Recent Advances in Drug Discovery and Cancer Diagnoses

Author(s): Jian Zhang*, Haiting Chai

Journal Name: Current Topics in Medicinal Chemistry

Volume 20 , Issue 21 , 2020


Become EABM
Become Reviewer
Call for Editor

Abstract:

This editorial provides a brief overview of the thematic issue and the papers in it. The thematic issue is proposed to help chemists and biologists track the most recent advances in drug discovery and cancer diagnoses. The process of drug discovery involves the identification and validation of biological targets, the identification and optimization of lead compounds, preclinical development, and clinical trials. Cancer is a major public health problem in the world. The results of tissue diagnosis, blood tests, computed tomography scans, and cytogenetic analyses can provide informative clues about molecular changes and indicate proper prognoses. Timely detection of cancer significantly improves cancer outcomes by providing care at the earliest possible stage thus contributing greatly to the prevention and exacerbation and has become an important public health strategy in all settings. The collection of this thematic issue includes five articles. The first one reviews the current advances and limitations of deep learning in anticancer drug sensitivity prediction. The next review summarizes the most recent and high-quality research related to anticancer activities of Vitamin C. The third one reports the efficacy of two different sets of natural products (terpenoids and flavonoids) towards caspase-3 activity. The fourth one proposes a novel in silico method for predicting cancer biomarkers in human body fluids. The fifth article performs an in silico and in vitro investigation on isothymusin, which serves as a potential inhibitor of cancer cell proliferation.

Keywords: Drug discovery, Cancer, Biomarkers, Molecular biochemistry, In vitro, In silico.

[1]
D'Agostino, V.G.; Sighel, D.; Zucal, C.; Bonomo, I.; Micaelli, M.; Lolli, G.; Provenzani, A.; Quattrone, A.; Adami, V. Screening approaches for targeting ribonucleoprotein complexes: a new dimension for drug discovery. SLAS Discovery : Advancing Life Sciences R & D , 2019, 24(3), 314-331.
[2]
Singh, S.S. Preclinical pharmacokinetics: an approach towards safer and efficacious drugs. Curr. Drug Metab., 2006, 7(2), 165-182.
[3]
Nayal, M.; Honig, B. On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins, 2006, 63(4), 892-906.
[4]
Vaquero-Garcia, J.; Barrera, A.; Gazzara, M.R.; Gonzalez-Vallinas, J.; Lahens, N.F.; Hogenesch, J.B.; Lynch, K.W.; Barash, Y. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife, 2016, 5, e11752
[5]
Shi, L.; Campbell, G.; Jones, W.D.; Campagne, F.; Wen, Z.; Walker, S.J.; Su, Z.; Chu, T.M.; Goodsaid, F.M.; Pusztai, L.; Shaughnessy, J.D., Jr; Oberthuer, A.; Thomas, R.S.; Paules, R.S.; Fielden, M.; Barlogie, B.; Chen, W.; Du, P.; Fischer, M.; Furlanello, C.; Gallas, B.D.; Ge, X.; Megherbi, D.B.; Symmans, W.F.; Wang, M.D.; Zhang, J.; Bitter, H.; Brors, B.; Bushel, P.R.; Bylesjo, M.; Chen, M.; Cheng, J.; Cheng, J.; Chou, J.; Davison, T.S.; Delorenzi, M.; Deng, Y.; Devanarayan, V.; Dix, D.J.; Dopazo, J.; Dorff, K.C.; Elloumi, F.; Fan, J.; Fan, S.; Fan, X.; Fang, H.; Gonzaludo, N.; Hess, K.R.; Hong, H.; Huan, J.; Irizarry, R.A.; Judson, R.; Juraeva, D.; Lababidi, S.; Lambert, C.G.; Li, L.; Li, Y.; Li, Z.; Lin, S.M.; Liu, G.; Lobenhofer, E.K.; Luo, J.; Luo, W.; McCall, M.N.; Nikolsky, Y.; Pennello, G.A.; Perkins, R.G.; Philip, R.; Popovici, V.; Price, N.D.; Qian, F.; Scherer, A.; Shi, T.; Shi, W.; Sung, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Thodima, V.; Trygg, J.; Vishnuvajjala, L.; Wang, S.J.; Wu, J.; Wu, Y.; Xie, Q.; Yousef, W.A.; Zhang, L.; Zhang, X.; Zhong, S.; Zhou, Y.; Zhu, S.; Arasappan, D.; Bao, W.; Lucas, A.B.; Berthold, F.; Brennan, R.J.; Buness, A.; Catalano, J.G.; Chang, C.; Chen, R.; Cheng, Y.; Cui, J.; Czika, W.; Demichelis, F.; Deng, X.; Dosymbekov, D.; Eils, R.; Feng, Y.; Fostel, J.; Fulmer-Smentek, S.; Fuscoe, J.C.; Gatto, L.; Ge, W.; Goldstein, D.R.; Guo, L.; Halbert, D.N.; Han, J.; Harris, S.C.; Hatzis, C.; Herman, D.; Huang, J.; Jensen, R.V.; Jiang, R.; Johnson, C.D.; Jurman, G.; Kahlert, Y.; Khuder, S.A.; Kohl, M.; Li, J.; Li, L.; Li, M.; Li, Q.Z.; Li, S.; Li, Z.; Liu, J.; Liu, Y.; Liu, Z.; Meng, L.; Madera, M.; Martinez-Murillo, F.; Medina, I.; Meehan, J.; Miclaus, K.; Moffitt, R.A.; Montaner, D.; Mukherjee, P.; Mulligan, G.J.; Neville, P.; Nikolskaya, T.; Ning, B.; Page, G.P.; Parker, J.; Parry, R.M.; Peng, X.; Peterson, R.L.; Phan, J.H.; Quanz, B.; Ren, Y.; Riccadonna, S.; Roter, A.H.; Samuelson, F.W.; Schumacher, M.M.; Shambaugh, J.D.; Shi, Q.; Shippy, R.; Si, S.; Smalter, A.; Sotiriou, C.; Soukup, M.; Staedtler, F.; Steiner, G.; Stokes, T.H.; Sun, Q.; Tan, P.Y.; Tang, R.; Tezak, Z.; Thorn, B.; Tsyganova, M.; Turpaz, Y.; Vega, S.C.; Visintainer, R.; von Frese, J.; Wang, C.; Wang, E.; Wang, J.; Wang, W.; Westermann, F.; Willey, J.C.; Woods, M.; Wu, S.; Xiao, N.; Xu, J.; Xu, L.; Yang, L.; Zeng, X.; Zhang, J.; Zhang, L.; Zhang, M.; Zhao, C.; Puri, R.K.; Scherf, U.; Tong, W.; Wolfinger, R.D. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nat. Biotechnol., 2010, 28(8), 827-838.
[6]
Nassar, F.J.; Nasr, R.; Talhouk, R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol. Ther., 2017, 172, 34-49.
[7]
Cortes-Ciriano, I.; Mervin, L.H.; Bender, A. Current trends in drug sensitivity prediction. Curr. Pharm. Des., 2016, 22(46), 6918-6927.
[8]
Ang, A.; Pullar, J.M.; Currie, M.J.; Vissers, M.C. Vitamin C and immune cell function in inflammation and cancer. Biochem. Soc. Trans., 2018, 46(5), 1147-1159.
[9]
Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer, 2019, 19(5), 271-282.
[10]
Huang, Q.; Li, F.; Liu, X.; Li, W.; Shi, W.; Liu, F-F.; O’sullivan, B.; He, Z.; Peng, Y.; Tan, A-C. Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med., 2011, 17(7), 860.
[11]
Pu, X.; Storr, S.J.; Zhang, Y.; Rakha, E.A.; Green, A.R.; Ellis, I.O.; Martin, S.G. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis, 2017, 22(3), 357-368.
[12]
Wall, D.M.; McCormick, B.A. Bacterial secreted effectors and caspase-3 interactions. Cell. Microbiol., 2014, 16(12), 1746-1756.
[13]
Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol., 2012, 6(2), 140-146.
[14]
Bhatt, A.N.; Mathur, R.; Farooque, A.; Verma, A.; Dwarakanath, B. Cancer biomarkers-current perspectives. Indian J. Med. Res., 2010, 132(2), 129-149.
[15]
Makridakis, M.; Vlahou, A. Secretome proteomics for discovery of cancer biomarkers. J. Proteomics, 2010, 73(12), 2291-2305.


free to download

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 21
Year: 2020
Page: [1855 - 1857]
Pages: 3
DOI: 10.2174/156802662021200817164143

Article Metrics

PDF: 36
HTML: 2