Effect of the Association and Evaluation of the Induction to Adaptation of the (+)-α-pinene with Commercial Antimicrobials against Strains of Escherichia coli

Author(s): Felipe Lemos Esteves do Amaral, Ticiane Costa Farias, Raquel Carlos de Brito, Thamara Rodrigues de Melo, Paula Benvindo Ferreira, Zilka Nanes Lima, Francisco Fábio Marques da Silva, Sávio Benvindo Ferreira*

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 25 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The increasing and inappropriate use of antibiotics has increased the number of multidrug-resistant microorganisms to these drugs, causing the emergence of infections that are difficult to control and manage by health professionals. As an alternative to combat these pathogens, some monoterpenes have harmful effects on the bacterial cell membrane, showing themselves as an alternative in combating microorganisms. Therefore, the positive enantiomer α -pinene becomes an alternative to fight bacteria, since it was able to inhibit the growth of the species Escherichia coli ATCC 25922, demonstrating the possibility of its use as an isolated antimicrobial or associated with other drugs.

Aims: The aim of this study is to evaluate the sensitivity profile of E. coli ATCC 25922 strain against clinical antimicrobials associated with (+) -α-pinene and how it behaves after successive exposures to subinhibitory concentrations of the phytochemicals.

Methods: The minimum inhibitory concentration (MIC) was determined using the microdilution method. The study of the modulating effect of (+) -α-pinene on the activity of antibiotics for clinical use in strains of E. coli and the analysis of the strain's adaptation to the monoterpene were tested using the adapted disk-diffusion method.

Results: The results demonstrate that the association of monoterpene with the antimicrobials ceftazidime, amoxicillin, cefepime, cefoxitin and amikacin is positive since it leads to the potentiation of the antibiotic effect of these compounds. It was observed that the monoterpene was able to induce crossresistance only for antimicrobials: cefuroxime, ceftazidime, cefepime and chloramphenicol.

Conclusion: It is necessary to obtain more concrete data for the safe use of these combinations, paying attention to the existence of some type of existing toxicity reaction related to the herbal medicine and to understand the resistance mechanisms acquired by the microorganism.

Keywords: Monoterpenes, Alpha-pinene, Antibacterial activity, Modulation, Resistance induction, Antimicrobials.

Loureiro, R.J.; Roque, F.; Rodrigues, A.T.; Herdeiro, M.T.; Ramalheira, E. The use of antibiotics and bacterial resistances: brief notes on their evolution. Rev. Port. Saude Publica, 2016, 34(1), 77-84.
Rocha, M.A.; Prado, R.; Taketani, N.F. Malacidines: A new class of antibiotics and its therapeutic potential. Ensaios USF, 2019, 1(2), 14-22.
Diniz, A.M.M.; Santos, R.M.C. Escherichia coli resistant ciprofloxacin in hospitalized patients in university hospital. Epidemiol. Infect., 2017, 7(1), 20-24.
Martins, F.W.P.; Casali, A.K. Antimicrobial activity of ethanolic extracts of Pomegranate (Punica granatum, L.) on the bacteria Escherichia coli and Staphylococcus aureus. Braz. J. Dev., 2019, 5(11), 22970-22980.
Nóbrega, F.D.M. Investigation of alpha-pinene’s antifungal activity on Rhizopus oryzea strains., Master Thesis, Federal University of Paraiba: João Pessoa . 2014.
Eduardo, L.S.; Farias, T.C.; Ferreira, S.B.; Ferreira, P.B.; Lima, Z.N.; Ferreira, S.B. Antibacterial activity and timekill kinetics of positive enantiomer of α-pinene against strains of staphylococcus aureus and escherichia coli. Curr. Top. Med. Chem., 2018, 18(11), 917-924.
[http://dx.doi.org/10.2174/1568026618666180712093914 ] [PMID: 29998807]
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493 ] [PMID: 5325707]
Oliveira, R.A.G.; Lima, E.O.; Vieira, W.L.; Freire, K.R.L.; Trajano, V.N.; Lima, I.O.; Souza, E.L.; Toledo, M.S.; Silva-Filho, R.N. Study of the interference of essential oils on the activity of some antibiotic used clinically. Rev. Bras. Farmacogn., 2006, 16(1), 77-82.
Clinical Laboratory Standards Institute. M02-A12: Performance standards for antimicrobial disk susceptibility tests approved standard—Twelfth Edition CLSI ; , 2015, 35, . (1)
Cleeland, R.; Squires, E. Evaluation of new antimicrobials in vitro and experimental animal infection. In: Antibiotics in laboratory medicine; Lorian, V., Ed.; Williams and Wilkiam: Baltimore, 1991, pp. 739-787.
Brunton, L.L.; Chabner, B.; Knollmann, B. Goodman and Gilman's the pharmacological basis of therapeutics. 12th Ed. , McGraw-Hill: Rio de Janeiro, . 2012.
Ultee, A.; Kets, E.P.; Alberda, M.; Hoekstra, F.A.; Smid, E.J. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol., 2000, 174(4), 233-238.
[http://dx.doi.org/10.1007/s002030000199 ] [PMID: 11081791]
McMahon, M.A.S.; Blair, I.S.; Moore, J.E.; McDowell, D.A. Habituation to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to antibiotics in human pathogens. J. Antimicrob. Chemother., 2007, 59(1), 125-127.
[http://dx.doi.org/10.1093/jac/dkl443 ] [PMID: 17071952]
Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015, 28(2), 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14 ] [PMID: 25788514]
Ferraz, E.O.; Vieira, M.A.R.; Ferreira, M.I.; Fernandes, Junior, A.; Marques, M.O.M.; Minatel, I.O.; Albano, M.; Sambo, P.; Lima, G.P.P. Seasonality effects on chemical composition, antibacterial activity and essential oil yield of three species of Nectandra. PLoS One, 2018, 13(9), e0204132.
[http://dx.doi.org/10.1371/journal.pone.0204132 ] [PMID: 30226853]
Freitas, P.R; Araújo, A.C.J; Santos, B.R; Muniz, D.F.S; Rocha, J.E. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of Baccharis reticulata (ruiz & pav.) pers. and α-pinene. Culturas e produtos industriais , 2020, 145 112106.
Leite, T.R.; Silva, M.A.P.D.; Santos, A.C.B.D.; Coutinho, H.D.M.; Duarte, A.E.; Costa, J.G.M.D. Antimicrobial, modulatory and chemical analysis of the oil of Croton limae. Pharm. Biol., 2017, 55(1), 2015-2019.
[http://dx.doi.org/10.1080/13880209.2017.1355926 ] [PMID: 28738715]
Sartori, M.R.K. Antimicrobial activity of extraction fractions and pure compounds obtained from the flowers of acmela brasiliensis spreng (wedelia paludosa) (asteraceae) , Master Thesis, Vale do Itajai University: Santa Catarina . 2005.
Düzgün, A.Ö.; Okumuş, F.; Saral, A.; Çiçek, A.Ç.; Cinemre, S. Determination of antibiotic resistance genes and virulence factors in Escherichia coli isolated from Turkish patients with urinary tract infection. Rev. Soc. Bras. Med. Trop., 2019, 52, e20180499.
[http://dx.doi.org/10.1590/0037-8682-0499-2018 ] [PMID: 31271618]
Baptista, M.G. Mechanisms of antibiotic resistance, Master Thesis, Universidade Lusófona de Humanidades e Tecnologia: Lisboa . 2013.
Hooper, D.C.; Jacoby, G.A. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med., 2016, 6(9), a025320.
[http://dx.doi.org/10.1101/cshperspect.a025320 ] [PMID: 27449972]
Volkov, I.L.; Seefeldt, A.C.; Johansson, M. Tracking of single tRNAs for translation kinetics measurements in chloramphenicol treated bacteria. Methods, 2019, 162-163, 23-30.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.004 ] [PMID: 30742999]
Karalewitz, A.P.A.; Miller, S.I. Resistance to multi-resistant Acinetobacter baumannii chlorhydriphenicol requires internal membrane permeation. Agentes antimicrobianos e quimioterapia , 2018, 62(8), e00513 -18.
Volz, C.; Ramoni, J.; Beisken, S.; Galata, V.; Keller, A.; Plum, A.; Posch, A.E.; Müller, R. Clinical resistome screening of 1,110 escherichia coli isolates efficiently recovers diagnostically relevant antibiotic resistance biomarkers and potential novel resistance mechanisms. Front. Microbiol., 2019, 10, 1671.
[http://dx.doi.org/10.3389/fmicb.2019.01671 ] [PMID: 31456751]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 03 November, 2020
Page: [2300 - 2307]
Pages: 8
DOI: 10.2174/1568026620666200820150425
Price: $65

Article Metrics

PDF: 23