Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Organosulphur Compounds Induce Apoptosis and Cell Cycle Arrest in Cervical Cancer Cells via Downregulation of HPV E6 and E7 Oncogenes

Author(s): Irfan A. Ansari*, Afza Ahmad, Mohammad A. Imran, Mohd Saeed and Irfan Ahmad

Volume 21, Issue 3, 2021

Published on: 18 August, 2020

Page: [393 - 405] Pages: 13

DOI: 10.2174/1871520620999200818154456

Price: $65

Abstract

Background: The quest for strong, safe and cost-effective natural antiproliferative agents that could reduce cancer has been the focus now a days. In this regard, the organosulfur compounds from garlic (Allium sativum L.), like Diallyl Sulfide (DAS) and Diallyl Disulfide (DADS), have been shown to exhibit potent antiproliferative and anticancer properties in many studies. However, the potential of these compounds against viral oncoproteins in cervical cancer has not been fully elucidated yet.

Objective: The objective of this study was to analyze the antiproliferative and apoptotic properties of DADS and DAS in HPV16+ human cervical cancer Caski cell line.

Methods: Caski (cervical cancer cells) were cultured and followed by the treatment of various concentrations of organosulphur compounds (DADS and DAS), cell viability was measured by MTT assay. The apoptotic assay was performed by DAPI and Hoechst3342 staining. Reactive Oxygen Species (ROS) was estimated by DCFDA staining protocol. The distributions of cell cycle and apoptosis (FITC-Annexin V assay) were analyzed by flow cytometry. Finally, gene expression analysis was performed via quantitative real time PCR.

Results: Our results showed that DAS and DADS exerted a significant antiproliferative effect on Caski cells by reducing the cell viability and inducing a dose-related increment in intracellular ROS production along with apoptosis in Caski cells. DAS and DADS also induced cell cycle arrest in G0/G1 phase, which was supported by the downregulation of cyclin D1 and CDK4 and upregulation of CDK inhibitors p21WAF1/CIP1 and p27KIP1 in Caski cells. Additionally, DAS and DADS lead to the downregulation of viral oncogene E6 and E7 and restoration of p53 function.

Conclusion: Thus, this study confirms the efficacy of both the organosulfur compounds DADS and DAS against cervical cancer cells.

Keywords: Cervical cancer, diallyl sulfide, diallyl disulfide, garlic, HPV, ROS, apoptosis.

Erratum In:
Organosulphur Compounds Induce Apoptosis and Cell Cycle Arrest in Cervical Cancer Cells via Downregulation of HPV E6 and E7 Oncogenes

Graphical Abstract
[1]
Stewart, B.; Kleihues, P. World cancer report; IARC Non-serial Publication WHO Press, 2014.
[2]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[3]
WHO/ICO Information Centre on HPV and Cervical Cancer (HPV Information Centre) WHO-HPV Information Centre. 2007.
[4]
Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob. Health, 2016, 4(9), e609-e616.
[http://dx.doi.org/10.1016/S2214-109X(16)30143-7] [PMID: 27470177]
[5]
Shewale, J.B.; Gillison, M.L. Dynamic factors affecting HPVattributable fraction for head and neck cancers. Curr. Opin. Virol., 2019, 39, 33-40.6.
[6]
Moody, C.A.; Laimins, L.A. Human papillomavirus oncoproteins: Pathways to transformation. Nat. Rev. Cancer, 2010, 10(8), 550-560.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[7]
Chaudhary, M.; Kumar, N.; Baldi, A.; Chandra, R.; Babu, M.A.; Madan, J. 4-Bromo-4′-chloro pyrazoline analog of curcumin augmented anticancer activity against human cervical cancer, HeLa cells: In silico-guided analysis, synthesis, and in vitro cytotoxicity. J. Biomol. Struct. Dyn., 2019, 38(5), 1335-1353.
[PMID: 30957694]
[8]
Kan, W.L.T.; Yin, C.; Xu, H.X.; Xu, G.; To, K.K.W.; Cho, C.H.; Rudd, J.A.; Lin, G. Antitumor effects of novel compound, guttiferone K, on colon cancer by p21Waf1/Cip1-mediated G0/G1 cell cycle arrest and apoptosis. Int. J. Cancer, 2013, 132(3), 707-716.
[http://dx.doi.org/10.1002/ijc.27694] [PMID: 22733377]
[9]
Cheng, Y.T.; Yang, C.C.; Shyur, L.F. Phytomedicine-modulating oxidative stress and the tumor microenvironment for cancer therapy. Pharmacol. Res., 2016, 114, 128-143.
[http://dx.doi.org/10.1016/j.phrs.2016.10.022] [PMID: 27794498]
[10]
Bagul, M.; Kakumanu, S.; Wilson, T.A. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J. Med. Food, 2015, 18(7), 731-737.
[http://dx.doi.org/10.1089/jmf.2014.0064] [PMID: 25608085]
[11]
Shukla, Y.; Kalra, N. Cancer chemoprevention with garlic and its constituents. Cancer Lett., 2007, 247(2), 167-181.
[http://dx.doi.org/10.1016/j.canlet.2006.05.009] [PMID: 16793203]
[12]
Powolny, A.A.; Singh, S.V. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett., 2008, 269(2), 305-314.
[http://dx.doi.org/10.1016/j.canlet.2008.05.027] [PMID: 18579286]
[13]
Omar, S.H.; Al-Wabel, N.A. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm. J., 2010, 18(1), 51-58.
[http://dx.doi.org/10.1016/j.jsps.2009.12.007] [PMID: 23960721]
[14]
Tiwari, R.K.; Singh, S.; Gupta, C.L.; Pandey, P.; Singh, V.K.; Sayyed, U.; Shekh, R.; Bajpai, P. Repolarization of glioblastoma macrophage cells using non-agonistic Dectin-1 ligand encapsulating TLR-9 agonist: Plausible role in regenerative medicine against brain tumor. Int. J. Neurosci., 2020, 1-8.
[15]
Khan, I.; Khan, F.; Farooqui, A.; Ansari, I.A. Andrographolide exhibits anticancer potential against human colon cancer cells by inducing cell cycle arrest and programmed cell death via augmentation of intracellular reactive oxygen species level. Nutr. Cancer, 2018, 70(5), 787-803.
[http://dx.doi.org/10.1080/01635581.2018.1470649] [PMID: 29781715]
[16]
Khan, F.; Khan, I.; Farooqui, A.; Ansari, I.A. Carvacrol induces Reactive Oxygen Species (ROS)-mediated apoptosis along with cell cycle arrest at G0/G1 in human prostate cancer cells. Nutr. Cancer, 2017, 69(7), 1075-1087.
[http://dx.doi.org/10.1080/01635581.2017.1359321] [PMID: 28872904]
[17]
Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed. Pharmacother., 2018, 97, 752-764.
[http://dx.doi.org/10.1016/j.biopha.2017.10.147] [PMID: 29107932]
[18]
Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol., 2016, 37(7), 8471-8486.
[http://dx.doi.org/10.1007/s13277-016-5035-9] [PMID: 27059734]
[19]
Reed, J.C. Mechanisms of apoptosis. Am. J. Pathol., 2000, 157(5), 1415-1430.
[http://dx.doi.org/10.1016/S0002-9440(10)64779-7] [PMID: 11073801]
[20]
Small, W., Jr; Bacon, M.A.; Bajaj, A.; Chuang, L.T.; Fisher, B.J.; Harkenrider, M.M.; Jhingran, A.; Kitchener, H.C.; Mileshkin, L.R.; Viswanathan, A.N.; Gaffney, D.K. Cervical cancer: A global health crisis. Cancer, 2017, 123(13), 2404-2412.
[http://dx.doi.org/10.1002/cncr.30667] [PMID: 28464289]
[21]
Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 2002, 76(3), 560-568.
[http://dx.doi.org/10.1093/ajcn/76.3.560] [PMID: 12198000]
[22]
Schwingshackl, L.; Hoffmann, G. Does a Mediterranean-type diet reduce cancer risk? Curr. Nutr. Rep., 2016, 5(1), 9-17.
[http://dx.doi.org/10.1007/s13668-015-0141-7] [PMID: 27014505]
[23]
Siddiqui, J.A.; Singh, A.; Chagtoo, M.; Singh, N.; Godbole, M.M.; Chakravarti, B. Phytochemicals for breast cancer therapy: Current status and future implications. Curr. Cancer Drug Targets, 2015, 15(2), 116-135.
[http://dx.doi.org/10.2174/1568009615666141229152256] [PMID: 25544650]
[24]
Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[25]
Iciek, M.; Kwiecień, I.; Włodek, L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen., 2009, 50(3), 247-265.
[http://dx.doi.org/10.1002/em.20474] [PMID: 19253339]
[26]
Rana, S.V.; Pal, R.; Vaiphei, K.; Sharma, S.K.; Ola, R.P. Garlic in health and disease. Nutr. Res. Rev., 2011, 24(1), 60-71.
[http://dx.doi.org/10.1017/S0954422410000338] [PMID: 24725925]
[27]
Dausch, J.G.; Nixon, D.W. Garlic: A review of its relationship to malignant disease. Prev. Med., 1990, 19(3), 346-361.
[http://dx.doi.org/10.1016/0091-7435(90)90034-H] [PMID: 2198557]
[28]
Shin, H.A.; Cha, Y.Y.; Park, M.S.; Kim, J.M.; Lim, Y.C. Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol., 2010, 46(4), e15-e18.
[http://dx.doi.org/10.1016/j.oraloncology.2009.10.012] [PMID: 20219414]
[29]
Sriram, N.; Kalayarasan, S.; Ashokkumar, P.; Sureshkumar, A.; Sudhandiran, G. Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: Involvement of caspase-3, NF-kappaB, and ERK-2. Mol. Cell. Biochem., 2008, 311(1-2), 157-165.
[http://dx.doi.org/10.1007/s11010-008-9706-8] [PMID: 18256791]
[30]
Aravind, L.; Dixit, V.M.; Koonin, E.V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci., 1999, 24(2), 47-53.
[http://dx.doi.org/10.1016/S0968-0004(98)01341-3] [PMID: 10098397]
[31]
Sun, B.H.; Zhao, X.P.; Wang, B.J.; Yang, D.L.; Hao, L.J. FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. World J. Gastroenterol., 2000, 6(2), 223-227.
[PMID: 11819561]
[32]
Zhang, L.; Huo, X.; Liao, Y.; Yang, F.; Gao, L.; Cao, L. Zeylenone, a naturally occurring cyclohexene oxide, inhibits proliferation and induces apoptosis in cervical carcinoma cells via PI3K/AKT/mTOR and MAPK/ERK pathways. Sci. Rep., 2017, 7(1), 1669.
[http://dx.doi.org/10.1038/s41598-017-01804-2] [PMID: 28490807]
[33]
Savi, L.A.; Leal, P.C.; Vieira, T.O.; Rosso, R.; Nunes, R.J.; Yunes, R.A.; Creczynski-Pasa, T.B.; Barardi, C.R.; Simões, C.M. Evaluation of anti-herpetic and antioxidant activities, and cytotoxic and genotoxic effects of synthetic alkyl-esters of gallic acid. Arzneimittelforschung, 2005, 55(1), 66-75.
[PMID: 15727165]
[34]
Uozaki, M.; Yamasaki, H.; Katsuyama, Y.; Higuchi, M.; Higuti, T.; Koyama, A.H. Antiviral effect of octyl gallate against DNA and RNA viruses. Antiviral Res., 2007, 73(2), 85-91.
[http://dx.doi.org/10.1016/j.antiviral.2006.07.010] [PMID: 16950523]
[35]
Zhou, J.; Wang, X.; Du, L.; Zhao, L.; Lei, F.; Ouyang, W.; Zhang, Y.; Liao, Y.; Tang, J. Effect of hyperthermia on the apoptosis and proliferation of CaSki cells. Mol. Med. Rep., 2011, 4(1), 187-191.
[PMID: 21461584]
[36]
Huang, R.; Wallqvist, A.; Covell, D.G. Anticancer metal compounds in NCI’s tumor-screening database: Putative mode of action. Biochem. Pharmacol., 2005, 69(7), 1009-1039.
[http://dx.doi.org/10.1016/j.bcp.2005.01.001] [PMID: 15763539]
[37]
Karmakar, S.; Banik, N.L.; Patel, S.J.; Ray, S.K. Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis, 2007, 12(4), 671-684.
[http://dx.doi.org/10.1007/s10495-006-0024-x] [PMID: 17219050]
[38]
Kyriakis, J.M.; Avruch, J. Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J. Biol. Chem., 1996, 271(40), 24313-24316.
[http://dx.doi.org/10.1074/jbc.271.40.24313] [PMID: 8798679]
[39]
Jaudan, A.; Sharma, S.; Malek, S.N.A.; Dixit, A. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action. PLoS One, 2018, 13(2)e0191523
[http://dx.doi.org/10.1371/journal.pone.0191523]] [PMID: 29420562]
[40]
Gross, A.; McDonnell, J.M.; Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev., 1999, 13(15), 1899-1911.
[http://dx.doi.org/10.1101/gad.13.15.1899] [PMID: 10444588]
[41]
Solá, S.; Ma, X.; Castro, R.E.; Kren, B.T.; Steer, C.J.; Rodrigues, C.M. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes. J. Biol. Chem., 2003, 278(49), 48831-48838.
[http://dx.doi.org/10.1074/jbc.M300468200] [PMID: 14514686]
[42]
Martinou, J.C.; Green, D.R. Breaking the mitochondrial barrier. Nat. Rev. Mol. Cell Biol., 2001, 2(1), 63-67.
[http://dx.doi.org/10.1038/35048069] [PMID: 11413467]
[43]
Wang, W.; Heideman, L.; Chung, C.S.; Pelling, J.C.; Koehler, K.J.; Birt, D.F. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol. Carcinog., 2000, 28(2), 102-110.
[44]
Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2002, 2(9), 647-656.
[http://dx.doi.org/10.1038/nrc883] [PMID: 12209154]
[45]
Zivny, J.; Klener, P., Jr; Pytlik, R.; Andera, L. The role of apoptosis in cancer development and treatment: Focusing on the development and treatment of hematologic malignancies. Curr. Pharm. Des., 2010, 16(1), 11-33.
[http://dx.doi.org/10.2174/138161210789941883] [PMID: 20214615]
[46]
Adams, J.M.; Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets Cell Death Differ., 2018, 25(1), 27-36.
[http://dx.doi.org/10.1038/cdd.2017.161] [PMID: 29099483]
[47]
Guo, B.; Godzik, A.; Reed, J.C. Bcl-G, a novel pro-apoptotic member of the Bcl-2 family. J. Biol. Chem., 2001, 276(4), 2780-2785.
[http://dx.doi.org/10.1074/jbc.M005889200] [PMID: 11054413]
[48]
Cook, T.; Wang, Z.; Alber, S.; Liu, K.; Watkins, S.C.; Vodovotz, Y.; Billiar, T.R.; Blumberg, D. Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res., 2004, 64(21), 8015-8021.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2212] [PMID: 15520210]
[49]
Xiang, T.; Du, L.; Pham, P.; Zhu, B.; Jiang, S. Nelfinavir, an HIV protease inhibitor, induces apoptosis and cell cycle arrest in human cervical cancer cells via the ROS-dependent mitochondrial pathway. Cancer Lett., 2015, 364(1), 79-88.
[http://dx.doi.org/10.1016/j.canlet.2015.04.027] [PMID: 25937300]
[50]
Stuart, M.C.; Damoiseaux, J.G.; Frederik, P.M.; Arends, J.W.; Reutelingsperger, C.P. Surface exposure of phosphatidylserine during apoptosis of rat thymocytes precedes nuclear changes. Eur. J. Cell Biol., 1998, 76(1), 77-83.
[http://dx.doi.org/10.1016/S0171-9335(98)80019-8] [PMID: 9650785]
[51]
Mattivi, F.; Guzzon, R.; Vrhovsek, U.; Stefanini, M.; Velasco, R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agric. Food Chem., 2006, 54(20), 7692-7702.
[http://dx.doi.org/10.1021/jf061538c] [PMID: 17002441]
[52]
Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem., 2007, 55(3), 992-1002.
[http://dx.doi.org/10.1021/jf062800k] [PMID: 17263504]
[53]
Pei, Z.; Zeng, J.; Gao, Y.; Li, F.; Li, W.; Zhou, H.; Yang, Y.; Wu, R.; Chen, Y.; Liu, J. Oxymatrine inhibits the proliferation of CaSki cells via downregulating HPV16E7 expression. Oncol. Rep., 2016, 36(1), 291-298.
[http://dx.doi.org/10.3892/or.2016.4800] [PMID: 27176229]
[54]
Donjerkovic, D.; Scott, D.W. Regulation of the G1 phase of the mammalian cell cycle. Cell Res., 2000, 10(1), 1-16.
[http://dx.doi.org/10.1038/sj.cr.7290031] [PMID: 10765979]
[55]
Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene, 2006, 25(38), 5220-5227.
[http://dx.doi.org/10.1038/sj.onc.1209615] [PMID: 16936740]
[56]
Ma, H.B.; Huang, S.; Yin, X.R.; Zhang, Y.; Di, Z.L. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. World J. Gastroenterol., 2014, 20(1), 193-203.
[http://dx.doi.org/10.3748/wjg.v20.i1.193] [PMID: 24415872]
[57]
Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu, L.; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int., 2018, 18(1), 102.
[http://dx.doi.org/10.1186/s12935-018-0595-y] [PMID: 30013454]
[58]
Sun, Y.; Liu, J.H.; Sui, Y.X.; Jin, L.; Yang, Y.; Lin, S.M.; Shi, H. Beclin1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells. Asian Pac. J. Cancer Prev., 2011, 12(5), 1269-1273.
[PMID: 21875280]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy