Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Insight on Ameliorative Role of Selenium Nanoparticles and Niacin in Wound Healing on Adult Female Albino Mice

Author(s): Marwa Emam, Akaber T. Keshta, Yasser M.A. Mohamed and Yasser A. Attia*

Volume 14, Issue 3, 2020

Page: [169 - 186] Pages: 18

DOI: 10.2174/2212796814666200818111849

Price: $65

Abstract

Background: Wound healing is a complex process necessary for repairing damaged tissues and preventing infection. Selenium nanoparticles (Se NPs) were known due to their antioxidant and antimicrobial effects, also niacin has angiogenesis and antioxidant effects that are important in wound healing.

Objective: The present study was conducted to investigate the effect of Se NPs and niacin in reducing and accelerating the wound healing time in mice.

Methods: A simple wet chemical method has been modified to synthesize Se NPs in order to investigate their effect and niacin on reducing the wound healing in 80 adult female albino mice (250 mm2 full thickness open excision wound) that were divided into eight groups (10 mice/each). After 30-days, the mice were sacrificed, blood and tissue samples were taken for analysis.

Results: The results showed that the percentage of wound area had been significantly reduced in Se NPs and niacin treated groups compared to the positive control. The level of Vascular Endothelial cell Growth Factor and Collagenase I in Se NPs and niacin groups significantly exceed those of other groups while Nitric Oxide (NO) was significantly decreased in treated groups. Liver and kidney functions showed the lower toxicity effect of Se NPs and niacin. Skin tissue showed the wound healing effect of Se NPs and niacin by regenerating skin layer compared to the positive group.

Discussion: The high antioxidant property and low hemolysis activity of Se NPs and niacin proved the biocompatible nature of Se NPs and niacin. A possible mechanism depending on the obtained results has been proposed.

Conclusion: Se NPs and niacin play an important role in accelerating and reducing the time of wound healing while they were antagonistic to each other.

Keywords: Wound healing, selenium nanoparticles, ascorbic acid, niacin, antioxidant, biocombatability.

Graphical Abstract
[1]
Garraud O, Hozzein WN, Badr G. Wound healing: Time to look for intelligent, ‘natural’ immunological approaches? BMC Immunol 2017; 18(S1)(Suppl. 1): 23.
[http://dx.doi.org/10.1186/s12865-017-0207-y] [PMID: 28681702]
[2]
Naderi N, Karponis D, Mosahebi A, Seifalian AM. Nanoparticles in wound healing; from hope to promise, from promise to routine. Front Biosci 2018; 23(3): 1038-59.
[http://dx.doi.org/10.2741/4632] [PMID: 28930588]
[3]
Rajkumar RJ, Nadar MM, Selvakumar PM. Nanotechnology in wound healing- a review. Global J Nanomed 2017; 3(1): 2573-374.
[4]
Rørth P. Collective guidance of collective cell migration. Trends Cell Biol 2007; 17(12): 575-9.
[http://dx.doi.org/10.1016/j.tcb.2007.09.007] [PMID: 17996447]
[5]
Birkenhauer E, Neethirajan S. A double-edged sword: the role of VEGF in wound repair and chemoattraction of opportunist pathogens. Int J Mol Sci 2015; 16(4): 7159-72.
[http://dx.doi.org/10.3390/ijms16047159] [PMID: 25830483]
[6]
Rajendran NK, Kumar SSD, Houreld NN, Abrahamse H. A review on nanoparticle based treatment for wound healing. J Drug Deliv Sci Technol 2018; 44: 421-30.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[7]
Cheng KY, Lin ZH, Cheng YP, et al. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci Rep 2018; 8(1): 12214.
[http://dx.doi.org/10.1038/s41598-018-30597-1] [PMID: 30111887]
[8]
Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 2014; 3(10): 647-61.
[http://dx.doi.org/10.1089/wound.2013.0517] [PMID: 25302139]
[9]
Gonzalez AC de O, Costa TF, Andrade ZA. Medrado ARAP. Wound healing - A literature review. An Bras Dermatol 2016; 91(5): 614-20.
[http://dx.doi.org/10.1590/abd1806-4841.20164741] [PMID: 27828635]
[10]
Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: Recruiting developmental pathways for regeneration. Cell Mol Life Sci 2013; 70(12): 2059-81.
[http://dx.doi.org/10.1007/s00018-012-1152-9] [PMID: 23052205]
[11]
Zhao Y, Sun Q, Zhang X, Baeyens J, Su H. Self-assembled selenium nanoparticles and their application in the rapid diagnostic detection of small cell lung cancer biomarkers. Soft Matter 2018; 14(4): 481-9.
[http://dx.doi.org/10.1039/C7SM01687E] [PMID: 29177363]
[12]
Bai K, Hong B, He J, Hong Z, Tan R. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. Int J Nanomedicine 2017; 12: 4527-39.
[http://dx.doi.org/10.2147/IJN.S129958] [PMID: 28684913]
[13]
Asri-Rezaei S, Nourian A, Shalizar-Jalali A, et al. Selenium supplementation in the form of selenium nanoparticles and selenite sodium improves mature male mice reproductive performances. Iran J Basic Med Sci 2018; 21(6): 577-85.
[PMID: 29942447]
[14]
Shurygina IA, Shurygin MG. 2017.Nanoparticles in Wound Healing and Regeneration.In: Rai, PhD M, Shegokar, PhD R Eds Metal Nanoparticles in pharma Springer, Cham.
[http://dx.doi.org/10.1007/978-3-319-63790-7_2]
[15]
Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 2015; 32: 30-9.
[http://dx.doi.org/10.1016/j.jtemb.2015.05.005] [PMID: 26302909]
[16]
Denu JM. Vitamin B3 and sirtuin function. Trends Biochem Sci 2005; 30(9): 479-83.
[http://dx.doi.org/10.1016/j.tibs.2005.07.004] [PMID: 16039130]
[17]
Weinreich J, Agren MS, Bilali E, et al. Effects of isoniazid and niacin on experimental wound-healing. Surgery 2010; 147(6): 780-8.
[http://dx.doi.org/10.1016/j.surg.2009.11.003] [PMID: 20045543]
[18]
Benavente CA, Jacobson MK, Jacobson EL. NAD in skin: therapeutic approaches for niacin. Curr Pharm Des 2009; 15(1): 29-38.
[http://dx.doi.org/10.2174/138161209787185760] [PMID: 19149600]
[19]
Vahdati M, Tohidi Moghadam T. Synthesis and characterization of Selenium nanoparticles-Lysozyme nanohybrid System with Synergistic Antibacterial properties. Sci Rep 2020; 10(1): 510.
[http://dx.doi.org/10.1038/s41598-019-57333-7] [PMID: 31949299]
[20]
Attia YA, Vázquez CV, Mohamed YMA. Facile production of vitamin B3 and other heterocyclic carboxylic acids using an efficient Ag/ZnO/graphene-Si hybrid nanocatalyst. Res Chem Intermed 2017; 43(1): 203-18.
[http://dx.doi.org/10.1007/s11164-016-2615-7]
[21]
Eldelghdye SM, Abdel-Khaled LG, Taha MS, et al. Role of Purslane (Portulaca oleracea) in the wound healing and its impact on biochemical parameters in diabetic albino rats. Int J Biol Pharm Allied Sci 2016; 5(7): 1576-90.
[22]
Pang DKT, Nong Z, Sutherland BG, et al. Niacin promotes revascularization and recovery of limb function in diet-induced obese mice with peripheral ischemia. Pharmacol Res Perspect 2016; 4(3)e00233
[http://dx.doi.org/10.1002/prp2.233] [PMID: 27433343]
[23]
Hassanin KM, Abd El-Kawi SH, Hashem KS. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int J Nanomedicine 2013; 8: 1713-20.
[PMID: 23658489]
[24]
Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 2010; 1(2): 87-93.
[http://dx.doi.org/10.4103/0976-500X.72350] [PMID: 21350616]
[25]
Noori S, Azmat M, Mahboob T. Study on antioxidant effects of cinnamon and garlic extract in liver, kidney and heart tissue of rat. Bioscience Research 2012; 9: 17-22.
[26]
Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 2003; 264(1): 275-88.
[http://dx.doi.org/10.1016/j.ydbio.2003.08.015] [PMID: 14623248]
[27]
Tokarzewicz A, Romanowicz L, Sveklo I, Gorodkiewicz E. The development of a matrix metalloproteinase-1 biosensor based on the surface plasmon resonance imaging technique. Anal Methods 2016; 8(34): 6428-35.
[http://dx.doi.org/10.1039/C6AY01856D]
[28]
Montgomery HAC, Dymock JF. The determination of nitrite in water. Analyst 1961; 86: 414.
[29]
Doumas BT, Bayse DD, Carter RJ, Peters T Jr, Schaffer R. Candidate reference method for determination of total proteins in serum. I. Development and validation, II. Tests for transferability. Clin Chem 1981; 27: 1642-54.
[http://dx.doi.org/10.1093/clinchem/27.10.1642] [PMID: 6169466]
[30]
Doumas BT, Watson WA, Biggs HG. Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 1971; 31(1): 87-96.
[http://dx.doi.org/10.1016/0009-8981(71)90365-2] [PMID: 5544065]
[31]
Schumann G, Klauke R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: Preliminary upper reference limits obtained in hospitalized subjects. Clin Chim Acta 2003; 327(1-2): 69-79.
[http://dx.doi.org/10.1016/S0009-8981(02)00341-8] [PMID: 12482620]
[32]
Karmen A, Wroblewski F, Ladue JS. Transaminase activity in human blood. J Clin Invest 1955; 34(1): 126-31.
[http://dx.doi.org/10.1172/JCI103055] [PMID: 13221663]
[33]
Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962; 8(2): 130-2.
[http://dx.doi.org/10.1093/clinchem/8.2.130] [PMID: 13878063]
[34]
Murray RL. Creatinine. In:Kaplan LA, Pesce AJ, Eds Clinical Chemistry; Theory, Analysis and Correlation. : CV Mosby Co., St. Louis 1984; pp. 1247-53.
[35]
Slaoui M, Fiette L. Histopathology procedures: From tissue sampling to histopathological evaluation. Drug Safety Evaluation 2010; 69-82.
[36]
Yazhiniprabha M, Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C 2019; 103109763
[http://dx.doi.org/10.1016/j.msec.2019.109763] [PMID: 31349432]
[37]
Corp IBM. Released IBM SPSS Statistics for Windows, Version 220. Armonk, NY: IBM Corp 2013.
[38]
Jiang F, Cai W, Tan G. Facile synthesis and optical properties of small selenium nanocrystals and nanorods. Nanoscale Res Lett 2017; 12(1): 401.
[http://dx.doi.org/10.1186/s11671-017-2165-y] [PMID: 28610394]
[39]
Huet E, Jaroz C, Nguyen HQ, et al. Stroma in normal and cancer wound healing. FEBS J 2019; 286(15): 2909-20.
[http://dx.doi.org/10.1111/febs.14842] [PMID: 30958920]
[40]
Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83(3): 835-70.
[http://dx.doi.org/10.1152/physrev.2003.83.3.835] [PMID: 12843410]
[41]
Caley MP, Martins VLC, O’Toole EA. Metalloproteinases and wound healing. Adv Wound Care (New Rochelle) 2015; 4(4): 225-34.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[42]
Soneja A, Drews M, Malinski T. Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 2005; 57(Suppl.): 108-19.
[PMID: 16415491]
[43]
Wang Y, Yan X, Fu L. Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. Int J Nanomedicine 2013; 8(1): 4007-13.
[http://dx.doi.org/10.2147/IJN.S43691] [PMID: 24204137]
[44]
Kamat JP, Devasagayam TPA. Nicotinamide (vitamin B3) as an effective antioxidant against oxidative damage in rat brain mitochondria. Redox Rep 1999; 4(4): 179-84.
[http://dx.doi.org/10.1179/135100099101534882] [PMID: 10658823]
[45]
Tang Y, Nakada MT, Rafferty P, et al. Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res 2006; 4(6): 371-7.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0042] [PMID: 16778084]
[46]
Tsala DE, Amadou D, Habtemariam S. Natural wound healing and bioactive natural products. Phytopharmacology 2013; 4(3): 532-60.
[47]
Al-Quraishy S, Dkhil MA, Abdel Moneim AE. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomedicine 2015; 10: 6741-56.
[PMID: 26604749]
[48]
Dou X, Shen C, Wang Z, Li S, Zhang X, Song Z. Protection of nicotinic acid against oxidative stress-induced cell death in hepatocytes contributes to its beneficial effect on alcohol-induced liver injury in mice. J Nutr Biochem 2013; 24(8): 1520-8.
[http://dx.doi.org/10.1016/j.jnutbio.2012.12.012] [PMID: 23465591]
[49]
Inceli MS, Bolkent S, Doger MM, Yanardag R. The effects of combined treatment with niacin and chromium on the renal tissues of hyperlipidemic rats. Mol Cell Biochem 2007; 294(1-2): 37-44.
[http://dx.doi.org/10.1007/s11010-006-9211-x] [PMID: 17124636]
[50]
Stirnimann G, Kessebohm K, Lauterburg B. Liver injury caused by drugs: An update. Swiss Med Wkly 2010.140w13080
[http://dx.doi.org/10.4414/smw.2010.13080] [PMID: 20927685]
[51]
Hosnedlova B, Kepinska M, Skalickova S, et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine 2018; 13: 2107-28.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[52]
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69(3): 562-73.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[53]
Liu J, Khalil RA. Matrix Metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. Prog Mol Biol Transl Sci 2017; 148: 355-420.
[http://dx.doi.org/10.1016/bs.pmbts.2017.04.003] [PMID: 28662828]
[54]
Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE. Multiple modes of activation of latent human fibroblast collagenase: Evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 1990; 87(1): 364-8.
[http://dx.doi.org/10.1073/pnas.87.1.364] [PMID: 2153297]
[55]
De Silv, Woznichak M, Woznichak MM, Burns KL, Grant KB, May SW. Selenium redox cycling in the protective effects of organoselenides against oxidant-induced DNA damage. J Am Chem Soc 2004; 126(8): 2409-13.
[56]
Wise A, Foord SM, Fraser NJ, et al. Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 2003; 278(11): 9869-74.
[http://dx.doi.org/10.1074/jbc.M210695200] [PMID: 12522134]
[57]
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson’s disease. Free Radic Biol Med 2013; 62: 13-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.001] [PMID: 23665395]
[58]
Wang X, Wu Z, Song G, Wang H, Long M, Cai S. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities. Clin Hemorheol Microcirc 1999; 21(2): 137-46.
[PMID: 10599597]
[59]
Harisa GI, Abo-Salem OM, El-sayed SM, Shazly G. Effects of nutritional and excessive levels of selenium on red blood cells of rats fed a high cholesterol diet. Biol Trace Elem Res 2013; 152(1): 41-9.
[http://dx.doi.org/10.1007/s12011-012-9588-1] [PMID: 23292318]
[60]
Nie T, Wu H, Wong KH, Chen T. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J Mater Chem B Mater Biol Med 2016; 4(13): 2351-8.
[http://dx.doi.org/10.1039/C5TB02710A] [PMID: 32263230]
[61]
Singh T, Adekoya OA, Jayaram B. Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study. Mol Biosyst 2015; 11(4): 1041-51.
[http://dx.doi.org/10.1039/C5MB00003C] [PMID: 25611160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy