assessments: Advantages and Limitations of The Qualitative Method. In:Advances in Statistical Methods for the Health Sciences; Springer: NY, 2007, p. 526.
[79]
Chen, J.; Wang, Y.; Li, F.; Liu, Z. Aquatic ecosystem health assessment of a typical sub-basin of the Liao River based on entropy weights and a fuzzy comprehensive evaluation method. Sci. Rep., 2019, 9(1), 14045.
[http://dx.doi.org/10.1038/s41598-019-50499-0] [PMID: 31575900]
[80]
Chen, Y. Method for evaluating composite material or polymer material of light weapon component environmental suitability, involves utilizing gray environment correlation analysis method, followed by utilizing fuzzy comprehensive evaluation method No. 59 Res Inst China Ordnance Ind (Chni-C)
[81]
Mou, W.P.; Gao, X. A reliable process planning approach based on fuzzy comprehensive evaluation method incorporating historical machining data. Proceedings of the Institution Of Mechanical Engineers, Part B. J. Engin. Manufac , 2020; 234, pp. (5)900-910.
[http://dx.doi.org/10.1177/0954405419889500]
[82]
Liu, D.; Wang, Q.; Zhang, Y.; Liu, X.; Lu, J.; Sun, J. A study on quality assessment of the surface EEG signal based on fuzzy comprehensive evaluation method. Comput. Assist. Surg. (Abingdon), 2019, 24(Supp 1), 167-173.
[http://dx.doi.org/10.1080/24699322.2018.1557888] [PMID: 30620225]
[83]
Sun, G. Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Expert Syst. Appl., 2018, 92, 521-532.
[http://dx.doi.org/10.1016/j.eswa.2017.09.048]
[84]
Han, Y. Food quality and safety risk assessment using a novel HMM method based on GRA. Food Control, 2019, 105, 180-189.
[http://dx.doi.org/10.1016/j.foodcont.2019.05.039]
[85]
Lin, Y.; Chen, M.Y.; Liu, S. Theory of grey systems: capturing uncertainties of grey information. Kybernetes, 2004, 33(2), 218.
[86]
Sarraf, F.; Nejad, S.H. Improving performance evaluation based on balanced scorecard with grey relational analysis and data envelopment analysis approaches: Case study in water and wastewater companies. Sci. Total Environ., 2020, 79,101762.
[87]
Si, Q.; Ma, Z.X. DEA cross-efficiency ranking method based on grey correlation degree and relative entropy. Entropy (Basel), 2019, 21(10), 14.
[http://dx.doi.org/10.3390/e21100966]
[88]
Xue, J. Multi-attribute decision-making method for prioritizing maritime traffic safety influencing factors of autonomous ships’ maneuvering decisions using grey and fuzzy theories. Saf. Sci., 2019, 120, 340.
[89]
Liu, H.C. Failure mode and effect analysis with extended grey relational analysis method in cloud setting. Total Qual. Manage. Bus. Excell., 2019, 30(7-8), 745-767.
[http://dx.doi.org/10.1080/14783363.2017.1337506]
[90]
Xu, D.; Zhang, Q. Risk assessment of the integrated sewage pipeline conduction based on the AHP-GRA formula. J. Saf. Environ., 2019, 19(4), 1149-1154.
[91]
Ma, B. Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method. Food Control, 2020, 108106824
[http://dx.doi.org/10.1016/j.foodcont.2019.106824]
[92]
Rodríguez-Estival, J.; Morales-Machuca, C.; Pareja-Carrera, J.; Ortiz-Santaliestra, M.E.; Mateo, R. Food safety risk assessment of metal pollution in crayfish from two historical mining areas: accounting for bioavailability and cooking extractability. Ecotoxicol. Environ. Saf., 2019, 185,109682.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109682] [PMID: 31557570]
[93]
El Agrebi, N.; Tosi, S.; Wilmart, O.; Scippo, M.L.; de Graaf, D.C.; Saegerman, C. Honeybee and consumer’s exposure and risk characterisation to glyphosate-based herbicide (GBH) and its degradation product (AMPA): residues in beebread, wax, and honey. Sci. Total Environ., 2020, 704,135312.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135312] [PMID: 31780165]
[94]
Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; Dyar, O.J.; Tamhankar, A.J.; Stålsby Lundborg, C. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ. Int., 2018, 114, 131-142.
[http://dx.doi.org/10.1016/j.envint.2018.02.003] [PMID: 29501851]
[95]
Chen, D.W.; Li, S.H.; Lyu, B.; Zhao, Y.F.; Li, J.G.; Wu, Y.N. The status and health risk assessment of dietary fipronil contamination among 20 provinces of China. Zhonghua Yu Fang Yi Xue Za Zhi., 2019, 53(12), 1242-1246.
[PMID: 31795580]
[96]
Martínez-Morcillo, S.; Rodríguez-Gil, J.L.; Fernández-Rubio, J.; Rodríguez-Mozaz, S.; Míguez-Santiyán, M.P.; Valdes, M.E.; Barceló, D.; Valcárcel, Y. Presence of pharmaceutical compounds, levels of biochemical biomarkers in seafood tissues and risk assessment for human health: results from a case study in north-western Spain. Int. J. Hyg. Environ. Health, 2020, 223(1), 10-21.
[http://dx.doi.org/10.1016/j.ijheh.2019.10.011] [PMID: 31706926]
[97]
Rico, A.; Geng, Y.; Focks, A.; Van den Brink, P.J. Modeling environmental and human health risks of veterinary medicinal products applied in pond aquaculture. Environ. Toxicol. Chem., 2013, 32(5), 1196-1207.
[http://dx.doi.org/10.1002/etc.2153] [PMID: 23401106]
[98]
Wang, H. Antibiotic residues in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Control, 2017, 80, 217-225.
[http://dx.doi.org/10.1016/j.foodcont.2017.04.034]
[99]
JECFA. decision_tree_mar_2009_final_for_web.pdf 2009.
[100]
van Asselt, E.D. Risk-based monitoring of chemical substances in food: prioritization by decision trees. Food Control, 2018, 93, 112-120.
[http://dx.doi.org/10.1016/j.foodcont.2018.06.001]
[101]
Dweiri, F. Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Syst. Appl., 2016, 62, 273-283.
[http://dx.doi.org/10.1016/j.eswa.2016.06.030]
[102]
Carver, S.J. Integrating multi-criteria evaluation with geographical information systems. Int J Geog. Inf. Syst., 1991, 5(3), 339.
[103]
Kokangül, A.; Polat, U.; Dağsuyu, C. A new approximation for risk assessment using the AHP and Fine Kinney methodologies. Saf. Sci., 2017, 91, 24-32.
[http://dx.doi.org/10.1016/j.ssci.2016.07.015]
[104]
Geng, Z. Early warning modeling and analysis based on analytic hierarchy process integrated extreme learning machine (AHP-ELM): application to food safety. Food Control, 2017, 78, 33-42.
[105]
Ross, T.; Sumner, J. A simple, spreadsheet-based, food safety risk assessment tool. Int. J. Food Microbiol., 2002, 77(1-2), 39-53.
[http://dx.doi.org/10.1016/S0168-1605(02)00061-2] [PMID: 12076037]
[106]
Lehotay, S.J.; Chen, Y. Hits and misses in research trends to monitor contaminants in foods. Anal. Bioanal. Chem., 2018, 410(22), 5331-5351.
[http://dx.doi.org/10.1007/s00216-018-1195-3] [PMID: 29951771]
[107]
Bietlot, H.P.; Kolakowski, B. Risk assessment and risk management at the Canadian Food Inspection Agency (CFIA): a perspective on the monitoring of foods for chemical residues. Drug Test. Anal., 2012, 4(Suppl. 1), 50-58.
[http://dx.doi.org/10.1002/dta.1352] [PMID: 22851361]
[108]
Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol., 2016, 88, 112-122.
[http://dx.doi.org/10.1016/j.fct.2015.12.020] [PMID: 26751035]
[109]
Ding, H.; Li, D. Identification of mitochondrial proteins of malaria parasite using analysis of variance. Amino Acids, 2015, 47(2), 329-333.
[http://dx.doi.org/10.1007/s00726-014-1862-4] [PMID: 25385313]
[110]
Ding, H.; Yang, W.; Tang, H.; Feng, P.M.; Huang, J.; Chen, W.; Lin, H. PHYPred: a tool for identifying bacteriophage enzymes and hydrolases. Virol. Sin., 2016, 31(4), 350-352.
[http://dx.doi.org/10.1007/s12250-016-3740-6] [PMID: 27151186]
[111]
Tan, J.X.; Li, S.H.; Zhang, Z.M.; Chen, C.X.; Chen, W.; Tang, H.; Lin, H. Identification of hormone binding proteins based on machine learning methods. Math. Biosci. Eng., 2019, 16(4), 2466-2480.
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[112]
Yang, W. A brief survey of machine learning methods in protein sub-golgi localization. Curr. Bioinform., 2019, 14(3), 234-240.
[http://dx.doi.org/10.2174/1574893613666181113131415]
[113]
Zhu, X.J. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl. Base. Syst., 2019, 163, 787-793.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[114]
Bayrak, T.; Ogul, H. A new approach for predicting the value of gene expression: two-way collaborative filtering. Curr. Bioinform., 2019, 14(6), 480-490.
[http://dx.doi.org/10.2174/1574893614666190126144139]
[115]
Soyemi, J.; Isewon, I.; Oyelade, J.; Adebiyi, E. Inter-species/host-parasite protein interaction predictions reviewed. Curr. Bioinform., 2018, 13(4), 396-406.
[http://dx.doi.org/10.2174/1574893613666180108155851] [PMID: 31496926]
[116]
Monteagudo, M.C.; González-Díaz, H. New experimental and computational tools for drug discovery: medicinal chemistry, molecular docking, and machine learning - part-VI. Curr. Top. Med. Chem., 2018, 18(27), 2325-2326.
[http://dx.doi.org/10.2174/1568026619666181130122945] [PMID: 30499403]
[117]
Lumini, A.; Nanni, L. Convolutional neural networks for ATC classification. Curr. Pharm. Des., 2018, 24(34), 4007-4012.
[http://dx.doi.org/10.2174/1381612824666181112113438] [PMID: 30417778]
[118]
Fan, S.; Chen, Y.; Luo, C.; Meng, F. Machine learning methods in precision medicine targeting epigenetic diseases. Curr. Pharm. Des., 2018, 24(34), 3998-4006.
[http://dx.doi.org/10.2174/1381612824666181112114228] [PMID: 30421670]
[119]
Ding, P.; Luo, J.; Liang, C.; Xiao, Q.; Cao, B.; Li, G. Discovering synergistic drug combination from a computational perspective. Curr. Top. Med. Chem., 2018, 18(12), 965-974.
[http://dx.doi.org/10.2174/1568026618666180330141804] [PMID: 29600766]
[120]
Castillo-Garit, J.A.; Flores-Balmaseda, N.; Álvarez, O.; Pham-The, H.; Pérez-Doñate, V.; Torrens, F.; Pérez-Giménez, F. Computational identification of chemical compounds with potential activity against Leishmania amazonensis using nonlinear machine learning techniques. Curr. Top. Med. Chem., 2018, 18(27), 2347-2354.
[http://dx.doi.org/10.2174/1568026619666181130121558] [PMID: 30499402]
[121]
Arrasate, S.; Duardo-Sanchez, A. Perturbation theory machine learning models: theory, regulatory issues, and applications to organic synthesis, medicinal chemistry, protein research, and technology. Curr. Top. Med. Chem., 2018, 18(14), 1203-1213.
[http://dx.doi.org/10.2174/1568026618666180810124031] [PMID: 30095052]
[122]
Alladi, S.M. Advances in computational studies of potential drug targets in Mycobacterium tuberculosis. Curr. Top. Med. Chem., 2018, 18(13), 1062-1074.
[http://dx.doi.org/10.2174/1568026618666180806163428] [PMID: 30084331]
[123]
Meurillon, M.; Ratel, J.; Engel, E. How to secure the meat chain against toxicants? Innov. Food Sci. Emerg. Technol., 2018, 46, 74-82.
[http://dx.doi.org/10.1016/j.ifset.2017.10.004]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 10
Year: 2020
Page: [779 - 789]
Pages: 11
DOI: 10.2174/1389200221999200820164650
Price: $65

Article Metrics

PDF: 30
HTML: 1