Hyaluronic Acid/Parecoxib-Loaded PLGA Microspheres for Therapy of Temporomandibular Disorders

Author(s): Dongwang Zhu, Haoran Bai, Wanning Xu, Wen Lai, Liting Song, Jiayin Deng*

Journal Name: Current Drug Delivery

Volume 18 , Issue 2 , 2021

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Objective: This study aimed to fabricate Hyaluronic Acid (HA)/parecoxib-loaded PLGA microspheres for the treatment of Temporomandibular Disorders (TMD) and investigate the in vitro and in vivo effect of the microsphere system to solve the issues of poor drug delivery and short duration on drug concentration in conventional TMD therapy.

Methods: The microspheres were prepared by the double emulsion (w/o/w) method. Various formulations were compared in terms of particle size, drug loading rate and encapsulation rate. Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and FT-IR spectroscopy were performed to evaluate physicochemical properties. The drug release behavior of microspheres and toxicity assay on synovial cells were investigated. The in vitro anti-inflammatory effect on inflammatory markers, such as IL-1β, TNF-α and COX-2, was assessed by real-time PCR. Then, the in vivo therapeutic effect of microspheres was investigated using mechanically-induced rat synovitis model. Protein levels of inflammatory cytokines (IL-1β, TNF-α and COX-2) from TMJ periarticular tissues were quantified by Enzyme-Linked Immunosorbent Assay (ELISA).

Results: The results showed that microspheres were morphologically regular, smooth and non-cohesive. The average particle size of the microspheres was (25.32 ± 1.01) μm. The drug loading rate of parecoxib was 17.12%-20.95% with encapsulation efficiency reaching 51.9%-54.7%. In vitro drug release tests showed a successful sustained release over 28 days with a burst of 19.98% of the total drug substance. Treatment with HA/parecoxib-loaded PLGA microspheres declined the mRNA expression of IL-1β, TNF-α and COX-2 induced by LPS in articular synovial cells. Moreover, in vivo results demonstrated that the intra-articular microspheres significantly reduced protein levels of inflammatory cytokines (IL-1β, TNF-α and COX-2) for more than two weeks and stopped the mechanically-induced synovitis in its tracks in rat models.

Conclusion: The study presented new and potential insights into treatments of TMD using PLGA microspheres loaded with HA and parecoxib as a successful drug delivery system.

Keywords: Parecoxib, hyaluronic acid, PLGA microspheres, intra-articular injection, temporomandibular disorders, TNF.

Mountziaris, P.M.; Sing, D.C.; Mikos, A.G.; Kramer, P.R. Intra-articular microparticles for drug delivery to the TMJ. J. Dent. Res., 2010, 89(10), 1039-1044.
[http://dx.doi.org/10.1177/0022034510375286] [PMID: 20660799]
Kulkarni, S.; Thambar, S.; Arora, H. Evaluating the effectiveness of nonsteroidal anti-inflammatory drug(s) for relief of pain associated with temporomandibular joint disorders: A systematic review. Clin. Exp. Dent. Res., 2020, 6(1), 134-146.
[http://dx.doi.org/10.1002/cre2.241] [PMID: 32067407]
Pigozzi, L.B.; Progiante, P.S.; Pattussi, M.P.; Pellizzer, E.P.; Grossi, P.K.; Grossi, M.L. General health quality of life in patients with temporomandibular disorders in a population-based cross-sectional study in southern brazil. Int. J. Prosthodont., 2019, 32(3), 237-240.
[http://dx.doi.org/10.11607/ijp.6072] [PMID: 31034536]
Mountziaris, P.M.; Kramer, P.R.; Mikos, A.G. Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods, 2009, 47(2), 134-140.
[http://dx.doi.org/10.1016/j.ymeth.2008.09.001] [PMID: 18835358]
Abdalla, H.B.; Jain, A.K.; Napimoga, M.H.; Clemente-Napimoga, J.T.; Gill, H.S. Microneedles coated with tramadol exhibit anti-nociceptive effect in a rat model of temporomandibular hypernociception. J. Pharmacol. Exp. Ther., 2019, 370(3), 834-842.
[http://dx.doi.org/10.1124/jpet.119.256750] [PMID: 30872390]
Zhang, Z.; Bi, X.; Li, H.; Huang, G. Enhanced targeting efficiency of PLGA microspheres loaded with Lornoxicam for intra-articular administration. Drug Deliv., 2011, 18(7), 536-544.
[http://dx.doi.org/10.3109/10717544.2011.596584] [PMID: 21812757]
Chen, L.; Mei, L.; Feng, D.; Huang, D.; Tong, X.; Pan, X.; Zhu, C.; Wu, C. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf. B Biointerfaces, 2018, 163, 146-154.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.040] [PMID: 29291500]
Zille, H.; Paquet, J.; Henrionnet, C.; Scala-Bertola, J.; Leonard, M.; Six, J.L.; Deschamp, F.; Netter, P.; Vergès, J.; Gillet, P.; Grossin, L. Evaluation of intra-articular delivery of hyaluronic acid functionalized biopolymeric nanoparticles in healthy rat knees. Biomed. Mater. Eng., 2010, 20(3), 235-242.
[http://dx.doi.org/10.3233/BME-2010-0637] [PMID: 20930333]
Guo, H.; Fang, W.; Li, Y.; Ke, J.; Deng, M.; Meng, Q.; Li, J.; Long, X. Up-regulation of proteoglycan 4 in temporomandibular osteoarthritic synovial cells by hyaluronic acid. J. Oral Pathol. Med., 2015, 44(8), 622-627.
[http://dx.doi.org/10.1111/jop.12273] [PMID: 25366928]
Nonaka, T.; Kikuchi, H.; Sohen, S.; Fukuda, K.; Hamanishi, C.; Tanaka, S. Comparison of the inhibitory effects of two types (90 kDa and 190 kDa) of hyaluronic acid on the expression of fibrinolytic factors in human synovial fibroblasts. Mod. Rheumatol., 2002, 12(2), 160-166.
[http://dx.doi.org/10.3109/s101650200027] [PMID: 24383905]
BRANDT, G.N.; SMITH, J.; SIMON., L.S.; Wang, Y.J. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis. Arthritis Rheum., 2000, 43(6), 1192-1203.
Wu, G.; Chen, L.; Li, H.; Wang, Y.J. Hyaluronic acid as an internal phase additive to obtain ofloxacin/PLGA microsphere by double emulsion method. Biomed. Mater. Eng., 2014, 24(1), 751-756.
[http://dx.doi.org/10.3233/BME-130863] [PMID: 24211960]
Yang, L.; Gao, S.; Asghar, S.; Liu, G.; Song, J.; Wang, X.; Ping, Q.; Zhang, C.; Xiao, Y. Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells. Int. J. Biol. Macromol., 2015, 72, 1391-1401.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.039] [PMID: 25450553]
Ouanounou, A.; Goldberg, M.; Haas, D.A. Pharmacotherapy in Temporomandibular Disorders: A Review. J. Can. Dent. Assoc., 2017, 83, h7.
[PMID: 29513209]
Saccomanni, G.; Giorgi, M.; Del Carlo, S.; Manera, C.; Saba, A.; Macchia, M. Simultaneous detection and quantification of parecoxib and valdecoxib in canine plasma by HPLC with spectrofluorimetric detection: Development and validation of a new methodology. Anal. Bioanal. Chem., 2011, 401(5), 1677-1684.
[http://dx.doi.org/10.1007/s00216-011-5244-4] [PMID: 21769548]
Tellegen, A.R.; Rudnik-Jansen, I.; Beukers, M.; Miranda-Bedate, A.; Bach, F.C.; de Jong, W.; Woike, N.; Mihov, G.; Thies, J.C.; Meij, B.P.; Creemers, L.B.; Tryfonidou, M.A. Intradiscal delivery of celecoxib-loaded microspheres restores intervertebral disc integrity in a preclinical canine model. J. Control. Release, 2018, 286, 439-450.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.019] [PMID: 30110616]
Figueroba, S.R.; Groppo, M.F.; Faibish, D.; Groppo, F.C. The action of anti-inflammatory agents in healthy temporomandibular joint synovial tissues is sex-dependent. Int. J. Oral Maxillofac. Surg., 2018, 47(2), 205-213.
[http://dx.doi.org/10.1016/j.ijom.2017.08.006] [PMID: 28886893]
Zhong, F.; Xu, J.; Yang, X.; Zhang, Q.; Gao, Z.; Deng, Y.; Zhang, L.; Yu, C. miR-145 eliminates lipopolysaccharides-induced inflammatory injury in human fibroblast-like synoviocyte MH7A cells. J. Cell. Biochem., 2018, 119(12), 10059-10066.
[http://dx.doi.org/10.1002/jcb.27341] [PMID: 30191608]
Abu-Hakmeh, A.E.; Fleck, A.K.M.; Wan, L.Q. Temporal effects of cytokine treatment on lubricant synthesis and matrix metalloproteinase activity of fibroblast-like synoviocytes. J. Tissue Eng. Regen. Med., 2019, 13(1), 87-98.
[http://dx.doi.org/10.1002/term.2771] [PMID: 30403832]
Zhao, X.; Gao, Y.; Tang, X.; Lei, W.; Yang, Y.; Yu, F.; Liu, Y.; Yang, M.; Wang, Y.; Gong, W.; Li, Z.; Gao, C.; Mei, X. Development and evaluation of ropivacaine loaded poly(lactic-co-glycolic acid) microspheres with low burst release. Curr. Drug Deliv., 2019, 16(6), 490-499.
[http://dx.doi.org/10.2174/1567201816666190528122137] [PMID: 31132975]
Qiao, F.; Zhang, J.; Wang, J.; Du, B.; Huang, X.; Pang, L.; Zhou, Z. Silk fibroin-coated PLGA dimpled microspheres for retarded release of simvastatin. Colloids Surf. B Biointerfaces, 2017, 158, 112-118.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.038] [PMID: 28686902]
Yang, H.; Hao, Y.; Liu, Q.; Mi, Z.; Wang, Z.; Zhu, L.; Feng, Q.; Hu, N. Preparation and in vitro study of hydrochloric norvancomycin encapsulated poly (d,l-lactide-co-glycolide, PLGA) microspheres for potential use in osteomyelitis. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1326-1330.
[http://dx.doi.org/10.1080/21691401.2016.1233110] [PMID: 27776425]
Wu, J.Z.; Williams, G.R.; Li, H.Y.; Wang, D.X.; Li, S.D.; Zhu, L.M. Insulin-loaded PLGA microspheres for glucose-responsive release. Drug Deliv., 2017, 24(1), 1513-1525.
[http://dx.doi.org/10.1080/10717544.2017.1381200] [PMID: 28975813]
Ganesan, K.; Balachandran, C.; Manohar, B.M.; Puvanakrishnan, R. Effects of testosterone, estrogen and progesterone on TNF-α mediated cellular damage in rat arthritic synovial fibroblasts. Rheumatol. Int., 2012, 32(10), 3181-3188.
[http://dx.doi.org/10.1007/s00296-011-2146-x] [PMID: 21960045]
Lin, X.; Kong, J.; Wu, Q.; Yang, Y.; Ji, P. Effect of TLR4/MyD88 signaling pathway on expression of IL-1β and TNF-α in synovial fibroblasts from temporomandibular joint exposed to lipopolysaccharide. Mediators Inflamm., 2015, 2015, 329405.
[http://dx.doi.org/10.1155/2015/329405] [PMID: 25810567]
Wang, C.; Luo, W.; Li, P.; Li, S.; Yang, Z.; Hu, Z.; Liu, Y.; Ao, N. Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydr. Polym., 2017, 174, 432-442.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.112] [PMID: 28821089]
Zhang, L.; Zhang, L.; Huang, Z.; Xing, R.; Li, X.; Yin, S.; Mao, J.; Zhang, N.; Mei, W.; Ding, L.; Wang, P. Increased HIF-1α in Knee Osteoarthritis Aggravate Synovial Fibrosis via Fibroblast-Like Synoviocyte Pyroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 6326517.
[http://dx.doi.org/10.1155/2019/6326517] [PMID: 30755787]
Zhang, Y.; Yan, G.; Sun, C.; Nan, L.; Wang, X.; Xu, W.; Chu, K. Compound GDC, an isocoumarin glycoside, protects against LPS-induced inflammation and potential mechanisms in vitro. Inflammation, 2019, 42(2), 506-515.
[http://dx.doi.org/10.1007/s10753-018-0908-2] [PMID: 30328549]
Maghsoudi, H.; Hallajzadeh, J.; Rezaeipour, M. Evaluation of the effect of polyphenol of escin compared with ibuprofen and dexamethasone in synoviocyte model for osteoarthritis: An in vitro study. Clin. Rheumatol., 2018, 37(9), 2471-2478.
[http://dx.doi.org/10.1007/s10067-018-4097-z] [PMID: 29663159]
El-Hakim, I.E.; Elyamani, A.O. Preliminary evaluation of histological changes found in a mechanical arthropatic temporomandibular joint (TMJ) exposed to an intra-articular Hyaluronic acid (HA) injection, in a rat model. J. Craniomaxillofac. Surg., 2011, 39(8), 610-614.
[http://dx.doi.org/10.1016/j.jcms.2010.12.001] [PMID: 21216612]
Muto, T.; Kawakami, J.; Kanazawa, M.; Yajima, T. Histologic study of synovitis induced by trauma to the rat temporomandibular joint. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 1998, 86(5), 534-540.
[http://dx.doi.org/10.1016/S1079-2104(98)90342-0] [PMID: 9830644]
Clemente-Napimoga, J.T.; Moreira, J.A.; Grillo, R.; de Melo, N.F.; Fraceto, L.F.; Napimoga, M.H. 15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sci., 2012, 90(23-24), 944-949.
[http://dx.doi.org/10.1016/j.lfs.2012.04.035] [PMID: 22564409]
Guilherme, V.A.; Ribeiro, L.N.M.; Alcântara, A.C.S.; Castro, S.R.; Rodrigues da Silva, G.H.; da Silva, C.G.; Breitkreitz, M.C.; Clemente-Napimoga, J.; Macedo, C.G.; Abdalla, H.B.; Bonfante, R.; Cereda, C.M.S.; de Paula, E. Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration. Sci. Rep., 2019, 9(1), 11160.
[http://dx.doi.org/10.1038/s41598-019-47486-w] [PMID: 31371737]
Panwar, V.; Kumar, P.; Bansal, A.; Ray, S.S.; Jain, S.L. PEGylated magnetic nanoparticles (PEG@Fe 3 O 4) as cost effective alternative for oxidative cyanation of tertiary amines via C H activation. Appl. Catal. A Gen., 2015, 498, 25-31.
Cardozo, F.T.; Camelini, C.M.; Cordeiro, M.N.; Mascarello, A.; Malagoli, B.G.; Larsen, I.V.; Rossi, M.J.; Nunes, R.J.; Braga, F.C.; Brandt, C.R.; Simões, C.M. Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis. Int. J. Biol. Macromol., 2013, 57, 265-272.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.026] [PMID: 23511057]
Rajesh, R.H.; Parikh, J.R.; Dubey, R.R; Soni, H.N.; Kishor, N.K Poly(D,l-lactide-co-glycolide) microspheres containing 5-fluorouracil: Optimization of process parameters. AAPS PharmSciTech, 2003, 4(2), E13.
Xuan, J.; Lin, Y.; Huang, J.; Yuan, F.; Li, X.; Lu, Y.; Zhang, H.; Liu, J.; Sun, Z.; Zou, H.; Chen, Y.; Gao, J.; Zhong, Y. Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats. Peptides, 2013, 46, 172-179.
[http://dx.doi.org/10.1016/j.peptides.2013.06.005] [PMID: 23770254]
Jamil, A.; Aamir Mirza, M.; Anwer, M.K.; Thakur, P.S.; Alshahrani, S.M.; Alshetaili, A.S.; Telegaonkar, S.; Panda, A.K.; Iqbal, Z. Co-delivery of gemcitabine and simvastatin through PLGA polymeric nanoparticles for the treatment of pancreatic cancer: In-vitro characterization, cellular uptake, and pharmacokinetic studies. Drug Dev. Ind. Pharm., 2019, 45(5), 745-753.
[http://dx.doi.org/10.1080/03639045.2019.1569040] [PMID: 30632800]
Zhang, M.; Ma, Y.; Li, R.; Zeng, J.; Li., Z.; Tang, Y.; Sun, D. RhBMP-2-loaded Poly(lactic-co-glycolic acid) microspheres fabricated by coaxial electrospraying for protein delivery. J. Biomater. Sci. Polym. Ed., 2017, 28(18), 24.
Kim, S.E.; Yun, Y.P.; Shim, K.S.; Park, K.; Choi, S.W.; Suh, D.H. Effect of lactoferrin-impregnated porous poly(lactide-co-glycolide) (PLGA) microspheres on osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). Colloids Surf. B Biointerfaces, 2014, 122, 457-464.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.057] [PMID: 25096719]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2021
Published on: 17 August, 2020
Page: [234 - 245]
Pages: 12
DOI: 10.2174/1567201817999200817151048
Price: $65

Article Metrics

PDF: 29